Как найти работу силы трения наклонная плоскость

Работа против сил трения, формула

Работа против сил трения, формула

Если тело движется с постоянной скоростью (равномерно) против сил трения, то над ним совершается работа
W = Fs. При этом сила F совпадает по направлению с перемещением s и равна по величине силе трения Fтр.
Работа против сил трения превращается в тепловую энергию.

[
W = F_{тр} s = μ F_{норм} s
]

Здесь:
W — работа против сил трения (Джоуль),
Fтр — сила трения (Ньютон),
μ — коэффициент трения,
Fнорм — сила нормального давления (Ньютон),
s — перемещение (метр),

Работа силы трения на наклонной плоскости, формула

Работа силы трения на наклонной плоскости

При движении тела вверх по наклонной плоскости совершается работа против силы тяжести и силы трения. В этом случае сила, действующая в направлении перемещения, складывается из скатывающей силы Fск и силы трения Fтр. В соответствии с формулой (1)

[
W = (F_{ск} + F_{тр})s = (F_{ск} + μ F_{норм})s
]

[
F_{ск} = G sin(α)
]

[
F_{норм} = G cos(α)
]

[
G = mg
]

[
W = mg (sin(α) + μ cos(α)) s
]

Вычислить, найти работу силы трения на наклонной плоскости по формуле (2)

Работа против сил трения

стр. 463

Друзья, сегодня разберем с вами задачку на стыке механики и кинематики. Потренируемся в нахождение работ различных сил, посмотрим на связь этих работ с потенциальной и кинетической энергиями. Рассмотрим это на примере следующей задачи…

Задача

Тело массой 3 кг под действием силы F перемещается вниз по наклонной плоскости на расстояние L = 5 м, расстояние тела от поверхности Земли при этом уменьшается на h = 3 м. Вектор силы F направлен параллельно наклонной плоскости, модуль силы F равен 20 Н. Какую работу при этом перемещении в системе отсчета, связанной с наклонной плоскостью, совершила сила F ? (Ответ дайте в джоулях.) Ускорение свободного падения примите равным 10 м/с², коэффициент трения μ = 0.5.

Решение:

Любая задача по физике начинается с рисунка, сделаем его:

Рисунок к задаче
Рисунок к задаче

Из геометрии задачи и наклона плоскости сразу найдем косинус и синус нужного нам угла:

Нахождение работ всех сил при движении тела по наклонной плоскости

1. Зная высоту, мы сразу можем найти изменение потенциальной энергии груза при таком съезжании с наклонной плоскости. Сразу заметим, что работа силы тяжести и есть изменение потенциальной энергии груза:

Нахождение работ всех сил при движении тела по наклонной плоскости

2. Работу силы F можно найти сразу, посчитав до числа. Т.е. в этой задаче дается избыточный набор параметров, это делается для того, чтобы сбить с толку решающего, увести по ложному пути или заставить больше прорешать 🙂 Но мы специально этим займемся:

Нахождение работ всех сил при движении тела по наклонной плоскости

3. Найдем работу силы трения скольжения. Для этого нам сначала понадобится найти нормальную реакцию опоры.

Нахождение работ всех сил при движении тела по наклонной плоскости

4. Работа нормальной реакции опоры всегда равна нулю, т.к. движение происходит вдоль наклонной плоскости, а реакция опоры всегда ей перпендикулярна, т.е. между векторами силы и перемещения угол в 90 градусов, что обнуляет скалярное произведение.

5. Вспомним теорему о кинетической энергии. Изменение кинетической энергии мате­риальной точки на некотором ее перемещении равно алгебраической сумме работ всех действующих на эту точку сил на том же перемещении.

Найдем скорость в конце наклонной плоскости двумя способами:
1. Из закона об изменении кинетической энергии
2. Из кинематики, предварительно найдя ускорение тела

Нахождение работ всех сил при движении тела по наклонной плоскости

Выражение для скорости сошлись, значит всё хорошо.

Задача решена. Знаете другие способы решить задачу? Напишите в комментариях 🙂

Понравилась заметка? Поставьте лайк, подпишитесь на канал! Вам не сложно, а мне очень приятно 🙂

Если Вам нужен репетитор по физике, математике или информатике/программированию, Вы можете написать мне или в мою группу Репетитор IT mentor в VK
Библиотека с книгами для физиков, математиков и программистов
Репетитор IT mentor в Instagram
Репетитор IT mentor в telegram

Лабораторная
работа № 129

Изучение динамики поступательного движения твердого тела по наклонной плоскости

Цель
работы

экспериментальное определение работы
силы трения при скольжении груза по
наклонной плоскости.

