Как найти работы выталкивающей силы

Асламазов Л. Гидростатика // Квант. – 1995. – № 1. – С. 51-55.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

Давление и силы давления

Жидкость оказывает давление на стенки сосуда, в котором она находится, или на любую другую поверхность, соприкасающуюся с ней. Давление – величина скалярная. Оно измеряется абсолютной величиной нормальной (перпендикулярной поверхности) силы, действующей со стороны жидкости на единицу площади поверхности:

Давление в различных точках поверхности может быть разным. Поэтому площадь S мы должны брать достаточно маленькой.

По закону Паскаля давление жидкости не зависит от ориентации поверхности. Как бы ни была расположена поверхность в данном месте жидкости, давление на нее будет одним и тем же.

Сила давления всегда перпендикулярна поверхности. В обычных условиях она направлена так, как если бы жидкость стремилась расшириться.

Задача 1. В сосуд, имеющий форму куба с ребром a, налита доверху жидкость плотностью ρ. Определите силы давления жидкости на дно и стенки сосуда.

Давление жидкости на дно сосуда равно весу столба жидкости высотой a с площадью основания, равной единице: , где g – ускореннее свободного падения. (Для простоты здесь и в других задачах, где это специально не оговорено, предполагается, что атмосферное давление отсутствует). Сила давления на дно сосуда (рис. 1, а)

а

image54.jpg

б

Рис. 1

Давление на боковую грань куба будет зависеть от расстояния до поверхности жидкости. На глубине h давление . Так как давление изменяется с глубиной по линейному закону (рис. 1. б), для определения силы давления мы должны среднее давление

умножить на площадь боковой грани

Задача 2. В цилиндрический сосуд диаметром D = 0,7 м вставлен поршень с длинной вертикальной трубкой диаметром d = 0,05 м (рис. 2). Максимальная сила трения между поршнем и стенками сосуда Fтp = 100 Н. Через трубку в сосуд наливают воду. При каком уровне воды в трубке H поршень начнет двигаться? Чему будет равна при этом сила давления воды на дно сосуда? Поршень расположен на высоте h = 0,2 м от дна сосуда. Плотность воды ρ = 103 кг/м3. Массой поршня с трубкой пренебречь.

Рис. 2

Давление в жидкости на уровне поверхности поршня определяется расстоянием от этого уровня до свободной поверхности жидкости:

Поршень начнет двигаться, когда сила давления на него со стороны жидкости станет равной максимальной силе трения:

где  – плошали поперечных сечений сосуда и трубки соответственно. Подставляя сюда выражение для p1, находим

Давление на дно сосуда .

Сила давления

Задача 3. Длинная вертикальная труба с поршнем опущена одним концом в сосуд с водой. Вначале поршень находится у поверхности воды, затем его медленно поднимают. Как зависит сила, прикладываемая к поршню, от высоты h ее поднятия? Площадь поперечного сечения трубы S, атмосферное давление p0. Изменением уровня воды в сосуде, массой поршня и ею трением о стенки трубы пренебречь.

При поднятии поршня вода под действием атмосферного давления будет вначале заполнять трубу (рис 3, а). Давление в трубе на уровне жидкости в сосуде равно атмосферному давлению p0. Давление воды на поршень меньше атмосферного на величину веса столба жидкости высотой h и площадью основания, равной единице:

а

б

Рис. 3

Сверху на поршень по-прежнему действует атмосферное давление. Поэтому для удержания поршня на высоте h к нему надо приложить силу, равную

и направленную вверх.

С увеличением h давление воды на поршень будет уменьшаться. На высоте

давление обратится в ноль. При дальнейшем поднятии поршня уровень воды в трубе изменяться не будет, тан как сила атмосферного давления, действующая на столб жидкости в трубе снизу, уравновесится силой тяжести. Для удержания поршня на высоте h > h0 к нему надо приложить силу .

Зависимость прикладываемой к поршню силы F от высоты его поднятия h изображена графически на рисунке 3, б.

Высота столба воды в трубе , очевидно, может служить для измерения атмосферного давлении p0. Однако обычно в барометрах используют ртуть, и нормальному атмосферному давлению тогда соответствует значительно меньшая высота столба ртути  = 0,76 м (плотность ртути ρрт = 1,36×104 кг/м3).

