Как найти работу силы архимеда

Работа силы Архимеда – ?

I think that i know



Профи

(827),
на голосовании



7 лет назад

Дополнен 7 лет назад

pж=1000 кг/м3
h=0.55 м
Vт = 0.003 м3
g = 9.8 м/с2
Aархимеда – ?

Голосование за лучший ответ

Владимир Замятин

Оракул

(64975)


7 лет назад

Точно такая же, как и любой другой. Скалярное произведение силы на перемещение.

Рустам ИскендеровИскусственный Интеллект (133392)

7 лет назад

тут, конечно, “векторное” – описка.

Владимир Замятин
Оракул
(64975)
Ой!!!! Спасибо! Сейчас исправлю.

Рустам Искендеров

Искусственный Интеллект

(133392)


7 лет назад

Скалярное произведение силы на перемещение.

Похожие вопросы

Сообщения без ответов | Активные темы | Избранное

 

Задача на поиск работы силы Архимеда

Сообщение20.02.2017, 19:18 

Аватара пользователя


15/11/15
1297
Москва

Добрый день.Я выложу наиболее спорные для меня задачи, проверьте пожалуйста мои решения. Начнем с первой такой задачи.
Задача 1. Льдина площадью $S=1$ м^2 и толщиной $d=0.4$ м плавает в воде.Какую минимальную работу надо совершить, чтобы полностью погрузить льдину в воду?
Изображение
Решение. Пусть $h'$ – высота “торчащей” части. Приравнивая силу тяжести и силу Архимеда легко найти $h'$:$$[h' = frac{{{rho _w}d}}{{{rho _w} + {rho _l}}}]$$
где $[{{rho _w}}]$ – плотность воды, $[{{rho _l}}]$ – плотность льда. Далее, используя теорему о кинетической энергии легко найти, что искомая работа $A$ равна $[A = {A_{{F_a}}} - mgh']$. $mgh'$ легко выразить через известные величины ,но сила Архимеда непостоянна. Еще работу ${A_{{F_a}}}$ можно найти как площадь под графиком:
Изображение
$$[{A_{{F_a}}} = left| S right| = frac{{a + b}}{2} cdot h' = frac{{{rho _w}gS(d - h') + {rho _w}gSd}}{2} cdot h' = frac{{{rho _w}gSh'(2d - h')}}{2} = frac{{{rho _w}gS cdot frac{{{rho _w}d}}{{{rho _w} + {rho _l}}} cdot (2d - frac{{{rho _w}d}}{{{rho _w} + {rho _l}}})}}{2}]$$
Однако, подставляя числовые данные в формулу, получим, что ${A_{{F_a}}} approx  1239$ Дж, что никак не поддается здравому смыслу.

Профиль  

mihiv 

Re: Задача на поиск работы силы Архимеда

Сообщение20.02.2017, 20:39 

Заслуженный участник


03/01/09
1621
москва

$h'$ найдено неправильно.

Профиль  

Rusit8800 

Re: Задача на поиск работы силы Архимеда

Сообщение20.02.2017, 20:58 

Аватара пользователя


15/11/15
1297
Москва

Профиль  

amon 

Re: Задача на поиск работы силы Архимеда

Сообщение21.02.2017, 02:30 

Заслуженный участник
Аватара пользователя


04/09/14
4763
ФТИ им. Иоффе СПб

Нашел ошибку

OK. Теперь давайте работу считать. Тут такую вещь надо понять. Вот, плавает льдина, не тонет и не взлетает. Чему равна сумма сил действующих на неё? Правильно, нулю. Если мы надавим на льдину с силой 200000 ньютонов, то она, конечно, потонет, но при этом разгонится со страшной силой, а на разгон тоже уйдет какая-то работа, стало быть, в этом случае работа точно не минимальна.

Если надавить на льдину слегка мизинчиком, то она чутка погрузится, если надавить послабее, то она тоже погрузится, но меньше. Значит давить надо в начальный момент совсем слабо, то есть в пределе никак. Теперь льдина погрузилась, и что бы ее удерживать, надо давить уже ладонью, если надавить ещё чуть-чуть, то она уйдет вниз. Опять этим чуть-чуть пренебрегаем. Уловили идею?

Профиль  

DimaM 

Re: Задача на поиск работы силы Архимеда

Сообщение21.02.2017, 06:47 

Заслуженный участник


28/12/12
7407

Rusit8800

Чтобы не возиться с вычислением работы переменной силы, придуман закон сохранения энергии.
Представим себе, что мы отрезали торчащий над водой кусок льдины и приклеили его снизу. А такой же кусок воды снизу убрали и размазали равномерно по поверхности водоема. Чему будет равно изменение потенциальной энергии?