1. Теоретическая часть

Рис.1. Брусок на
наклонной плоскости

На брусок массой
m,
находящийся на наклонной плоскости,
действуют несколько сил (рис.1) – сила
тяжести
,
сила нормальной реакции опорыи сила трения.
Под действием этих сил брусок может
двигаться или находиться в состоянии
покоя.

Рассмотрим
сначала состояние покоя, когда
равнодействующая всех сил равна нулю:


(1)

где
– сила трения покоя. Введем оси координат
так, как показано на рис. 1. Посколькуто проекция уравнения (1) на осьдает

Откуда

Т.о. в состоянии
покоя сила трения покоя уравновешивает
скатывающую силу

Если увеличивать
угол наклона
то при некотором его предельном значенииэтот баланс нарушится, и брусок начнет
соскальзывать с наклонной плоскости.
В момент начала соскальзывания сила
трения покоя
принимает
максимальное значение, равное силе
трения скольжения

.

По закону Амонтона
– Кулона сила трения скольжения по модулю
равна

,

где
– коэффициент
трения.

Скольжение бруска
по наклонной плоскости описывается
уравнением динамики

(2)

Проекция уравнения
(2) на ось y
дает

или

.

Поэтому

.

На
рис.2 показана зависимость сил трения
покоя и трения скольжения от угла наклонаКаждая их этих зависимостей имеет свою
область определения. Для функцииона лежит в пределах.
Область определения функциилежит в интервале.
Вне этих областей обе функции не имеют
физического смысла.

Рис.2. Зависимости
ив функции от угла

Как видно из рис.
2, с ростом угла
сила трения покоя изменяется по
синусоидальному закону, а сила трения
скольжения изменяется по закону косинуса.
Пересечение этих двух функций происходит
при угле,
при достижении которого брусок начнет
скользить вниз по наклонной плоскости.
Значениенаходится из равенства

,

откуда можно найти
коэффициент трения


(3)

Измерив длину пути
l
бруска по наклонной плоскости и угол
ее наклона
,
можно определить работу силы трения
по предельному углуи соответствующему коэффициенту трения

.
(4)

Теперь заставим
брусок массы m1
скользить не вниз, а вверх по наклонной
плоскости. Для этого (см. рис. 3) привяжем
к бруску конец нити, перекинутой через
блок; на другом конце нити привяжем груз
массы m2,
при опускании которого нить будет тянуть
брусок вверх по наклонной плоскости с
ускорением а.

Рис. 3. Схема системы
наклонная плоскость – брусок-груз.

На длине пути l
вдоль наклонной плоскости (координата
)
брусок массойm1,
при перемещении из т. 1- состояния покоя
в т. 2 приобретает некоторую скорость
и соответственно кинетическую энергиюКинетическая энергия может быть
рассчитана как суммарная работа всех
сил, приложенных к бруску:

(5)

где

.
–работа скатывающей силы,

так как

-работа силы
натяжения нити.

Далее будем
считать, что нить и блок невесомы, поэтому
натяжение нити по обе стороны от блока
одинаково: Т1
= Т2
= Т.
Уравнение движения (второй закон Ньютона)
груза m2
в проекции на ось у
дает


откуда имеем
значение Т

Высота опускания
груза по законам кинематики равна:

Поэтому ускорение
груза можно выразить через измеряемые
величины – высоту h
и время 
спуска груза m2

Все тела
рассматриваемой системы связаны
нерастяжимой нитью и, следовательно,
движутся с одинаковой скоростью и
ускорением. Поэтому скорость бруска
массы m1
в конце отрезка пути длиной
l
(положение 2) равна

.

С учетом измеренных
и рассчитанных величин уравнение (5)
перепишется в виде

,

или

откуда

. (6)

Учтем, что длина
участка 1-2 подъема бруска по наклонной
плоскости равна высотеопускания груза (),
тогда из (5) получимвыражение
для определения работы силы трения

по
кинематическим параметрам (углу наклона

,длине

и времени

)перемещения
бруска по наклонной плоскости

. (7)

Приборы и
пренадлежности:

1. Лабораторная
установка.

2. Набор грузов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

п.1. Полезная работа и затраченная работа

Полезной называется работа по подъёму грузов или преодолению какого-либо сопротивления.
Затраченной (полной) называется работа, совершённая приложенной силой.

Примеры полной и полезной работы

Затраченная работа равна сумме:

  • полезной работы;
  • работы против силы трения в различных частях механизма;
  • работы по перемещению различных составных элементов механизма.