Примером другого гидростатического устройства, широко используемого в практике, являются сообщающиеся сосуды. Известен закон сообщающихся сосудов: если давление над жидкостью в сосудах одинаково, то уровни жидкости в них равны. Нетрудно доказать этот закон для случая цилиндрических сосудов (рис. 4). Так как жидкость в соединительной трубке находится в равновесии, то давления на нее с обеих сторон должны быть одинаковы. Поэтому равны и уровни жидкости в сосудах.

Рис. 4

В общем случае для доказательства закона сообщающихся сосудов можно воспользоваться принципом отвердевания, который часто используют в гидростатике. Суть этого принципа заключается в следующем: всегда можно представить себе, что часть жидкости отвердела – равновесие оставшейся части жидкости от этого не нарушится. Так, в цилиндрических сообщающихся сосудах мы можем мысленно выделить часть жидкости, которая заполняла бы сообщающиеся сосуды любой извилистой формы (см. рис. 4), и представить себе, что остальная часть жидкости отвердевает. Тогда равновесие выделенной нами части жидкости не нарушится, и, следовательно, уровни жидкости в извилистых сообщающихся сосудах будут такими же, какими были в цилиндрических сосудах, т.е. одинаковыми.

Закон сообщающихся сосудов справедлив только для однородной жидкости. Если в сосуды налиты жидкости разных плотностей, то уровни в сосудах могут быть разными.

Задача 4. В U – образную трубку налита ртуть. Поверх ртути в одно из колен трубки налили воду (рис. 5, a). Высота столбика воды l = 0,1 м. Определите разность уровней жидкостей в коленах трубки. Нарисуйте график зависимости давления в обоих коленах трубки от высоты. Плотность ртути ρрт = 1,36×104 кг/м3, плотность воды ρрт = 103 кг/м3. Атмосферное давление не учитывайте.

а

б

Рис. 5

Давления на ртуть на уровне ho соприкосновения воды и ртути в обоих коленах должны быть одинаковы (закон сообщающихся сосудов для однородной жидкости). Поэтому

где разность уровней h2h1 обозначена через Δh. Отсюда

Давление в колене, содержащем только ртуть, меняется с высотой h по закону

Эта формула справедлива и в изогнутой части трубки. (Представите себе, что изогнутое колено сообщается с прямым цилиндрическим сосудом, в котором тоже находится ртуть. Тогда давления на одинаковой высоте в обоих сосудах должны быть равны). В другом колене в области , где находится только вода, давление

Ниже уровня h0 зависимость давления от высоты дается той же формулой, что и в первом колене:

Зависимость давления в коленах трубки от высоты изображена графически на рисунке 5, б. Как видно, выше уровня h0 давления на одинаковой высоте разные.


Выталкивающая сила

На тело, погруженное в жидкость, как известно, действует выталкивающая сила. Эта сила является равнодействующей сил давления жидкости на тело. Найдем, например, выталкивающую силу, действующую на кубик с ребром a целиком погруженный в жидкость плотностью ρ. Сила давления со стороны жидкости на верхнюю грань кубика равна

где h – расстояние от этой грани до поверхности жидкости (для простоты мы считаем, что плоскость верхней грани кубика параллельна поверхности жидкости). На нижнюю грань кубика действует сила

Силы давления на боковые грани кубика уравновешивают друг друга. Равнодействующая сил давлении, т.е. выталкивающая сила, равна

и направлена вертикально вверх. Мы получили закон Архимеда: выталкивающая сила равна силе тяжести, действующей на вытесненную телом жидкость.

В общем случае закон Архимеда можно доказать с помощью принципа отвердевания. Мысленно заменим погруженное тело жидкостью. Очевидно, что эта жидкость будет находиться в равновесии. Следовательно, сила тяжести, действующая на нее, уравновешена силами давления со стороны окружающей жидкости. Если теперь представить себе, что выделенная нами часть отвердела, то равновесие оставшейся части не нарушится, и поэтому не изменятся силы давления на отвердевшую жидкость. Равнодействующая этих сил будет по-прежнему равна силе тяжести.

