Как найти работу выхода электронов формула

Работа выхода электронов из металлов, не металлов и неорганических соединений (Таблица)

Формула работа выхода электронов

В металлах имеются электроны проводимости, образующие электронный газ и участвующие в тепловом движении. Так как электроны проводимости удерживаются внутри металла, то, следовательно, вблизи поверхности существуют силы, действующие на электроны и направленные внутрь металла. Чтобы электрон мог выйти из металла за его пределы, должна быть совершена определенная работа А против этих сил, которая получила название работа выхода электрона из металла. Эта работа, естественно, различна для разных металлов.

Потенциальная энергия электрона внутри металла постоянна и равна:

Wp = -eφ , где j – потенциал электрического поля внутри металла.

При переходе электрона через поверхностный электронный слой потенциальная энергия быстро уменьшается на величину работы выхода и становится вне металла равной нулю. Распределение энергии электрона внутри металла можно представить в виде потенциальной ямы.

В рассмотренной выше трактовке работа выхода электрона равна глубине потенциальной ямы, т.е.

Aвых = eφ

Этот результат соответствует классической электронной теории металлов, в которой предполагается, что скорость электронов в металле подчиняется закону распределения Максвелла и при температуре абсолютного нуля равна нулю. Однако в действительности электроны проводимости подчиняются квантовой статистике Ферми-Дирака, согласно которой при абсолютном нуле скорость электронов и соответственно их энергия отлична от нуля. 

Максимальное значение энергии, которой обладают электроны при абсолютном нуле, называется энергией Ферми EF . Квантовая теория проводимости металлов, основанная на этой статистике, дает иную трактовку работы выхода. Работа выхода электрона из металла равна разности высоты потенциального барьера eφ  и энергии Ферми.

Aвых = eφ’ – EF

где φ’ – среднее значение потенциала электрического поля внутри металла.

Таблица работа выхода электронов из простых веществ

В таблице приведены значения работы выхода электронов, относящихся к поликристаллическим образцам, поверхность которых очищена в вакууме прокаливанием или механической обработкой. Недостаточно надежные данные заключены в скобки.

Вещество

Формула вещества

Работа выхода электронов (W,  эВ)

серебро

Ag  

4,7  

алюминий

Al  

4,2  

мышьяк

As  

4,79 – 5,11  

золото

Au 

4,8 

бор

(4,60) 

барий

Ba 

2,52

бериллий

Be 

3,92 

висмут

Bi 

4,34

углерод (графит)

4,45 – 4,81 

кальций

Ca 

2,76 – 3,20 

кадмий

Cd 

4,04

церий

Ce 

2,6 – 2,88 

кобальт

Co 

4,40 

хром

Cr 

4,60

цезий

Cs 

1,94 

медь

Cu 

4,36 

железо

Fe 

4,40 – 4,71 

галлий

Ga 

3,96 – 4,16

германий

Ge 

4,66 

гафний

Hf 

(3,53) 

ртуть

Hg 

4,52 

индий

In 

(3,60 – 4,09)

иридий

Ir 

(4,57) 

калий

2,25 

лантан

La 

(3,3)

литий

Li 

2,49 

магний

Mg 

3,67 

марганец

Mn 

3,76 – 3,95 

молибден

Mo 

4,20

натрий

Na 

2,28 

ниобий

Nb 

3,99

неодим

Nd 

(3,3) 

никель

Ni 

4,91 – 5,01 

осмий

Os 

(4,55)

свинец

Pb 

4,05 

палладий

Pd 

(4,98) 

празеодим

Pr 

(2,7)

платина

Pt 

5,30 – 5,55 

рубидий

Rb 

2,13

рений

Re 

4,98 

родий

Rh 

4,75 

рутений

Ru 

(4,52) 

сурьма

Sb 

4,08 – 4,56 

скандий

Sc 

(3,2 – 3,33) 

селен

Se 

4,86 

кремний

Si 

3,59 – 4,67 

самарий

Sm 

(3,2) 

олово (γ-форма)

Sn 

4,38 

олово (β-форма)

Sn 

4,50 

стронций

Sr 

2,74

тантал

Ta 

4,13 

теллур

Te 

4,73 

торий

Th 

3,35 – 3,47 

титан

Ti 

4,14 – 4,50 

таллий

Tl 

3,68 – 4,05 

уран

3,27 – 4,32 

ванадий

3,77 – 4,44 

вольфрам

4,54 

цинк

Zn 

4,22 – 4,27 

цирконий

Zr 

3,96 – 4,16

Таблица работа выхода электронов из неорганических соединений

В таблице приведены значения работы выхода электронов, относящихся к поликристаллическим образцам, поверхность которых очищена в вакууме прокаливанием или механической обработкой. Недостаточно надежные данные заключены в скобки.