Поэтому всегда (A_text{полезная}lt A_text{затраченная})

п.2. КПД механизма

Коэффициент полезного действия механизма – это отношение его полезной работы к затраченной работе. $$ eta=frac{A_text{п}}{A_text{з}}cdot 100text{%} $$

Поскольку в реальных механизмах всегда (A_text{п}lt A_text{з}), $$ frac{A_text{п}}{A_text{з}}lt 1. $$

Следовательно КПД реальных механизмов (etalt 100text{%}).

Только в идеальном механизме, в котором нет потерь на трение, и все составные элементы не имеют веса, (A_text{п}=A_text{з}) и (eta=100text{%}).

КПД никогда не может быть выше (100text{%}).

КПД реальных механизмов можно увеличить за счет снижения трение в подвижных узлах и уменьшения веса всех составных элементов конструкции.

Для этого нужны новые смазочные вещества и лёгкие, но прочные конструкционные материалы.

п.3. Задачи

Задача 1. По наклонной плоскости поднимают груз массой 50 кг, прикладывая к нему силу 250 Н, направленную вдоль плоскости. Чему равен КПД плоскости, если её длина 10 м, а высота 3 м?

Дано:
(m=50 text{кг})
(gapprox 10 text{м/с}^2)
(F=250 text{Н})
(L=10 text{м})
(h=3 text{м})
__________________
(eta-?)

Полезная работа по подъему груза begin{gather*} A_text{п}=mgh. end{gather*} Затраченная работа на перемещение груза вдоль наклонной плоскости begin{gather*} A_text{з}=FL. end{gather*} КПД плоскости: begin{gather*} eta=frac{A_text{п}}{A_text{з}}cdot 100text{%}=frac{mgh}{FL}cdot 100text{%} end{gather*} Получаем: begin{gather*} eta=frac{50cdot 10cdot 3}{250cdot 10}cdot 100text{%}=60text{%} end{gather*} Ответ: 60%

Задача 2. С помощью подвижного блока поднимают груз массой 200 кг, прикладывая силу 1200 Н. Чему равен КПД блока?

Дано:
(m=200 text{кг})
(gapprox 10 text{м/с}^2)
(F=1200 text{Н})
__________________
(eta-?)

Полезная работа по подъему груза на высоту (h): begin{gather*} A_text{п}=mgh. end{gather*} Подвижный блок дает выигрыш в силе в 2 раза и проигрыш в расстоянии. Т.е. при работе нужно вытянуть трос длиной (2h). Затраченная работа: begin{gather*} A_text{з}=Fcdot 2h. end{gather*} КПД блока begin{gather*} eta=frac{A_text{п}}{A_text{з}}cdot 100text{%}=frac{mgh}{2Fh}cdot 100text{%}=frac{mg}{2F}cdot 100text{%} end{gather*} Получаем: begin{gather*} eta=frac{200cdot 10}{2cdot 1200}cdot 100text{%}approx 83,3text{%} end{gather*} Ответ: 83,3%

Задача 3. Груз массой 245 кг с помощью рычага равномерно подняли на высоту 6 см. При этом к длинному плечу рычага была приложена сила 500 Н, а точка приложения силы опустилась на 30 см. Найдите КПД рычага.

Дано:
(m=245 text{кг})
(gapprox 10 text{м/с}^2)
(h_2=6 text{см}=0,6 text{м})
(F_1=500 text{Н})
(h_1=30 text{см}=0,3 text{м})
__________________
(eta-?)

Полезная работа по подъему груза на высоту (h_2): begin{gather*} A_text{п}=mgh_2. end{gather*} Затраченная работа по опусканию длинного плеча рычага: begin{gather*} A_text{з}=F_1h_1. end{gather*} КПД рычага begin{gather*} eta=frac{A_text{п}}{A_text{з}}cdot 100text{%}=frac{mgh_2}{F_1h_1}cdot 100text{%} end{gather*} Получаем: begin{gather*} eta=frac{245cdot 10cdot 0,06}{500cdot 0,3}cdot 100text{%}=frac{147}{150}cdot 100text{%}=98text{%} end{gather*} Ответ: 98%

Задача 4. Чему равен КПД гидравлической машины, если для равномерного подъема груза массой 1,2 т к меньшему поршню прикладывают силу 160 Н? Площади поршней равны 5 см2 и 500 см2.

Дано:
(m=1,2 text{т}=1200 text{кг})
(gapprox 10 text{м/с}^2)
(F_1=160 text{Н})
(S_1=5 text{см}^2=5cdot 10^{-4} text{м}^2)
(S_2=500 text{см}^2=5cdot 10^{-2} text{м}^2)
__________________
(eta-?)