При доказательстве мы считали, что тело целиком погружено в жидкость. Однако аналогичные рассуждения легко провести и в случае, когда только часть тела находится в жидкости (проделайте это сами). И мы опять получим, что выталкивающая сила равна силе тяжести, действующей на вытесненную телом жидкость:

где ρ – плотность жидкости, V – объем погруженной в жидкость части тела, g –ускорение свободного падения.

Задача 5. На дне водоема установлена П – образная конструкция из трех одинаковых балок, соединенных между собой (рис. 6). Как зависит сила давления этой конструкции на дно от уровня воды в водоеме? Рассмотрите два случая: 1) вода подтекает под опоры; 2) опоры плотно соприкасаются с дном. Балки имеют квадратное сечение со стороной a, длина балки l = 2a. Плотность материала балок ρ0. плотность воды ρ.

а

б

в

Рис. 6

Сила давления Fд на дно определяется разностью силы тяжести конструкции  и выталкивающей силы F. В первом случае, когда вода подтекает под опоры (например, если дно водоема покрыто галькой – рисунок 6, а), справедлив закон Архимеда. Зависимость выталкивающей силы от высоты уровня воды h дается формулами:

Соответствующий график для силы Fд изображен на рисунке 6, в – он обозначен цифрой 1.

Во втором случае отсутствует давление воды на опоры снизу (рис.6, б), и пользоваться законом Архимеда уже нельзя. Для определения силы F необходимо найти равнодействующую сил давления:

F = 0 при h ≤ a,

Последнее выражение обращается в нуль при  и при больших h становится отрицательным. Это означает, что при  силы давления не выталкивают конструкцию из воды, а наоборот, прижимают ее ко дну. Зависимость силы давления на дно от высоты уровня воды показана на втором графике рисунка 6, в.

Задача 6. Пробковый кубик с ребром a = 0,1 м погрузили в воду на глубину h = 0,2 м с помощью тонкостенной трубки диаметром d = 0,05 м (рис. 7). Определите, какой груз надо положить в трубку, чтобы кубик от нее оторвался. Плотность пробки ρ0 = 200 кг/м3, плотность воды ρ = 103 кг/м3.

Рис. 7

Вес груза равен разности выталкивающей силы F действующей на кубик, и силы тяжести кубика . Если бы кубик был окружен со всех сторон водой, то на него по закону Архимеда действовала бы выталкивающая сила . В нашем случае выталкивающая сила будет большей, так как на часть поверхности верхней грани кубика, «заключенную» в трубку, не действует давление воды:

где  – площадь сечения трубки. Таким образом, сила тяжести грузика

Масса грузика т = 1,2 кг.

Выталкивающую силу, действующую на кубик, можно найти и другим способом. Рассмотрим кубик с трубкой как единое тело, вытесняющее объем воды

Тогда по закону Архимеда на кубик с трубкой действует выталкивающая сила

которая равна выталкивающей силе, действующей на кубик, так как равнодействующая сил давления воды на трубку равна нулю.

Жидкость в движущемся сосуде

Изучим теперь равновесие жидкости в сосуде, движущемся с ускорением. По второму закону Ньютона в этом случае векторная сумма всех сил, действующих на любой выделенный элемент жидкости, должна равняться , где m – масса выделенной жидкости,  – ускорение сосуда. Но на выделенный элемент жидкости действуют сила тяжести и силы давления со стороны окружающей жидкости. Их равнодействующая и должна быть равна .

Задача 7. Сосуд с жидкостью плотностью ρ падает с ускорением a. Определите давление жидкости на глубине h и силу давления на дно сосуда. Высота уровня воды в сосуде H, площадь дна сосуда s.

Выделим столбик жидкости высотой h с площадью основания s. На него действуют сила тяжести  и сила давления , направленная вверх. Равнодействующая этик сил создает ускорение столбика:

где  – масса столбика. Для давления p на глубине h отсюда находим

Сила давления на дно сосуда

будет тем меньше, чем больше ускорение сосуда a. При  (свободное падение) сила давления жидкости обращается в ноль – наступает состояние невесомости. При  жидкость будет свободно падать с ускорением g, а сосуд – с большим ускорением, и вода вытечет из сосуда.