Профиль  

Rusit8800 

 Re: Задача на поиск работы силы Архимеда

Сообщение21.02.2017, 16:54 

Аватара пользователя


15/11/15
1297
Москва

Чтобы не возиться с вычислением работы переменной силы, придуман закон сохранения энергии.
Представим себе, что мы отрезали торчащий над водой кусок льдины и приклеили его снизу. А такой же кусок воды снизу убрали и размазали равномерно по поверхности водоема. Чему будет равно изменение потенциальной энергии?

Ну, видимо это то же самое, что погрузить льдину на глубину $h'$. Тогда изменение пот. энергии льдины равно $$Delta E = mgh'$$

— 21.02.2017, 17:55 —

Уловили идею?

Честно, не очень.

Профиль  

DimaM 

Re: Задача на поиск работы силы Архимеда

Сообщение21.02.2017, 18:44 

Заслуженный участник


28/12/12
7407

Ну, видимо это то же самое, что погрузить льдину на глубину $h'$. Тогда изменение пот. энергии льдины равно $$Delta E = mgh'$$

Эт вряд ли – при погружении потенциальная энергия уменьшается.
А чему равно изменение потенциальной энергии воды, перемещенной снизу на поверхность?

Профиль  

Rusit8800 

Re: Задача на поиск работы силы Архимеда

Сообщение21.02.2017, 22:25 

Аватара пользователя


15/11/15
1297
Москва

А чему равно изменение потенциальной энергии воды, перемещенной снизу на поверхность?

Ну, наверное если пренебречь неравномерным перемещением воды, то тоже(там я по модулю брал) $Delta E = mgh'$

Профиль  

Батороев 

Re: Задача на поиск работы силы Архимеда

Сообщение22.02.2017, 07:38 


23/01/07
3379
Новосибирск

Чтобы не возиться с вычислением работы переменной силы

Если изменение силы линейно, то возня не так уж и велика.

Профиль  

DimaM 

Re: Задача на поиск работы силы Архимеда

Сообщение22.02.2017, 07:42 

Заслуженный участник


28/12/12
7407

Ну, наверное если пренебречь неравномерным перемещением воды, то тоже(там я по модулю брал) $Delta E = mgh'$

Неверно. Покажите ваши выкладки, может, найдем ошибку.

Профиль  

wrest 

 Re: Задача на поиск работы силы Архимеда

Сообщение22.02.2017, 12:23 


05/09/16
10508

кажется $[h' = frac{{d({rho _w} - {p_l})}}{{{rho _w}}}]$

Да. И это будет перемещением.
Направим ось $x$ вниз, установим ноль на верхней поверхности свободно плавающей льдины.
Сила с которой надо давить чтобы льдина погрузилась на $Delta x$ метров, будет зависеть от $Delta x$ линейно, как вы и заметили ранее и нарисовали на рисунке.
Сначала, когда льдина свободно плавает, внешняя сила $F(0)=0$, то есть при $x=0$ равна нулю. То есть, пока льдина не погрузится полностью, она будет действовать как пружина по закону Гука $F=kx$ (а когда погрузится, то сила станет постоянной и не зависящей от $x$ и даже не зависящей от формы льдины).
В конце, когда льдина полностью погружена, сила $F(h')$ равна… (напишите чему).
Дальше находите среднюю (между нулевой начальной и ненулевой конечной) силу, умножаете на перемещение и получаете искомую работу.

Профиль  

Rusit8800 

Re: Задача на поиск работы силы Архимеда

Сообщение22.02.2017, 15:22 

Аватара пользователя


15/11/15
1297
Москва

Ну вот я нашел работу силы Архимеда через площадь под графиком, начальное и конечное значение силы Архимеда приведено на рисунке. Правильно ли я нашел силу Архимеда? Дальше искомую работу будет легко найти, она равна $[A = {A_{{F_a}}} - mgh']$

Профиль  

Skeptic 

Re: Задача на поиск работы силы Архимеда

Сообщение22.02.2017, 15:40 


01/12/11

1047

Ну вот я нашел работу силы Архимеда через площадь под графиком, начальное и конечное значение силы Архимеда приведено на рисунке. Правильно ли я нашел силу Архимеда? Дальше искомую работу будет легко найти, она равна $[A = {A_{{F_a}}} - mgh']$

$m$ – это масса чего?

Профиль  

wrest 

 Re: Задача на поиск работы силы Архимеда

Сообщение22.02.2017, 15:42 


05/09/16
10508

Ну вот я нашел работу силы Архимеда через площадь под графиком, начальное и конечное значение силы Архимеда приведено на рисунке. Правильно ли я нашел силу Архимеда?