При опускании малого поршня на высоту (h_1) из малого в большой цилиндр вытекает объем жидкости равный $$ V=S_1h_1=S_2h_2Rightarrow frac{h_2}{h_1}=frac{S_1}{S_2} $$ Полезная работа по подъему груза на высоту (h_2): begin{gather*} A_text{п}=mgh_2. end{gather*} Затраченная работа по опусканию поршня малого цилиндра: begin{gather*} A_text{з}=F_1h_1. end{gather*} КПД гидравлической машины begin{gather*} eta=frac{A_text{п}}{A_text{з}}cdot 100text{%}=frac{mgh_2}{F_1h_1}cdot 100text{%}=frac{mgS_1}{F_1S_2}cdot 100text{%} end{gather*} Получаем: begin{gather*} eta=frac{1200cdot 10cdot 5cdot 10^{-4}}{160cdot 5cdot 10^{-2}}cdot 100text{%}=frac{600}{800}cdot 100text{%}=75text{%} end{gather*} Ответ: 75%

Задача 5*. Груз массой 12 кг поднимают с помощью подвижного блока массой 3 кг. Чему равен КПД блока?

Дано:
(M=12 text{кг})
(m=3 text{кг})
__________________
(eta-?)

Полезная работа по подъему груза на высоту (h): begin{gather*} A_text{п}=Mgh. end{gather*} Подвижный блок дает выигрыш в силе в 2 раза. Поэтому достаточно приложить силу, равную половине суммы весов груза и блока: begin{gather*} F=frac 12(M+m)g end{gather*} При этом будет проигрыш в расстоянии. Потребуется вытянуть трос длиной (2h). Затраченная работа, приложенная к тросу: begin{gather*} A_text{з}=Fcdot 2h=frac 12(M+m)gcdot 2h=(M+m)gh. end{gather*} КПД подвижного блока begin{gather*} eta=frac{A_text{п}}{A_text{з}}cdot 100text{%}=frac{Mgh}{(M+m)gh}cdot 100text{%}=frac{M}{M+m}cdot 100text{%} end{gather*} Получаем: begin{gather*} eta=frac{12}{12+3}cdot 100text{%}=80text{%} end{gather*} Ответ: 80%

Задача 6. Сколько воды можно поднять из колодца глубиной 36 м за 1 ч, если мощность электродвигателя равна 5 кВт, КПД всей установки равно 70%?
Дано:
(N=5 text{кВт}=5cdot 10^3 text{Вт})
(eta=70text{%}=0,7)
(h=36 text{м})
(t=1 text{ч}=3600 text{с})
(gapprox 10 text{м/с}^2)
__________________
(m-?)

Полезная работа по подъему груза на высоту (h): begin{gather*} A_text{п}=Mgh. end{gather*} Затраченная работа электродвигателя: begin{gather*} A_text{з}=Nt. end{gather*} КПД установки begin{gather*} eta=frac{A_text{п}}{A_text{з}}=frac{mgh}{Nt} end{gather*} Масса воды begin{gather*} m=frac{eta Nt}{gh} end{gather*} Получаем: begin{gather*} m=frac{0,7cdot 5cdot 10^3cdot 3600}{10cdot 36}=35cdot 10^3 (text{кг})=35 text{т} end{gather*} Ответ: 35 т

Задача 7*. КПД подвижного блока при подъеме первого груза равен 80%, а при подъеме второго груза – 90%. Масса какого груза больше и во сколько раз? Трением в блоке можно пренебречь.
Дано:
(eta_1=80text{%}=0,8)
(eta_2=90text{%}=0,9)
__________________
(frac{M_2}{M_1}-?)

КПД подвижного блока массой (m), с помощью которого поднимают груз массой (M) begin{gather*} eta=frac{M}{M+m} end{gather*} (см. Задачу 5 выше). Масса груза begin{gather*} eta(M+m)=MRightarrow eta m=(1-eta)MRightarrow M=frac{eta}{1-eta}m end{gather*} Получаем: begin{gather*} M_1=frac{0,8}{1-0,8}m=4m,\[6pt] M_2=frac{0,9}{1-0,9}m=9m end{gather*} Масса второго груза больше.
Отношение масс begin{gather*} frac{M_2}{M_1}=frac{9m}{4m}=2,25 (text{раз}) end{gather*} Ответ: масса второго груза больше в 2,25 раз

п.4. Лабораторная работа №13. Определение КПД наклонной плоскости

Цель работы
Научиться проводить измерения и рассчитывать КПД простого механизма на примере наклонной плоскости. Исследовать зависимость КПД наклонной плоскости от высоты.