Задача 8. На дне сосуда с жидкостью лежит тело. Может ли тело всплыть, если сосуд начнет двигаться вверх с ускорением? Определите силу давления тела на дно сосуда, если ускорение сосуда a, плотность жидкости ρ0, плотность тела ρ, его объем V.

На тело, лежащее на дне сосуда, действуют сила тяжести mg сила реакции дна N и выталкивающая сила F (рис. 8). Если сосуд покоится, то сумма этих сил равняется нулю. При движении сосуда с ускорением a вверх по второму закону Ньютона имеем

Рис. 8

Определим выталкивающую силу F. Аналогично решению предыдущей задачи, легко получить, что при ускоренном движении сосуда, вверх давление на глубине h дается формулой

т.е. давление в  раз больше, чем в неподвижном сосуде. Соответственно будет большей и выталкивающая сила:

где  – масса вытесненной телом воды.

Подставляя это выражение в формулу второго закона Ньютона, для силы реакции дна получаем

Легко видеть, что в сосуде, движущемся с ускорением вверх, сила реакции дна всегда больше, чем в неподвижном. Поэтому тело не только не всплывает, а наоборот, сильнее прижимается ко дну.

Задача 9. Сосуд с жидкостью движется горизонтально с ускорением a. Определите форму поверхности жидкости в сосуде.

Выделим горизонтальный столбик жидкости длиной l и площадью поперечного сечения S (рис. 9). По второму закону Ньютона

где  – масса столбика, p1 и p2 – давления на него слева и справа.

  

Рис. 9

Давление на глубине h определяется по обычной формуле  (по вертикали ускорения нет). Подставляя выражения для m и p в уравнение второго закона Ньютона, получаем

или

Но  – это разность высот точек поверхности жидкости. Мы получаем, что поверхность жидкости – плоскость, наклоненная к горизонту под углом α, причем .

Заметим, что давление жидкости на данной высоте здесь не одно и то же. Линии равного давления параллельны поверхности жидкости. Если ввести расстояние от точки до поверхности жидкости, то давление в этой точке

Поэтому можно сказать, что ускоренное движение сосуда эквивалентно замене ускорения свободного падения  на величину . Это утверждение в равной степени относится и к предыдущим двум задачам.

Упражнения

1. Три сосуда, имеющие формы цилиндра, усеченного конуса и перевернутого усеченного конус с одинаковыми площадями оснований и рапными объемами, доверху наполнены водой. Как соотносятся между собой силы давлении воды на дно сосудов?

2. Трубка ртутного барометра подвешена нити. Определите натяжение нити, если высота уровня ртути и трубке Н = 0,76 м, внешний диаметр трубки D = 0,02 м, внутренний d = 0,017 м. нижний конец трубки погружен в ртуть на глубину h = 0,1 м, масса трубки m = 0,3 кг, плотность ртути ρ = 1,36×104 кг/м4. Считайте, что торцы трубки плоские.

3. Длинная вертикальная трубка погружена одним концом в сосуд с ртутью. В трубку наливают m = 0,71 кг воды, которая не вытекает из трубки. Определите изменение уровня ртути и сосуде. Диаметр сосуда D = 0,06 м, плотность ртути ρ = 1,36×104 кг/м4. Толщиной стоим трубки пренебречь.

4. В сосуде с водой плавает кусок льда. Изменится ли уровень воды в сосуде, если лед растает? Что будет, если в лед вморожен а) кусочек свинца: б) кусочек пробки?

5. В цилиндрические сообщающиеся сосуды диаметрами D = 0,06 м и d = 0,02 м налита вода. Как изменятся уровни воды в сосудах, если в один из сосудов поместить тело массой т = 0,02 кг, которое будет плавать в воде? Плотность воды ρ = 103 кг/м3.

6. Сосуд с водой скользит без трения по наклонной плоскости с углом наклона α. Определите, как расположится поверхность воды и сосуде.

Ответы

1. Сила давления на дно наибольшая у сосуда, имеющего форму усеченного конуса, наименьшая – у перевернутого конуса.

2.

3.

4. Если лед чистый или в него вморожен кусочек пробки, то уровень воды не изменится. Если же в лед вморожен кусочек свинца, уровень воды понизится.