Не знаю, на графике непонятно, но силой Архимеда, действующей на тело, обычно называют
$F_A=rho_w gV$, где $V$ – погруженный в воду объем тела.
Из правильного, у вас правильно найдено $$[h' = frac{{d({rho _w} - {rho _l})}}{{{rho _w}}}]$$ – высота выступающей из воды свободно плавающей льдины (т.е. до начала погружения при помощи внешней силы, работу которой надо посчитать).

Профиль  

amon 

Re: Задача на поиск работы силы Архимеда

Сообщение22.02.2017, 18:58 

Заслуженный участник
Аватара пользователя


04/09/14
4763
ФТИ им. Иоффе СПб

Ну вот я нашел работу силы Архимеда через площадь под графиком, начальное и конечное значение силы Архимеда приведено на рисунке.

Вам нужна работа внешней силы, преодолевающей (в пределе – равной) силу Архимеда.

Профиль  

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Видеоурок: закон Архимеда

Зако́н Архиме́да — закон гидростатики и аэростатики: на тело, погружённое в жидкость или газ, действует выталкивающая сила, численно равная весу объема жидкости или газа, вытесненного телом. Закон открыт Архимедом в III веке до н. э. Выталкивающая сила также называется архимедовой силой или гидростатической подъёмной силой[1][2] (её не следует путать с аэро- и гидродинамической подъёмной силой, возникающей при обтекании тела потоком газа или жидкости).

Так как сила Архимеда обусловлена силой тяжести, то в невесомости она не действует.

В соответствии с законом Архимеда для выталкивающей силы выполняется[3]:

{displaystyle F_{A}=rho gV,}

где:

Описание[править | править код]

Выталкивающая или подъёмная сила по направлению противоположна силе тяжести, прикладывается к центру тяжести объёма, вытесняемого телом из жидкости или газа.

Если тело плавает (см. плавание тел) или равномерно движется вверх или вниз, то выталкивающая или подъёмная сила по модулю равна силе тяжести, действующей на вытесненный телом объём жидкости или газа.

Плавание тела. Сила Архимеда (F_{A}) уравновешивает вес тела (F_{p}):

{displaystyle F_{A}=F_{p};}
ρж g Vж = ρт g Vт

Например, воздушный шарик объёмом V, наполненный гелием, летит вверх из-за того, что плотность гелия ({displaystyle rho _{He}}) меньше плотности воздуха ({displaystyle rho _{air}}):

{displaystyle F_{A}>F_{p};}

{displaystyle rho _{air}gV>rho _{He}gV.}

Закон Архимеда можно объяснить при помощи разности гидростатических давлений на примере прямоугольного тела, погруженного в жидкость или газ. В силу симметрии прямоугольного тела, силы давления, действующие на боковые грани тела, уравновешиваются. Давление ({displaystyle P_{A}}) и сила давления ({displaystyle F_{A}}), действующие на верхнюю грань тела, равны:

{displaystyle P_{A}=rho gh_{A};}
{displaystyle F_{A}=rho gh_{A}S,}

где:

Давление ({displaystyle P_{B}}) и сила давления ({displaystyle F_{B}}), действующие на нижнюю грань тела, равны:

{displaystyle P_{B}=rho gh_{B};}
{displaystyle F_{B}=rho gh_{B}S,}

где:

Сила давления жидкости или газа на тело определяется разностью сил {displaystyle F_{B}} и {displaystyle F_{A}}:

{displaystyle F_{B}-F_{A}=rho gh_{B}S-rho gh_{A}S=rho gleft(h_{B}-h_{A}right)S=rho ghS=rho gV,}

где:

Разница давлений:

{displaystyle P_{B}-P_{A}=rho gh_{B}-rho gh_{A}=rho gh.}

В отсутствие гравитационного поля, то есть в состоянии невесомости, закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление (естественной) конвекции, поэтому, например, воздушное охлаждение и вентиляцию жилых отсеков космических аппаратов необходимо производить принудительно вентиляторами.

Обобщения[править | править код]

Некий аналог закона Архимеда справедлив также в любом поле сил, которое по-разному действуют на тело и на жидкость (газ), либо в неоднородном поле. Например, это относится к полю сил инерции (например, к полю центробежной силы) — на этом основано центрифугирование. Пример для поля немеханической природы: диамагнетик в вакууме вытесняется из области магнитного поля большей интенсивности в область с меньшей.