Вещество

Формула вещества

Работа выхода электронов (W,  эВ)

бромистое серебро

AgBr 

~3,9

хлористое серебро

AgCl 

~4,6 

иодистое серебро

AgI 

~4,0 

сульфид серебра

Ag2

~3,8 

триоксид бора

B2O3

4,7 

оксид бария

BaO 

1,0 – 1,6 

барий вольфрамовокислый

BaWO4

2,27 

окись бериллия

BeO 

3,8 – 4,7 

окись кальция

CaO 

1,8 – 2,4 

ортовольфрамат кальция

Ca3WO6

2,13 

борид хрома

CrB2

3,36 

окись цезия

Cs2

1,0 – 1,17 

окись меди

CuO 

4,35 – 5,34 

закись меди

Cu2

5,15 

окись железа

FeO 

3,85 

вода

H2

6,1 

карбид гафния

HfC 

2,04 

оксид магния

MgO 

3,1 – 4,4 

диборид марганца

MnB2

4,14 

диборид молибдена

MoB2

3,38 

триоксид молибдена

MoO3

4,25 

силицид молибдена

MoSi2

5,0 – 6,0 

хлористый натрий

NaCl 

4,2 

борид ниобия

NbB2

3,65 

карбид ниобия

NbC 

2,24 

окись никеля

NiO 

5,55 

борид скандия

ScB2

2,3 – 2,9 

кремнезём

SiO2

5,0 

окись стронция

SrO 

2,0 – 2,6 

карбид тантала

TaC 

3,05 – 3,14 

пентаоксид тантала

Ta2O5

4,65 

дикарбид тория

ThC2

3,5 

оксид тория

ThO2

2,54 – 2,67 

сульфид титана

TiS 

3,4 

диборид титана

TiB2

3,88 – 3,95 

карбид титана

TiC 

2,35 – 3,35 

нитрид титана

TiN 

2,92 

окись титана

TiO 

2,96 – 3,1 

двуокись титана

TiO2

4,7 

карбид урана

UC 

2,9 – 4,6 

диборид ванадия

VB2

3,88 – 3,95 

диборид вольфрама

WB2

2,62 

диоксид вольфрама

WO2

4,96 

дисилицид вольфрама

WSi2

5,0 – 6,0 

борид циркония

ZrB 

4,48 

диборид циркония

ZrB2

3,70 

карбид циркония

ZrC 

2,2 – 3,8 

нитрид циркония

ZrN 

2,92 

_______________

Источник информации:

1. Landolt-Borstein’s Zahlenwerte und Funktionen aus Phsik, Chemie, Astrunumie, Geophysik, Thechnik, 6-е издание., Берлин, т. I, ч.4, 1955; т. II, ч.6, разд. 1, 1959.

2. В.С. Фоменко. Эмиссионные свойства элементов и химических соединений. Изд. АН УСССР, Киев, 1961.

88

Цель
работы
:
изучение явления внешнего фотоэффекта,
нахождение его красной границы и работы
выхода электрона из металла.

1. Введение

Внешним
фотоэффектом

называется испускание электронов
веществом под действием света.
Энергетический баланс при фотоэффекте
выражается уравнением Эйнштейна

, (1)

где

– энергия светового кванта, переданная
электрону; A

работа выхода электрона за пределы
вещества;
– максимальная кинетическая энергия
освободившегося электрона. Уравнение
(1) получено в предположении, что
электромагнитное излучение представляет
собой поток частиц, называемых фотонами.
Фотон несет энергию,
при этом он неделим и при взаимодействии
отдает свою энергию полностью. Фотон
обладает также импульсом.
Фотоэффект можно рассматривать как
процесс соударения фотона с электроном.

Уравнение
(1) дает теоретическое обоснование
законов фотоэффекта, экспериментально
установленных Столетовым:

1)
фототок насыщения пропорционален
световому потоку;

2)
максимальная скорость фотоэлектронов
определяется частотой света 
и не зависит от его интенсивности;

3)
для каждой поверхности существует
минимальная частота ν0
(красная граница фотоэффекта), ниже
которой фотоэффект не возможен:

. (2)

Определив
ν
0
экспериментально,
из формулы (2) можно найти работу выхода
электронов A
для данного вещества.