5.

6. Поверхность параллельна наклонной плоскости.

Задачи на силу Архимеда с решениями

Формулы, используемые на уроках «Задачи на силу Архимеда», «Сообщающиеся сосуды».

Название величины

Обозначение

Единица измерения

Формула

Объем тела

V

м3

Vт = FA / pg

Плотность жидкости

p

кг/м3

pж = FA / (Vg)

Сила Архимеда

FA

Н

FA = pж Vт g

Постоянная

g ≈ 10 Н/кг

Н/кг




ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1.
Тело объемом 2 м3 погружено в воду. Найдите архимедову силу, действующую на тело.


Задача № 2.
Определить выталкивающую силу, действующую на деревянный плот объемом 12 м3, погруженный в воду на половину своего объема.


Задача № 3.
 Каков объем железобетонной плиты, если в воде на нее действует выталкивающая сила 8000 Н?


Задача № 4.
 Какую силу надо приложить, чтобы удержать под водой бетонную плиту, масса которой 720 кг?


Задача № 5.
 Какую высоту должен иметь столб нефти, чтобы уравновесить в сообщающихся сосудах столб ртути высотой 16 см?


Задача № 6.
Вес тела в воздухе равен 26 кН, а в воде — 16 кН. Каков объем тела?



Задача № 7.
Какую силу нужно приложить, чтобы удержать в воде кусок гранита объемом 40 дм3?


Задача № 8.
Определите объем куска меди, который при погружении в керосин выталкивается силой 160 Н.


Задача № 9 (повышенной сложности).
 Медный шар в воздухе весит 1,96 Н, а в воде 1,47 Н. Сплошной этот шар или полый?


Задача № 10 (повышенной сложности).
 Рассчитайте, какой груз сможет поднять шар объемом 1 м3, наполненный водородом. Какой примерно объем должен иметь шар с водородом, чтобы поднять человека массой 70 кг? (Вес оболочки не учитывать.)


Задача № 11.
  Деревянный цилиндр плавает на поверхности воды так, что он погружен в воду на 90%. Какая часть цилиндра будет погружена в воду, если поверх воды налить слой масла, полностью закрывающий цилиндр? Плотность масла 800 кг/м3.

Дано: V – объем цилиндра (V = Sh);  h – высота цилиндра;  S – площадь основания цилиндра;  V1 – объем цилиндра, погруженного в масло (V1 = V – V2 = Sh1);  h1 – высота части цилиндра, погруженной в масло;  V2 – объем цилиндра, погруженного в воду после добавления масла;  рв – плотность воды (1000 кг/м3);  рм – плотность масла (800 кг/м3)

Найти:  (h – h1) / h — ?

Решение.  F – сила, выталкивающая цилиндр из воды до добавления масла  F = 0,9pвgV
F1 – сила, выталкивающая цилиндр из масла   F1 = pмgV1
F2 – сила, выталкивающая цилиндр из воды после добавления масла  F2 = pвgV2
Баланс сил: F F1 = F2
0,9pвgV pмgV1 = pвgV2       V1 = V – V2   ⇒    0,9pвV pм(V V2) = pвV2

V(0,9pвpм) = V2(pвpм)         V = Sh;  V1 = Sh1    ⇒

Ответ: 1/2 часть цилиндра будет погружена в воду (50%).


Задача № 12.
 Плоская льдина плавает в воде, выступая над уровнем воды на 3 см. Человек массой 70 кг зашел на льдину. В результате, высота выступающей части над льдиной уменьшилась в 3 раза. Найти площадь льдины.

Ответ: 3,5 м3.


Теория для решения задач.

Давление жидкости на покоящееся в ней тело называют гидростатическим давлением. Гидростатическое давление на глубине h равно р = ратм  + p*g*h

Закон Паскаля. Жидкость и газ передают оказываемое на них давление во всех направлениях одинаково.

Задачи на давление жидкостей


Конспект урока «Задачи на силу Архимеда с решениями».

Следующая тема: «Задачи на механическую работу».

Содержание:

Выталкивающая сила:

Наблюдение. Почему тяжело погрузить мяч в воду, и почему, как только мы его отпустим, он выпрыгивает из воды? Почему в море легче плавать, чем в озере? Почему в воде мы можем поднять камень, а в воздухе — нет?