Теоретические сведения

Теоретические сведения
Работа по подъему тела весом (P) вертикально на высоту (h) (из точки C в точку B): $$ A_text{CB}=Ph $$

Работа по перемещению того же тела силой (F), направленной вдоль наклонной плоскости длиной (L) (из точки A в точку B): $$ A_text{AB}=FL $$

В обоих случаях тело перемещается с нулевого уровня AC, где (h_0=0), на уровень с высотой (h) в точку B. Работа сторонних сил в этом случае равна изменению потенциальной энергии тела: $$ A=A_text{CB}=A_text{AB}=Delta E_p $$

Получаем уравнение для идеальной наклонной плоскости (без трения): $$ Ph=FL $$

При наличии трения получаем неравенство: $$ Phlt FL $$

Полезная и затраченная работа для наклонной плоскости: $$ A_text{п}=Ph, A_text{з}=FL $$

КПД наклонной плоскости: $$ eta=frac{A_text{п}}{A_text{з}}cdot 100text{%}=frac{Ph}{FL}cdot 100text{%} $$

Затраченная работа равна сумме полезной работы и работы по преодолению силы трения: $$ A_text{з}=A_text{п}+F_text{тр}L $$

Откуда сила трения равна: $$ F_text{тр}=frac{A_text{з}-A_text{п}}{L}=frac{FL-Ph}{L}=F-Pfrac hL $$

Вес (P) и сила (F) определяются в работе с помощью динамометра с ценой деления (d=0,1 text{Н}).

Абсолютная погрешность прямых измерений $$ Delta_F=Delta_P=frac d2=0,05 text{Н}. $$

Сила (F) определяется в серии из пяти опытов с вычислением средних величин.

Высота наклонной плоскости (h) и длина наклонной плоскости (L) определяются с помощью мерной ленты с ценой деления (d=5 text{мм}). Абсолютная погрешность (Delta_L=2,5 text{мм}).

Относительные погрешности измерений вычисляются как обычно.

Относительная погрешность расчета КПД: $$ delta_eta=delta_F+delta_P+delta_h+delta_L $$

Абсолютная погрешность расчета КПД: $$ Delta_eta=etacdot delta_eta $$

Приборы и материалы
Доска длиной от 70 см, штатив с муфтой и лапкой, брусок массой не менее 300 г, мерная лента, динамометр.

Ход работы
1. Измерьте мерной лентой длину доски (L).
2. Определите вес бруска (P) с помощью динамометра.
3. Соберите наклонную плоскость: закрепите один конец доски в лапке штатива на высоте около (h=frac L3.)
4. Положите брусок на наклонную плоскость, прикрепите к нему динамометр и равномерно тяните по наклонной плоскости. Следите, чтобы динамометр располагался параллельно наклонной плоскости. Запишите измеренное значение (F). Повторите измерение (F) в серии из пяти опытов.
5. Соберите новую наклонную плоскость: закрепите один конец доски в лапке штатива на высоте около (h=frac L4). Перейдите на шаг 4 и повторите серию опытов для определения (F).
6. Рассчитайте КПД для двух исследованных наклонных плоскостей. Найдите относительные и абсолютные погрешности расчетов КПД.
7. Для каждой из наклонных плоскостей укажите величину полезной и затраченной работы, найдите силу трения.
8. Сделайте выводы о зависимости силы трения и КПД от высоты наклонной плоскости.

Результаты измерений и вычислений

Длина наклонной плоскости (доски) begin{gather*} L=80 text{см}=800 text{мм},\[7pt] Delta_L=2,5 text{мм},\[6pt] delta_L=frac{Delta_L}{L}=frac{2,5}{800}approx 0,0031=0,31text{%} end{gather*}

Вес бруска begin{gather*} P=4,4 text{Н},\[7pt] Delta_P=0,05 text{Н},\[6pt] delta_P=frac{Delta_P}{P}=frac{0,05}{4,4}approx 0,0011=1,1text{%} end{gather*}

1. Наклонная плоскость высотой (h=27 text{см})

Высота наклонной плоскости begin{gather*} h=27 text{см}=270 text{мм},\[7pt] Delta_h=2,5 text{мм},\[6pt] delta_h=frac{Delta_h}{h}=frac{2,5}{270}approx 0,0093=0,93text{%} end{gather*}

Определение силы тяги (F) в серии опытов

№ опыта 1 2 3 4 5 Сумма
$$ F, H $$ 2,9 2,8 3,0 2,7 2,8 14,2
$$ Delta_F, H $$ 0,06 0,04 0,16 0,14 0,04 0,44

begin{gather*} F_text{ср}=frac{sum F_i}{5}=frac{14,2}{5}=2,84 (text{Н}),\[6pt] Delta_{Ftext{ср}}=frac{sum Delta_{Fi}}{5}=frac{0,44}{5}approx 0,09 (text{Н}),\[6pt] F=(2,84pm 0,09) text{Н},\[7pt] delta_F=frac{0,09}{2,84}approx 0,032=3,2text{%} end{gather*}