Простейшим
прибором для наблюдения фотоэффекта
является вакуумный фотоэлемент (рис.1).
Это откачанный стеклянный баллон, одна
половина которого покрыта изнутри
металлом, играющим роль фотокатода К.
Анод А
обычно выполняется в форме кольца или
шарика. Между катодом и анодом с помощью
батареи Б
создается ускоряющая разность потенциалов.
При освещении катода он испускает
электроны, которые подхватываются полем
и попадают на анод. Цепь замыкается, и
в ней течет ток. В данной установке
использован фотоэлемент с катодом,
красная граница которого лежит в видимой
области спектра. Это позволяет использовать
в качестве источника света лампу
накаливания.

Один
из способов определения работы выхода
и красной границы фотоэффекта состоит
в следующем. Поменяв полярность батареи
Б
(рис. 1), можно создать тормозящее поле,
препятствующее попаданию электронов
на анод А.
При некоторой

Рис.
1

разности
потенциалов Uзадер.
ни одному из электронов, даже обладающему
при вылете из катода К
наибольшим значением скорости
,
не удастся достигнуть анодаА.
Фототок прекращается. Это условие можно
записать:

, (3)

Измерив
задерживающее напряжение Uзадер
и, зная частоту излучения ,
из формулы (1) можно найти работу выхода
А,
затем по формуле (2) определить красную
границу фотоэффекта 0.

В
данной работе для определения красной
границы при неизменной ускоряющей
разности потенциалов будем изменять
частоту падающего излучения .
При некоторой частоте 0
фототок должен прекратится. Однако этот
метод требует более тщательного, хотя
бы качественного анализа причин,
определяющих величину фототока. Очевидно,
что фототок при данной частоте излучения

определяется числом фотонов Nфот(),
падающих на фотокатод в единицу времени,
и вероятностью взаимодействия фотона
с электроном P(),
приводящего к выходу электрона из
вещества:

. (4)

Число
фотонов в световом потоке Nфот()
определяется излучательной способностью
источника света R,T.
Если предположить, что лампа накаливания
излучает как чёрное тело (см. введение
к работе 14), то её излучательная способность
может быть представлена графиком,
приведенным на рис. 2.

Рис.
2

Рис.
3

Количество
энергии, излучаемой лампой в области
частот от 
до +,
определяется площадью, заштрихованной
на графике рис. 2: W=
R,T·.
Тогда число фотонов, излучаемых в
интервале частот 
будет равно:
.

В
области низких частот справедлив закон
Релея-Джинса, согласно которому R,T
~ 2.
Следовательно, в этой области отношение
,
равное,
будет пропорционально
(рис. 3). В области ожидаемого значения
красной границы, R,T
растет линейно (в районе точки перегиба
R,T
~ )
и, следовательно, отношение
остается величиной постоянной для
разных частот. При больших частотах (
> экстр)
излучательная способность тела
уменьшается и одновременно растет
“удельный вес” фотонов h.
В результате отношение
резко падает. Следовательно, в области
значения частоты0,
число фотонов, испускаемых лампой
накаливания на разных частотах, остается
величиной постоянной.

Величина
второго сомножителя
в формуле (4) определяется многими
причинами. Одним из решающих факторов
является число электронов, взаимодействие
с которыми может привести к появлению
фототока. Электроны проводимости в
металле не могут самопроизвольно
покинуть вещество, так как металл
представляет для них потенциальную
яму. При температуреT
= 0 К все нижние энергетические уровни
ямы заняты электронами. Последний
занятый уровень носит название уровня
Ферми. Разность между глубиной
потенциальной ямы Ep0
и энергией Ферми EF
определяет работу выхода электрона из
металла:
(рис. 4). Если энергия фотона
,
то такой фотон не может “вытащить”
электрон из потенциальной ямы. При
взаимодействии с фо-

тоном,
энергия которого больше
,
электрон, находящийся вблизи уровня
Ферми, покидает металл, обладая
кинетической энергией.
Однако такой фотон может выбить и
электроны, лежащие ниже уровня Ферми
(заштрихованная область на рис. 4).
Число таких электронов пропорционально
раз-

Рис.
4

ности
,
которая равна.
Следовательно, вероятность выбивания
электрона из металла.