Опыт 1. Подвесим к пружине тело (рис. 138). В связи с тем, что на тело действует сила тяжести Выталкивающая сила в физике - виды, формулы и определения с примерами

Газы во многом подобны жидкостям. На тела, помещённые в газ, также действует выталкивающая сила. Именно под действием этой силы воздушные шары, метеорологические зонды, детские шарики, наполненные водородом, поднимаются вверх.

А от чего зависит выталкивающая сила ?

Опыт 2. Два тела разного объёма, но одинаковой массы, погрузим полностью в одну и ту же жидкость (воду). Мы видим, что тело большего объёма выталкивается из жидкости (воды) с большей силой (рис. 139).Выталкивающая сила в физике - виды, формулы и определения с примерами

Выталкивающая сила зависит от объёма погружённого в жидкость тела. Чем больше объём тела, тем большая выталкивающая сила действует на него.

Опыт 3. Погрузим полностью два тела одинакового объёма и массы в разные жидкости, например воду и керосин (рис. 140). Нарушение равновесия в этом случае свидетельствует, что в воде на тело действует большая выталкивающая сила, это можно связать с тем, что плотность воды больше, чем плотность керосина.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Выталкивающая сила зависит от плотности жидкости, в которую погружено тело. Чем больше плотность жидкости, тем большая выталкивающая сила действует на погружённое в неё тело.

Обобщая результаты наблюдений и опытов можно сделать такой вывод.

На тело, погружённое в жидкость (газ), действует выталкивающая сила, равная по значению весу жидкости (газа), вытесненной этим телом.

Это утверждение называют законом Архимеда, древнегреческого учёного, который его открыл и, по легенде, успешно применил для решения практической задачи: определил, содержится ли в золотой короне царя Гиерона примесь серебра. Силу, которая выталкивает тело из жидкости или газа, называют еще архимедовой силой.

На основе закона Архимеда можно сразу написать формулу для определения выталкивающей силы, но чтобы лучше понять, вследствие чего она возникает, выполним простые расчёты. Для этого рассмотрим тело в форме прямоугольного бруска, погружённого в жидкость таким образом, чтобы его верхняя и нижняя фан и располагались параллельно поверхности жидкости (рис. 141). Выталкивающая сила в физике - виды, формулы и определения с примерами

Посмотрим, каким будет результат действия сил давления на поверхность этого тела.

Согласно закону Паскаля горизонтальные силы Выталкивающая сила в физике - виды, формулы и определения с примерами и Выталкивающая сила в физике - виды, формулы и определения с примерами действующие на симметричные боковые грани бруска, попарно равны по значению и противоположно направлены. Они не выталкивают брусок вверх, а только сжимают его с боков. Рассмотрим силы гидростатического давления на верхнюю и нижнюю грани бруска.

Пусть верхняя грань площадью S расположена на глубине Выталкивающая сила в физике - виды, формулы и определения с примерами тогда сила давления Выталкивающая сила в физике - виды, формулы и определения с примерами, на неё будет равна: Выталкивающая сила в физике - виды, формулы и определения с примерами

где Выталкивающая сила в физике - виды, формулы и определения с примерами — плотность жидкости.

Нижняя грань бруска площадью S расположена на большей глубине Выталкивающая сила в физике - виды, формулы и определения с примерами, поэтому сила давления Выталкивающая сила в физике - виды, формулы и определения с примерами на неё будет также больше, чем Выталкивающая сила в физике - виды, формулы и определения с примерами:  Выталкивающая сила в физике - виды, формулы и определения с примерами

Обе силы давления Выталкивающая сила в физике - виды, формулы и определения с примерами, и Выталкивающая сила в физике - виды, формулы и определения с примерами действуют вдоль вертикали, их равнодействующая и будет силой Архимеда Выталкивающая сила в физике - виды, формулы и определения с примерами, направленной вверх в сторону большей силы Выталкивающая сила в физике - виды, формулы и определения с примерами, а её значение будет равно разности сил

Выталкивающая сила в физике - виды, формулы и определения с примерами и Выталкивающая сила в физике - виды, формулы и определения с примерами:  Выталкивающая сила в физике - виды, формулы и определения с примерами.