Вывод закона Архимеда для тела произвольной формы[править | править код]

Вывод через мысленный эксперимент[править | править код]

Если мысленно заменить погружённое в жидкость тело той же жидкостью, мысленно размещённая в том же объёме порция воды будет находиться в равновесии и действовать на окружающую воду с силой, равной силе тяжести, действующей на порцию воды. Так как перемешивания частиц воды не происходит, можно утверждать, что окружающая вода действует на выделенный объём с той же силой, но направленной в противоположном направлении, то есть с силой, равной {displaystyle mg=rho gV}[4][5][6].

Расчёт силы[править | править код]

Гидростатическое давление p на глубине h, оказываемое жидкостью с плотностью rho на тело, есть {displaystyle p=rho gh}. Пусть плотность жидкости (rho ) и напряжённость гравитационного поля (g) — постоянные величины, а h — параметр. Возьмём тело произвольной формы, имеющее ненулевой объём. Введём правую ортонормированную систему координат Oxyz, причём выберем направление оси z совпадающим с направлением вектора {vec  {g}}. Ноль по оси z установим на поверхности жидкости. Выделим на поверхности тела элементарную площадку dS. На неё будет действовать сила давления жидкости, направленная внутрь тела, d{vec  {F}}_{A}=-pd{vec  {S}}. Чтобы получить силу, которая будет действовать на тело, возьмём интеграл по поверхности:

{displaystyle {vec {F}}_{A}=-int limits _{S}{p,d{vec {S}}}=-int limits _{S}{rho gh,d{vec {S}}}=-rho gint limits _{S}{h,d{vec {S}}}=^{*}-rho gint limits _{V}{operatorname {grad} (h),dV}=^{**}-rho gint limits _{V}{{vec {e}}_{z}dV}=-rho g{vec {e}}_{z}int limits _{V}{dV}=(rho gV)(-{vec {e}}_{z}).}

При переходе от интеграла по поверхности к интегралу по объёму пользуемся обобщённой теоремой Остроградского-Гаусса.

{displaystyle {}^{*}h(x,y,z)=z;}
{displaystyle ^{**}operatorname {grad} h=nabla h={vec {e}}_{z}.}

Получаем, что модуль силы Архимеда равен {displaystyle rho gV}, и направлена сила Архимеда в сторону, противоположную направлению вектора напряжённости гравитационного поля.

Вывод через закон сохранения энергии[править | править код]

Закон Архимеда можно также вывести из закона сохранения энергии. Работа силы, действующей со стороны погружённого тела на жидкость, приводит к изменению её потенциальной энергии:

{displaystyle  A=-F*(h_{1}-h_{2})=-Delta E_{p}=-m_{text{ж}}gDelta h,}

где {displaystyle m_{text{ж}}} — масса вытесненной части жидкости, Delta h — перемещение её центра масс. Отсюда модуль вытесняющей силы:

{displaystyle  F=m_{text{ж}}g.}

По третьему закону Ньютона эта сила, равна по модулю и противоположна по направлению силе Архимеда, действующей со стороны жидкости на тело. Объём вытесненной жидкости равен объёму погруженной части тела, поэтому массу вытесненной жидкости можно записать как:

{displaystyle  m_{text{ж}}=rho _{text{ж}}V_{text{т}},} где {displaystyle V_{text{т}}} — объем погружённой части тела.

Таким образом, для силы Архимеда имеем:

{displaystyle  F_{A}= F=m_{text{ж}}g=rho _{text{ж}}gV_{text{т}}.}

Условие плавания тел[править | править код]

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести {displaystyle F_{T}} и силы Архимеда {displaystyle F_{A}}, которые действуют на это тело. Возможны следующие три случая:

  • {displaystyle F_{T}>F_{A}} — тело тонет;
  • {displaystyle F_{T}=F_{A}} — тело плавает в жидкости или газе;
  • {displaystyle F_{T}<F_{A}} — тело всплывает до тех пор, пока не начнёт плавать.

Другая формулировка (где {displaystyle rho _{t}} — плотность тела, {displaystyle rho _{s}} — плотность среды, в которую тело погружено):

  • {displaystyle rho _{t}>rho _{s}} — тело тонет;
  • {displaystyle rho _{t}=rho _{s}} — тело плавает в жидкости или газе;
  • {displaystyle rho _{t}<rho _{s}} — тело всплывает до тех пор, пока не начнёт плавать.

Примечания[править | править код]

  1. Архимеда закон : [арх. 1 января 2023] // Анкилоз — Банка. — М. : Большая российская энциклопедия, 2005. — С. 331. — (Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов ; 2004—2017, т. 2). — ISBN 5-85270-330-3.
  2. Архимеда закон // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 123. — 707 с. — 100 000 экз.
  3. Всё написанное ниже, если не оговорено иное, относится к однородному полю силы тяжести (например, к полю, действующему вблизи поверхности планеты).
  4. Перышкин А. , Оригинальное доказательство закона Архимеда. Дата обращения: 28 сентября 2020. Архивировано 20 июля 2020 года.
  5. Доказательство закона Архимеда для тела произвольной формы. Дата обращения: 28 сентября 2020. Архивировано 21 сентября 2020 года.
  6. Buoyancy (англ.). Архивировано 14 июля 2007 года.