Полезная работа: $$ A_text{П}=Ph=4,4cdot 0,27=1,188 (text{Дж}) $$

Затраченная работа: $$ A_text{З}=FL=2,84cdot 0,8=2,272 (text{Дж}) $$

Сила трения: $$ F_text{тр}=F-Pfrac hL=2,84-4,4cdot frac{0,27}{0,8}approx 1,36 (text{Н}) $$

КПД наклонной плоскости: $$ eta=frac{A_text{П}}{A_text{З}}=frac{1,188}{2,272}approx 0,523=52,3text{%} $$

Погрешности расчета КПД: $$ delta_eta=delta_F+delta_P+delta_h+delta_L=0,032+0,011+0,0093+0,0031=0,0554approx 0,056=5,6text{%} $$

При расчете (delta_eta) использовали округление с избытком. $$ Delta_eta=0,523cdot 0,056approx 0,029=2,9text{%} $$

Окончательно получаем: $$ eta=(52,3pm 2,9)text{%}, delta_eta=5,6text{%} $$

2. Наклонная плоскость высотой (h=20 text{см})

Высота наклонной плоскости begin{gather*} h=20 text{см}=200 text{мм},\[7pt] Delta_h=2,5 text{мм},\[6pt] delta_h=frac{Delta_h}{h}=frac{2,5}{200}approx 0,013=1,3text{%} end{gather*}

Определение силы тяги (F) в серии опытов

№ опыта 1 2 3 4 5 Сумма
$$ F, H $$ 2,4 2,6 2,5 2,6 2,5 12,6
$$ Delta_F, H $$ 0,12 0,08 0,02 0,08 0,02 0,32

begin{gather*} F_text{ср}=frac{sum F_i}{5}=frac{12,6}{5}=2,52 (text{Н}),\[6pt] Delta_{Ftext{ср}}=frac{sum Delta_{Fi}}{5}=frac{0,32}{5}approx 0,06 (text{Н}),\[6pt] F=(2,52pm 0,06) text{Н},\[7pt] delta_F=frac{0,06}{2,52}approx 0,024=2,4text{%} end{gather*}

Полезная работа: $$ A_text{П}=Ph=4,4cdot 0,2=0,88 (text{Дж}) $$

Затраченная работа: $$ A_text{З}=FL=2,52cdot 0,8=2,016 (text{Дж}) $$

Сила трения: $$ F_text{тр}=F-Pfrac hL=2,52-4,4cdot frac{0,2}{0,8}approx 1,42 (text{Н}) $$

КПД наклонной плоскости: $$ eta=frac{A_text{П}}{A_text{З}}=frac{0,88}{2,016}approx 0,437=43,7text{%} $$

Погрешности расчета КПД: $$ delta_eta=delta_F+delta_P+delta_h+delta_L=0,024+0,011+0,013+0,0031=0,0511approx 0,052=5,2text{%} $$

При расчете (delta_eta) использовали округление с избытком. $$ Delta_eta=0,437cdot 0,052approx 0,023=2,3text{%} $$

Окончательно получаем: $$ eta=(43,7pm 2,3)text{%}, delta_eta=5,2text{%} $$

Выводы
На основании полученных результатов можно сделать следующие выводы.

В работе проводился расчет КПД наклонной плоскости постоянной длины, но разной высоты.

Для высоты около (h=frac L3):

  • полезная и затраченная работы: (A_text{П}=1,188 (text{Дж}), A_text{З}=2,272 (text{Дж}))
  • сила трения: (F_text{тр}=1,36 (text{Н}))
  • КПД: (eta=(52,3pm 2,9)text{%}, delta_eta=5,6text{%})

Для высоты около (h=frac L4):

  • полезная и затраченная работы: (A_text{П}=0,88 (text{Дж}), A_text{З}=2,016 (text{Дж}))
  • сила трения: (F_text{тр}=1,42 (text{Н}))
  • КПД: (eta=(43,7pm 2,3)text{%}, delta_eta=5,2text{%})

Таким образом, с уменьшением высоты:

  • сила трения растет;
  • КПД наклонной плоскости падает.

Все задачи, поставленные перед исследованием, успешно выполнены.

  • Авторы
  • Резюме
  • Файлы


Иванов Е.М.


Показано, что общепринятая формула для определения работы справедлива только для частных случаев. Правильное определение работы. Общепринятая формула работы тоже применима только к одному частному случаю.