Поскольку разность Выталкивающая сила в физике - виды, формулы и определения с примерами является высотой бруска, то произведение Выталкивающая сила в физике - виды, формулы и определения с примерами равно объёму тела Выталкивающая сила в физике - виды, формулы и определения с примерами, и мы окончательно получаем формулу,

являющуюся математическим выражением закона Архимеда:
Выталкивающая сила в физике - виды, формулы и определения с примерами

Действительно, поскольку жидкость не сжимается, то объём вытесненной телом жидкости равен объёму этого тела, и произведение Выталкивающая сила в физике - виды, формулы и определения с примерами равно массе жидкости Выталкивающая сила в физике - виды, формулы и определения с примерами в объёме тела Выталкивающая сила в физике - виды, формулы и определения с примерами. В свою очередь, произведение Выталкивающая сила в физике - виды, формулы и определения с примерами является весом этой жидкости.

Из приведённого расчета наглядно видно, что выталкивающая (архимедова) сила возникает вследствие того, что значения гидростатического давления на разных глубинах неодинаковы и возрастают с глубиной.

Архимедовую силу можно определить экспериментально.

Опыт 4. Подвесим тело к динамометру (рис. 142). На тело действует сила тяжести почти 10 Н. Погрузим тело в жидкость (рис. 143).

Выталкивающая сила в физике - виды, формулы и определения с примерамиДинамометр показывает 6 Н. Определим разность показаний динамометра. Она равняется 4 Н.

Кстати:

Однажды у императора Цао-Цао, который правил в Китае свыше 2000 лет тому назад, возникла мысль взвесить слона. Как ни суетились сановники, никто из них не мог ничего придумать, ведь нигде не было таких гигантских весов, чтобы на них можно было взвесить слона. Когда все сановники признали свою беспомощность, пришёл человек по имени Чао Чун и сказал, что он может взвесить слона. Он попросил: «Прикажите поставить слона в большую лодку, после чего обозначьте уровень погружения лодки в воду. Снимите слона, а лодку загрузите камнями так, чтобы она погрузилась до отметки. Вес камней будет равен весу слона”. Талантливый самородок, на много лет опередивший великого Архимеда, получил за своё предложение «щедрое» вознаграждение – благосклонный кивок императора Цао-Цао.

Выталкивающая сила и закон Архимеда

При взаимодействии твердых неподвижных тел, действуя друг на друга, они только деформируются. И действие каждого из этих тел на другое характеризуется силой.

Как взаимодействуют твердое тело и жидкость

Если твердое тело взаимодействует с жидкостью, то оно проникает в жидкость. Что происходит в таком случае? Ответ на этот вопрос получим из опыта.

К резиновой нити прицепим груз и измерим длину нити, которая растягивается весом груза. Если же груз после этого опустить в воду, то станет заметным сокращение длины нити. Таким образом, вес тела в воде уменьшился. Это возможно только потому, что в жидкости на погруженное тело действует выталкивающая сила. Направление этой силы противоположно направлению действия силы тяжести.

Как рассчитать значение выталкивающей силы

Опыты показывают, что значение выталкивающей силы зависит как от характеристик погруженного тела, так и от свойств жидкости.

Возьмем металлический цилиндр и стакан, объем которого равен объему цилиндра. Прицепим их к крючку динамометра и определим вес цилиндра и стакана (рис. 110). Теперь полностью погрузим цилиндр в воду. Динамометр покажет уменьшение веса. Но если стакан полностью заполнить водой, то показания динамометра восстановятся. Таким образом, выталкивающая сила равна весу воды, объем которой равен объему тела. Если воду заменить насыщенным раствором соли в воде, то выталкивающая сила будет большей, так как большим будет вес воды, объем которой равен объему тела.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Если учесть, что вес жидкости  Выталкивающая сила в физике - виды, формулы и определения с примерами то для расчета выталкивающей силы можно использовать формулу

Выталкивающая сила в физике - виды, формулы и определения с примерами

где Выталкивающая сила в физике - виды, формулы и определения с примерами – выталкивающая сила; Выталкивающая сила в физике - виды, формулы и определения с примерами – плотность жидкости; Выталкивающая сила в физике - виды, формулы и определения с примерами – объем погруженного в жидкость тела или его части.