В
итоге, в формуле (4) число фотонов,
испускаемых лампой накаливания в единицу
времени в области частот, лежащих вблизи
красной границы, остается величиной
постоянной на разных частотах, а
вероятность взаимодействия фотона с
электроном пропорциональна разности
частот
.
Следовательно, в области красной границы
фототок пропорционален разности.
При больших частотах фототок должен
уменьшаться с ростом
за счет
уменьшения числа фотонов, излучаемых
источником света в этой спек
тральной области. Таким образом,
ожидаемая зависимость фототока от
частоты должна

иметь
вид представленный на рис. 5. Так как
при температуре T
> 0 К распределение электронов вблизи
уровня Ферми размывается (электроны
переходят на уровни, лежащие выше
уровня Ферми), то и зависимость iф
от 
вблизи красной границы 0
будет размыта (пунктирная линия на
рис. 5).

Рис.
5

Итак,
для экспериментального определения
красной границы фотоэффекта и работы
выхода необходимо снять зависимость
фототока от частоты излучения и,
аппроксимируя линейный участок графика
в области низких частот до пересечения
с осью частот, определить 0.
По формуле (2) можно определить работу
выхода электронов из металла.

Одним из интереснейших квантовых эффектов, рассматриваемых в курсе школьной физики, является фотоэлектрический эффект или фотоэффект. Фотоэффект — явление взаимодействия света с веществом, в результате которого энергия фотонов передаётся электронам вещества.

Фотоэффект

Рис. 1. Фотоэффект

Облучаем поверхность вещества. Энергия каждого фотона равна displaystyle hnu . Фотон, попадающий внутрь вещества, поглощается электроном, который, в свою очередь, приобретает дополнительную энергию. Вырываясь из поверхности вещества, электрон теряет часть энергии (взаимодействуя с ионами вещества) и, становясь свободным (когда электрон перестаёт взаимодействовать с веществом), улетает в пространство.

С точки зрения зрения закона сохранения энергии, можно получить уравнение Эйнштейна:

displaystyle hnu =A+frac{{{m}_{e}}{{upsilon }^{2}}}{2} (1)

  • где

Работа выхода электрона (displaystyle A) — минимальная энергия, которую необходимо передать электрону, чтобы он «выбрался» на поверхность. Если энергия фотона равна точно энергии выхода, то электрон, «выйдя» на поверхность, там и останавливается, т.е. после выхода электрона, его кинетическая энергия численно равна нулю. Тогда уравнение Эйнштейна примет вид:

displaystyle h{{nu }_{k}}=A (2)

  • где

Красная граница фотоэффекта (displaystyle {{nu }_{k}}) — частота излучения (фотона), ниже которой фотоэффект не происходит.

Аналогично можно ввести:

displaystyle {{lambda }_{k}}=frac{c}{{{nu }_{k}}} (3)

Вывод: задачи на фотоэффект вводятся именно этим словом. Единственное, что мы можем использовать при этом, — уравнение Эйнштейна (1).

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 14 декабря 2021 года; проверки требуют 15 правок.

Рабо́та вы́хода — разность значений энергий уровня вакуума {displaystyle E_{vac}} и уровня Ферми E_F, то есть минимальная энергия, которую необходимо сообщить электрону для его «непосредственного» удаления из объёма твёрдого тела, обычно металла или полупроводника:

{displaystyle phi =E_{vac}-E_{F}.}

Работа выхода обычно указывается в электрон-вольтах, типичные величины лежат в диапазоне 3—5 эВ.

Возможные обозначения: {displaystyle phi ,} W, Phi и другие.

Здесь «непосредственность» означает то, что электрон удаляется из твёрдого тела через данную поверхность и перемещается в точку, которая расположена достаточно далеко от поверхности по атомным масштабам, достаточным чтобы электрон прошёл весь двойной слой, но достаточно близко по сравнению с размерами макроскопических граней кристалла.

Определение и комментарий[править | править код]

Работа выхода phi находится как {displaystyle E_{vac}-E_{F},} где энергия уровня вакуума берётся на небольшом расстоянии от места выхода электрона из образца, хотя и значительно большем, чем постоянная кристаллической решётки.

При удалении электрона от поверхности его взаимодействие с зарядами, остающимися внутри твёрдого тела, приводит к индуцированию поверхностных зарядов (в электростатике для расчёта взаимодействия применяется «метод изображения заряда»). Удаление электрона на бесконечность происходит в поле индуцированного поверхностного заряда на что требуется дополнительная работа, зависящая от диэлектрической проницаемости вещества, геометрии образца и свойств всех его поверхностей.

При нахождении величины phi удаление от конкретной грани полагается небольшим, и эта дополнительная работа не учитывается. phi оказывается разной для различных кристаллографических плоскостей поверхности вещества. В отличие от {displaystyle phi ,} работа по перемещению электрона далее в бесконечность не зависит от того, через какую плоскость был удален электрон, ввиду потенциальности электростатического поля.