Вот как определяет сущность работы О.Д. Хвольсон [1, Стр.91-92] «Сила совершает работу, когда её точка приложения перемещается… …следует отличать два случая производства работы: в первом сущность работы заключается в преодолевании внешнего сопротивления движению, которое совершается без увеличения скорости движения тела; во втором – работа обнаруживается увеличением скорости движения, к которому внешний мир относится индифферентно. На деле мы обыкновенно имеем соединение обоих случаев: сила  преодолевает какие-либо сопротивления и в то же время меняет скорость движения тела».

Для вычисления работы постоянной силы предлагается формула:

    (1)

где  S – перемещение тела под действием силы F, a – угол между направлениями силы и перемещения. При этом говорят [2], что «если сила перпендикулярна перемещению, то работа силы равна нулю. Если же, несмотря на действие силы, перемещение точки приложения силы не происходит, то сила никакой работы не совершает. Например, если какой-либо груз неподвижно висит на подвесе, то действующая на него сила тяжести не совершает работы».

В [2] также говорится: «Понятие работы как физической величины, введенное в механике, только до известной степени согласуется с представлением о работе в житейском смысле. Действительно, например, работа грузчика по подъёму тяжести расценивается тем больше, чем больше поднимаемый груз и чем на большую высоту он должен быть поднят. Однако с той же житейской точки зрения мы склонны называть «физической работой» всякую деятельность человека, при которой он совершает известные физические усилия. Но, согласно даваемому в механике определению, эта деятельность может и не сопровождаться работой. В известном мифе об Атланте, поддерживающем на своих плечах небесный свод, люди имели в виду усилия, необходимые для поддержания огромной тяжести, и расценивали эти усилия как колоссальную работу. Для механики же здесь нет работы, и мышцы Атланта могли бы быть попросту заменены прочной колонной».

Эти рассуждения напоминают известное высказывание И.В. Сталина: «Есть человек – есть проблема, нет человека – нет проблемы».

В учебнике физики для 10 класса [3, Стр.138] предлагается следующий выход из данной ситуации: «При неподвижном удержании человеком груза в поле тяжести Земли совершается работа и рука испытывает усталость, хотя видимое перемещение груза равно нулю. Причиной этого является то, что мышцы человека испытывают постоянные сокращения и растяжения, приводящие к микроскопическим перемещениям груза». Всё хорошо, вот только как рассчитать эти сокращения-растяжения?

Получается такая ситуация: человек пытается переместить шкаф на расстояние S, для чего он действует силой F в течение времени t, т.е. сообщает импульс силы . Если шкаф имеет небольшую массу и нет сил трения, то шкаф перемещается и значит, работа совершается. Но если шкаф большой массы и большие силы трения, то человек, действуя тем же импульсом силы, шкаф не перемещает, т.е. работа не совершается. Что-то тут не вяжется с так называемыми законами сохранения. Или взять пример, показанный на рис. 1. Если сила F направлена горизонтально ( ), то работа , а если под углом a, то . Так как , то, естественно, возникает вопрос, куда же исчезла энергия, равная разности работ ( )?

Рисунок 1. Сила F направлена горизонтально ( ), то работа , а если под углом a, то

Приведем пример, показывающий, что работа совершается, если тело остаётся неподвижным. Возьмем электрическую цепь состоящую из источника тока, реостата и амперметра магнитоэлектрической системы. При полностью введенном реостате сила тока бесконечно мала и стрелка амперметра стоит на нуле. Начинаем постепенно двигать реохорд реостата. Стрелка амперметра начинает отклоняться, закручивая спиральные пружины прибора. Это совершает работу сила Ампера: сила взаимодействия рамки с током с магнитным полем. Если остановить реохорд, то установится постоянная сила тока и стрелка перестает двигаться. Говорят, что если тело неподвижно, то сила работы не совершает. Но амперметр, удерживая стрелку в том же положении, по прежнему потребляет энергию , где U – напряжение, подведенное к рамке амперметра,  – сила тока в рамке. Т.е. сила Ампера, удерживая стрелку, по прежнему совершает работу по удержанию пружин в закрученном состоянии.

Покажем, почему возникают подобные парадоксы. Вначале получим общепринятое выражение для работы. Рассмотрим работу разгона по горизонтальной гладкой поверхности первоначально покоящегося тела массы m за счет воздействия на него горизонтальной силой F в течение времени t. Этому случаю соответствует угол  на рис.1. Запишем II закон Ньютона в виде . Умножим обе части равенства на пройденный путь S: . Поскольку , то получим  или . Отметим, что умножая обе части уравнения на S, мы тем самым отказываем в работе тем силам, которые не производят перемещение тела (). Кроме того, если сила F действует под углом a к горизонту, мы тем самым отказываем в работе всей силе F, «разрешая» работу только её горизонтальной составляющей: .