Ссылки[править | править код]

  • Архимедов закон // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Закон Архимеда // Энциклопедия «Кругосвет».

На прошлом уроке мы доказали с помощью опытов существование силы, действующей на тела, погруженные в жидкость или газ — выталкивающей силы. Также мы теперь знаем, что ее можно рассчитать по формуле: $F_{выт} = gm_ж = P_ж$. Но какое еще есть значение у этой силы? На этом уроке мы более подробно рассмотрим выталкивающую силу.

Выталкивающая сила и вес тела

Как можно на опыте определить, с какой силой тело, погруженное целиком в жидкость, выталкивается из жидкости?
Давайте познакомимся с таким опытом. Он представлен на рисунке 1.

Подвесим на пружину небольшую емкость для жидкости и тело цилиндрической формы ниже. На конце пружины у нас расположена стрелка-указатель. Она отмечает растяжение пружины на штативе (рисунок 1, а). Таким образом, мы видим вес тела в воздухе.

Рисунок 1. Опыт по определению зависимости выталкивающей силы и веса погруженного тела

Теперь опустим наше тело в большой сосуд. Сосуд имеет трубку для слива и наполнен жидкостью до уровня этой трубки (рисунок 1, б).

Когда мы полностью опустим тело в сосуд, часть жидкости из него выльется через трубку для слива в стакан. Объем этой жидкости будет равен объему тела. Мы уже знаем, что на тело действует выталкивающая сила: пружина сокращается, стрелка-указатель поднимается, вес тела в жидкости становится меньше.

А теперь возьмем жидкость, которая вылилась в стакан. Зальем ее в емкость, которая также подвешена к пружине (рисунок 1, в). Теперь стрелка-указатель вернулась к своему изначальному положению.

Так чему равна эта сила? Сделаем вывод из данного опыта.

Сила, выталкивающая целиком погруженное в жидкость тело, равна весу жидкости в объеме этого тела.

Если провести подобный опыт с газом, а не с жидкостью, то мы получим, что сила, выталкивающая тело из газа, равна весу газа, взятого в объеме тела.

Сила Архимеда

Как называют силу, которая выталкивает тела, погруженные в жидкости и газы?
Теперь мы добавим, что эту выталкивающую силу называют архимедовой силой. Архимед (рисунок 2) — древнегреческий ученый и инженер, сделавший множество открытий и в математике, и в физике. Именно он первый обнаружил наличие выталкивающей силы и рассчитал ее значение.

Рисунок 2. Архимед (287–212 годы до н. э.) — древнегреческий ученый и инженер

Как подсчитать архимедову силу?
В прошлом уроке мы получили формулу $F_{выт} = P_ж = g m_ж$. Теперь мы будем называть эту силу архимедовой $F_A$.

Из выше рассмотренных опытов мы можем выразить массу вытесненной жидкости через ее плотность и объем тела, который эту жидкость вытеснил (они одинаковы): $m_ж = rho_ж cdot V_т$. Получим формулу для архимедовой силы.

$F_A = g rho_ж V_т$.

От чего зависит архимедова сила?

Взгляните еще раз на формулу: $F_A = g rho_ж V_т$.

Ясно видно, что архимедова сила зависит только от плотности жидкости и от объема тела, которое мы погружаем в эту жидкость.

Если мы будем погружать в одну и ту же жидкость тела разной плотности и разной формы (рисунок 3), то значение силы меняться не будет (при условии, что эти тела будут обладать одинаковым объемом).

Рисунок 3. Демонстрация равенства силы Архимеда для тел одинакового объема, погруженных в одну и ту же жидкость

Определение веса тела, погруженного в жидкость или газ

На тело, погруженное в жидкость (или в газ), действуют две силы: сила тяжести и архимедова сила. Направлены они в противоположные стороны. Вес тела в жидкости $P_1$ будет меньше веса тела в вакууме $P$ на архимедову силу $F_A$. То есть:
$P_1 = P space − space F_A = gm space − space gm_ж$.

Если тело погружено в жидкость или газ, то его вес уменьшается на вес вытесненной им жидкости или газа.

Пример задачи

Определите выталкивающую силу, которая будет действовать на камень объемом $2.6 space м^3$, лежащий на морском дне.