Работа выхода в фотоэффекте[править | править код]

Работа выхода во внешнем фотоэффекте — минимальная энергия фотонов, необходимая для удаления электрона из вещества под действием света при {displaystyle T=0~{text{K}}.}

Работа выхода из различных металлов[править | править код]

Единицей измерения работы в СИ являются джоуль (Дж), но в физике твердого тела принято использовать электронвольт (эВ)[1].
Диапазоны изменения работы выхода для типичных кристаллографических плоскостей указаны в таблице[2]:

Элемент эВ Элемент эВ Элемент эВ Элемент эВ Элемент эВ
Ag: 4,52 — 4,74 Al: 4,06 — 4,26 As: 3,75 Au: 5,1 — 5,47 B: ~4,45
Ba: 2,52 — 2,7 Be: 4,98 Bi: 4,31 C: ~5 Ca: 2,87
Cd: 4,08 Ce: 2,9 Co: 5 Cr: 4,5 Cs: 2,14
Cu: 4,53 — 5,10 Eu: 2,5 Fe: 4,67 — 4,81 Ga: 4,32 Gd: 2,90
Hf: 3,9 Hg: 4,475 In: 4,09 Ir: 5,00 — 5,67 K: 2,29
La: 3,5 Li: 2,93 Lu: ~3,3 Mg: 3,66 Mn: 4,1
Mo: 4,36 — 4,95 Na: 2,36 Nb: 3,95 — 4,87 Nd: 3,2 Ni: 5,04 — 5,35
Os: 5,93 Pb: 4,25 Pd: 5,22 — 5,6 Pt: 5,12 — 5,93 Rb: 2,261
Re: 4,72 Rh: 4,98 Ru: 4,71 Sb: 4,55 — 4,7 Sc: 3,5
Se: 5,9 Si: 4,60 — 4,85 Sm: 2,7 Sn: 4,42 Sr: ~2,59
Ta: 4,00 — 4,80 Tb: 3,00 Te: 4,95 Th: 3,4 Ti: 4,33
Tl: ~3,84 U: 3,63 — 3,90 V: 4,3 W: 4,32 — 5,22 Y: 3,1
Yb: 2,60[3] Zn: 3,63 — 4,9 Zr: 4,05

Работу выхода можно определить методом контактной разности потенциалов, основанном на сравнении работ выхода из металлов – эталонного и контролируемого[4].

Работа выхода для полупроводника[править | править код]

Для полупроводников работа выхода определяется точно так же, как и для металлов (и данные для некоторых собственных полупроводников включены в таблицу).

На практике полупроводник обычно легирован и величина Phi зависит от типа и концентрации легирующих примесей. Уровень E_F при сильном легировании донорами находится у края зоны проводимости {displaystyle E_{c}}, а при сильном легировании акцепторами — близко к краю валентной зоны E_{v} (соответственно, вариации Phi составляют около ширины запрещённой зоны {displaystyle E_{g}.}

Более универсальной величиной, вместо Phi , для полупроводников является энергия сродства к электрону, равная {displaystyle E_{ea}=E_{vac}-E_{c}.} Например, для кремния сродство составляет 4,05 эВ, а работа выхода примерно от 4,0 до 5,2 эВ (для собственного материала около 4,6 эВ).

Примечания[править | править код]

  1. Работа выхода может зависеть от грани монокристалла или от от преобладающей грани на поверхности текстуры металла. К примеру, Ag: 4,26; Ag(100): 4,64; Ag(110): 4,52; Ag(111): 4,74.
  2. CRC Handbook of Chemistry and Physics 97th edition (2016—2017), раздел 12, стр 123.
  3. Nikolic, M. V.; Radic, S. M.; Minic, V.; Ristic, M. M. The dependence of the work function of rare earth metals on their electron structure (англ.) // Microelectronics Journal : journal. — 1996. — February (vol. 27, no. 1). — P. 93—96. — ISSN 0026-2692. — doi:10.1016/0026-2692(95)00097-6. (недоступная ссылка)
  4. Метод контактной разности потенциалов.

Литература[править | править код]

  • Solid State Physics, by Ashcroft and Mermin. Thomson Learning, Inc, 1976
  • Гончаренко В.И., Олешко В.С. Метод контактной разности потенциалов в оценке энергетического состояния поверхности металлических деталей авиационной техники: монография. – М.: Изд-во МАИ, 2019. – 160 с. – ISBN 978-5-4316-0631-1 http://elibrary.mai.ru/MegaPro/UserEntry?Action=Link_FindDoc&id=68387&idb=0

Добавить комментарий