Проведем другой вывод формулы для работы. Запишем II закон Ньютона в дифференциальной форме

   (2)

Левая часть уравнения  – элементарный импульс силы, а правая  – элементарный импульс тела (количество движения). Отметим, что правая часть уравнения может быть равна нулю, если тело остается неподвижным ( ) или движется равномерно ( ), в то время как левая часть не равна нулю. Последний случай соответствует случаю равномерного движения, когда сила  уравновешивает силу трения .

Однако вернемся к нашей задаче о разгоне неподвижного тела. После интегрирования уравнения (2), получим , т.е. импульс силы равен импульсу (количеству движения), полученному телом. Возведем в квадрат и разделив на  обе части равенства, получим

 или    (3)

Таким образом мы получим другое выражение для вычисления работы

 (4)

где  – это импульс силы. Это выражение не связано с путем S, пройденным телом за время t, поэтому оно может быть использовано для вычисления работы, совершаемой импульсом силы и в том случае, если тело остается неподвижным.

В случае, если сила F действует под углом a (рис.1), то её раскладываем на две составляющие: силу тяги  и силу , которую назовем силой левитации, она стремится уменьшить силу тяжести. Если  будет равна , то тело будет находиться в квазиневесомом состоянии (состояние левитации). Используя теорему Пифагора: , найдем работу силы F

 или    (5)

Поскольку , а , то работу силы тяги можно представить в общепринятом виде: .

Если сила левитации , то работа левитации будет равна

        (6)

Это как раз та работа, которую выполнял Атлант, удерживая на своих плечах небесный свод.

А теперь рассмотрим работу сил трения. Если сила трения является единственной силой, действующей по линии движения (например, автомобиль, двигавшийся по горизонтальной дороге со скоростью , выключил двигатель и стал тормозить), то работа силы трения будет равна разности кинетических энергий и может быть рассчитана по общепринятой формуле:

         (7)

Однако, если тело движется по шероховатой горизонтальной поверхности с некоторой постоянной скоростью , то работу силы трения нельзя вычислять по общепринятой формуле , поскольку в данном случае движения надо рассматривать как движение свободного тела ( ), т.е. как движение по инерции, и скорость V создает не сила , она была приобретена ранее. Например, тело двигалось по идеально гладкой поверхности с постоянной скоростью, и в тот момент, когда оно въезжает на шероховатую поверхность, включается сила тяги . В данном случае путь S не связан с действием силы . Если взять путь м, то при скорости  м/с время действия силы будет составлять  с, при м/с время с, при м/с время с. Поскольку сила трения считают не зависящей от скорости, то, очевидно, на одном и том же отрезке пути м сила  совершит гораздо большую работу за 200 с, чем за 10 с, т.к. в первом случае импульс силы , а в последнем – . Т.е. в данном случае работу силы трения надо рассчитывать по формуле:

          (8)

Обозначая «обычную» работу трения через  и учитывая, что , формулу (8), опуская знак «минус», можно представить в виде

        (9)

Зависимость  от , выраженных в долях , показана на рис.2.

Рисунок 2. Зависимость  от , выраженных в долях

Рисунок 3. Зависимость суммы ( ) от величины , выраженных так же в долях

На рис.3. показана зависимость суммы ( ) от величины , выраженных так же в долях. Эта сумма имеет минимум, равный  при . То же самое относится и к случаю равномерного скольжения вниз по шероховатой наклонной плоскости (угол наклона ), когда сила трения равна скатывающей силе  или , т.е. . В этом случае, чтобы тело равномерно скользило вниз, оно должно получить начальный импульс . Тогда работа силы трения будет определяться не длиной наклонной плоскости S, а временем скольжения :

          (10)

Учитывая, что , , а , опуская знак «минус», получим

         (11)

Зависимость  от K совпадает с графиком (рис.2), только вместо  следует подставить ( ), то же самое относится и к графику на рис. 3.

СПИСОК ЛИТЕРАТУРЫ

  1. Хвольсон О.Д. Курс физики. Т. I. Р.С.Ф.С.Р. Госуд.Изд-во, Берлин, 1923.
  2. Элементарный учебник физики. Т. I. – М.: Наука, 1972.
  3. Касьянов В.А. Физика. 10 класс. Учебн.-М.: Дрофа, 2003.

Библиографическая ссылка

Иванов Е.М. ОПРЕДЕЛЕНИЕ РАБОТЫ И РАБОТА СИЛЫ ТРЕНИЯ // Успехи современного естествознания. – 2005. – № 8.
– С. 10-13;

URL: https://natural-sciences.ru/ru/article/view?id=8991 (дата обращения: 15.05.2023).


Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

Добавить комментарий