Дано:
$V_т = 2.6 space м^3$
$rho_ж = 1030 frac{кг}{м^3}$
$g = 9.8 frac{Н}{кг}$

$F_A — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Сила Архимеда рассчитывается по формуле:
$F_A = g rho_ж V_т$.

Подставим численные значения величин и рассчитаем эту силу:
$F_A = 9.8 frac {Н}{кг} cdot 1030 frac{кг}{ м^3} cdot 2.6 space м^3 approx 26 244 space Н approx 26.2 space кН$.

Ответ: $F_A approx 26,2 space кН$.

Забавное дополнение: легенда об Архимеде

Архимед, великий изобретатель, шокировал своих современников гениальными открытиями. Его имя упоминается во множестве легенд, но одна из них стала наиболее известной: легенда о том, как Архимед пришел к открытию выталкивающей силы.

Царь Гиерон поручил Архимеду проверить работу мастера, который изготовил для него золотую корону.

Долгое время ученый не мог найти ответ: как определить количество некачественных примесей? Проблема заключалась в том, что определить ее объем — сложная задача. По легенде озарение настигло Архимеда, когда он принимал ванну.

Ученый заметил, что из ванны вылилась вода, когда он залез в нее. И здесь его посетила гениальная мысль. Все вы слышали его известную цитату: «Эврика! Эврика!» (в переводе означает: «Нашел!  Нашел!»).

Так Архимед победно выкрикивал свою фразу, потрясенный своим открытием, что она дошла в виде легенды и до наших времен.

Упражнения

Упражнение №1

К коромыслу весов подвешены два цилиндра одинаковой массы: свинцовый и алюминиевый (рисунок 4). Весы находятся в равновесии. Нарушится ли равновесие весов, если оба цилиндра одновременно погрузить в воду; в спирт? Ответ обоснуйте. Проверьте его на опыте. Как зависит выталкивающая сила от объема тела?

Рисунок 4. Цилиндры одинаковой массы, но изготовленные из разных материалов

Посмотреть ответ

Скрыть

Ответ:

Когда мы погрузим цилиндры в жидкость, на каждый их них будет действовать сила Архимеда. Если эти силы будут равны, то весы останутся в равновесии.

Запишем формулы архимедовой силы для каждого цилиндра.
Для свинцового цилиндра:
$F_{A1} = g rho_ж V_1$.
Для алюминиевого цилиндра:
$F_{A2} = g rho_ж V_2$.

Мы видим, что равенство этих сил зависит от объемов цилиндров. Они равны? Нет, они имеют одинаковые массы, но разные плотности. Цилиндр из алюминия будет обладать большим объемом, чем свинцовый цилиндр ($V = frac{m}{rho}$). Значит, на алюминиевый цилиндр будет действовать большая выталкивающая сила, чем на свинцовый.

Если мы проверим это на опыте, то увидим подтверждение нашим выводам (рисунок 5).

Рисунок 5. Погружение цилиндров из разных материалов в жидкости

При этом весы выйдут из равновесия в случае и с водой (рисунок 5, а), и со спиртом (рисунок 5, б). Так как мы опускаем цилиндры одновременно в один и тот же тип жидкости, значение архимедовой силы, действующей на цилиндры, будет различаться только в зависимости от объемов этих цилиндров — свинцовый перевесит алюминиевый в любой жидкости.

Заметим, что в случае погружения в воду, архимедова сила будет больше, чем в случае погружения в спирт. Это объясняется тем, что вода имеет большую плотность, чем спирт.

Упражнение №2

К коромыслу весов подвешены два алюминиевых цилиндра одинакового объема. Нарушится ли равновесие весов, если один цилиндр погрузить в воду, а другой — в спирт? Ответ обоснуйте. Зависит ли выталкивающая сила от плотности жидкости?

Посмотреть ответ

Скрыть

Ответ:

Если один цилиндр погрузить в воду, а другой — в спирт, то равновесие весов нарушится (рисунок 6). На цилиндр, находящийся в воде, будет действовать большая архимедова сила.

Рисунок 6. Зависимость величины архимедовой силы от плотности жидкости

Так происходит, потому что архимедова сила зависит от объема погруженного тела (а они у нас одинаковые: $V_1 = V_2 = V$) и от плотности жидкости:
$F_А = g rho_ж V$.
Плотность спирта ($800 frac{кг}{м^3}$) меньше плотности воды ($1000 frac{кг}{м^3}$). Значит, на цилиндр, погруженный в воду, будет действовать большая архимедова сила, чем на тот, что погружен в спирт.

Упражнение №3

Объем куска железа равен $0.1 space дм^3$. Какая выталкивающая сила будет на него действовать при полном его погружении в воду; в керосин?

Дано:
$V = 0.1 space дм^3$
$g = 9.8 frac{Н}{кг}$
$rho_1 = 1000 frac{кг}{м^3}$
$rho_2 = 800 frac{кг}{м^3}$

СИ:
$V = 0.1 cdot 10^{-3} space м^3$

$F_{А1} — ?$
$F_{А2} — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Рассчитаем архимедову силу, которая будет действовать на кусок железа в воде:
$F_{А1} = g rho_1 V$,
$F_{А1} = 9.8 frac{Н}{кг} cdot 1000 frac{кг}{м^3} cdot 0.1 cdot 10^{-3} space м^3 = 0.98 space Н approx 1 space Н$.

Теперь рассчитаем архимедову силу, которая будет действовать на кусок железа в керосине:
$F_{А2} = g rho_2 V$,
$F_{А2} = 9.8 frac{Н}{кг} cdot 800 frac{кг}{м^3} cdot 0.1 cdot 10^{-3} space м^3 = 0.784 space Н approx 0.8 space Н$.

Ответ: $F_{А1} approx 1 space Н$, $F_{А2} approx 0.8 space Н$.

Упражнение №4

Бетонная плита объемом $2 space м^3$ погружена в воду. Какую силу необходимо приложить, чтобы удержать ее в воде; в воздухе?

Дано:
$V = 2 space м^3$
$g = 9.8 frac{Н}{кг}$
$rho_1 = 1000 frac{кг}{м^3}$
$rho_2 = 1.29 frac{кг}{м^3}$
$rho_б = 2300 frac{кг}{м^3}$

$F_1 — ?$
$F_2 — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Бетонная плита находится в воде. На нее действует сила тяжести и архимедова сила. Они направлены противоположно друг другу и будут иметь разные величины. Разность этих сил — и будет искомая сила $F_1$, которую нужно приложить, чтобы удержать бетонную плиту в воде (чтобы она не опускалась на дно и не всплывала):
$F_1 = F_{тяж} space − space F_{А1}$.

Сила тяжести рассчитывается по формуле:
$F_{тяж} = gm$.
Массу бетонной плиты мы можем выразить через ее плотность и объем:
$m = rho_б V$,
$F_{тяж} = g rho_б V$.

Архимедова сила, действующая на бетонную плиту в воде:
$F_{А1} = g rho_1 V$.

Подставим силу тяжести и архимедову силу в формулу и рассчитаем $F_1$:
$F_1 = F_{тяж} space − space F_{А1} = g rho_б V space − space g rho_1 V = gV cdot (rho_б space − space rho_1)$,
$F_1 = 9.8 frac {Н}{кг} cdot 2 space м^3 cdot (2300 frac{кг}{м^3} space − space 1000 frac{кг}{м^3}) = 25 space 480 space Н approx 25 space кН$.

Используем ту же формулу для того, чтобы рассчитать силу $F_2$, которую нужно приложить, чтобы удержать бетонную плиту в воздухе:
$F_2 = gV cdot (rho_б space − space rho_2)$,
$F_2 = 9.8 frac {Н}{кг} cdot 2 space м^3 cdot (2300 frac{кг}{м^3} space − space 1.29 frac{кг}{м^3}) approx 45 space 054 space Н approx 45 space кН$.

Ответ: $F_1 approx 25 space кН$, $F_2 approx 45 space Н$.

Упражнение №5

Предположив, что корона царя Гиерона в воздухе весит $20 space Н$, а в воде — $18.75 space Н$, вычислите плотность вещества короны. Полагая, что к золоту было подмешано только серебро, определите, сколько в короне было золота и сколько серебра. При решении задачи плотность золота считайте равной $20 space 000 frac{кг}{м^3}$, плотность серебра — $10 space 000 frac{кг}{м^3}$. Каков был бы объем короны из чистого золота?

Дано:
$P_1 = 20 space Н$
$P_2 = 18.75 space Н$
$rho_з = 20 space 000 frac{кг}{м^3}$
$rho_с = 10 space 000 frac{кг}{м^3}$
$g = 9.8 frac{Н}{кг}$
$rho_1 = 1.29 frac{кг}{м^3}$
$rho_2 = 1000 frac{кг}{м^3}$

$rho — ?$
$m_з — ?$
$m_с — ?$
$V_1 — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Вес короны в воздухе $P_1$ будет меньше веса тела в вакууме $P$ на архимедову силу $F_{A1}$. То есть:
$P_1 = P space − space F_{A1}$.

Значит, вес короны в вакууме будет равен сумме ее веса в воздухе и архимедовой силы:
$P = P_1 space + space F_{А1}$,
$gm = P_1 space + space g rho_1 V$.

Теперь запишем такое же уравнение для веса короны в воде:
$gm = P_2 space + space g rho_2 V$.

Левые части уравнений у нас равны, поэтому мы можем приравнять правые части друг к другу:
$P_1 space + space g rho_1 V = P_2 space + space g rho_2 V$.
Перенесем элементы, содержащие неизвестный объем вправо:
$P_1 space − space P_2 = g rho_2 V space − space g rho_1 V$,
$P_1 space − space P_2 = gV (rho_2 space − space rho_1)$.

Выразим отсюда объем короны и рассчитаем его:
$V = frac{P_1 space − space P_2}{g (rho_2 space − space rho_1)}$,
$V = frac{20 space Н space − space 18.75 space Н}{9.8 frac{Н}{кг} (1000 frac{кг}{м^3} space − space 1.29 frac{кг}{м^3})} = frac{1.25}{9787} space м^3 = 12.8 cdot 10^{-5} space м^3$.

Используем одно из первых уравнений для веса короны в вакууме и в воздухе:
$gm = P_1 space + space g rho_1 V$.
Выразим отсюда массу короны и рассчитаем ее:
$m = frac{P_1 space + space g rho_1 V}{g}$,
$m = frac{20 space Н space + space 9.8 frac{Н}{кг} cdot 1.29 frac{кг}{м^3} cdot 12.8 cdot 10^{-5} space м^3}{9.8 frac{Н}{кг}} approx 2.04 space кг$.

Теперь мы знаем массу и объем короны. Рассчитаем ее плотность:
$rho = frac{m}{V}$,
$rho = frac{2.04 space кг}{12.8 cdot 10^{-5} space м^3} approx 16 space 000 frac{кг}{м^3}$.

Корона состоит из серебра и золота. Это означает, что ее общий объем мы можем записать в виде суммы объемов серебра и золота, ее составляющих:
$V = V_с space + space V_з$.
То же самое с общей массой короны:
$m = m_с space + space m_з$.

Запишем объемы через массы и плотности (а также выразим массу золота через общую массу короны и массу серебра):
$V_с = frac{m_с}{rho_с}$,
$V_з = frac{m_з}{rho_з} = frac{m space − space m_с}{rho_з}$.

Подставим эти объемы в формулу для общего объема короны и выразим из нее массу серебра:
$V = frac{m_с}{rho_с} space + space frac{m space − space m_с}{rho_з} = frac{m_с (rho_з space − space rho_с) space + space rho_с m}{rho_с rho_з} = m_с cdot frac{rho_з space − space rho_с}{rho_с rho_з} space + space frac{m}{rho_з}$,
$m_с = frac{V space − space frac{m}{rho_з}}{frac{rho_з space − space rho_с}{rho_с rho_з}} = frac{rho_с (V rho_з space − space m)}{rho_з space − space rho_с}$.

Рассчитаем массу серебра, содержащегося в короне:
$m_с = frac{10 space 000 frac{кг}{м^3} (12.8 cdot 10^{-5} space м^3 cdot 20 space 000 frac{кг}{м^3} space − space 2.04 space кг)}{20 space 000 frac{кг}{м^3} space − space 10 space 000 frac{кг}{м^3}} = frac{5200 frac{кг^2}{м^3}}{10 space 000 frac{кг}{м^3}} = 0.52 space кг$.

Теперь мы можем вычислить и количество золота в короне:
$m_з = m space − space m_с$,
$m_з = 2.04 space кг space − space 0.52 space кг = 1.52 space кг$.

Если бы вся корона была из золота, то ее объем был бы равен:
$V_1 = frac{m}{rho_з}$,
$V_1 = frac{2.04 space кг}{20 space 000 frac{кг}{м^3}} = 10.2 cdot 10^{-5} space м^3$.

Ответ: $rho approx 16 space 000 frac{кг}{м^3}$, $m_з = 1.52 space кг$, $m_с = 0.52 space кг$, $V_1 = 10.2 cdot 10^{-5} space м^3$.

Упражнение №6

По мелким камешкам ходить босыми ногами больно. Почему человек не испытывает боли, если ходит по таким же камням в воде?

Посмотреть ответ

Скрыть

Ответ:

Что означает фраза «ходить по камням»? Со стороны физики, когда мы наступаем на камни, мы давим на них своим весом: $p = frac{F}{S} = frac{P}{S}$.

Когда мы оказываемся в воде, наш вес уменьшается. Это следствие действия на нас архимедовой силы. Уменьшается вес — уменьшается и давление наших стоп на камни.

Добавить комментарий