Зависимость, выраженная формулой для выталкивающей силы, называется законом Архимеда, сама выталкивающая сила — силой Архимеда.

От чего зависит сила Архимеда

Почему действует сила Архимеда в жидкости? Представим себе, что в жидкость погружено тело в виде прямоугольного бруска (рис. 111).

На тело, погруженное в жидкость, действует выталкивающая сила, которая равна весу жидкости в объеме погруженного тела или его погруженной части.

Выталкивающая сила в физике - виды, формулы и определения с примерами

В результате действия силы тяжести в жидкости существует давление, которое согласно закону Паскаля действует во всех направлениях. В связи с этим на верхнюю грань бруска будет действовать сила Выталкивающая сила в физике - виды, формулы и определения с примерами направленная вниз.

На нижнюю грань будет действовать сила Выталкивающая сила в физике - виды, формулы и определения с примерами направленная вверх. Так как Выталкивающая сила в физике - виды, формулы и определения с примерами, то и Выталкивающая сила в физике - виды, формулы и определения с примерами. Равнодействующая этих сил направлена вверх. Это и будет сила Архимеда.

Действует сила Архимеда и в газах, так как в них давление тоже изменяется с высотой.

Окончательно закон Архимеда можно сформулировать так: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу жидкости или газа в объеме погруженной части тела.

В газах сила Архимеда значительно меньше, чем в жидкостях, поскольку плотность газа намного меньше плотности жидкости.

Выталкивающая сила в жидкостях и газах

Почему мяч, если его погрузить в воду и отпустить, выпрыгивает над поверхностью воды? Почему тяжелый камень, который на суше нельзя сдвинуть с места, можно легко поднять под водой? Почему корабль, севший на мель, самостоятельно не может всплыть? Попробуем разобраться.

Существование выталкивающей силы:

Подвесим к коромыслу весов два одинаковых шара. Массы шаров равны, значит, весы будут уравновешены (рис. 27.1, а). Подставим под правый шар пустой сосуд (рис. 27.1, б). Затем нальем в сосуд воду и увидим, что равновесие весов нарушится (рис. 27.1, в), — некая сила пытается вытолкнуть шар из воды.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Откуда берется эта сила? Чтобы разобраться, рассмотрим погруженный в жидкость кубик. На него со всех сторон действуют силы гидростатического давления жидкости (рис. 27.2). Силы гидростатического давления Выталкивающая сила в физике - виды, формулы и определения с примерамидействующие на боковые грани кубика, противоположны по направлению и равны по значению, так как площади боковых граней одинаковы и эти грани расположены на одинаковой глубине. Такие силы уравновешивают друг друга. А вот силы гидростатического давления Выталкивающая сила в физике - виды, формулы и определения с примерами , соответственно действующие на верхнюю и нижнюю грани кубика, друг друга не уравновешивают. На верхнюю грань кубика действует сила давления Выталкивающая сила в физике - виды, формулы и определения с примерами: Выталкивающая сила в физике - виды, формулы и определения с примерами где Выталкивающая сила в физике - виды, формулы и определения с примерами — гидростатическое давление жидкости; S — площадь грани. Аналогично на нижнюю грань кубика действует сила давления Выталкивающая сила в физике - виды, формулы и определения с примерами : Выталкивающая сила в физике - виды, формулы и определения с примерами Нижняя грань находится на большей глубине, чем верхняя Выталкивающая сила в физике - виды, формулы и определения с примерами поэтому сила давления Выталкивающая сила в физике - виды, формулы и определения с примерами больше силы давления Выталкивающая сила в физике - виды, формулы и определения с примерами

Выталкивающая сила в физике - виды, формулы и определения с примерами

Равнодействующая этих сил равна разности значений сил Выталкивающая сила в физике - виды, формулы и определения с примерами и направлена в сторону действия большей силы, то есть вертикально вверх. По вертикали вверх на кубик, погруженный в жидкость, действует сила, обусловленная разностью давлений на его нижнюю и верхнюю грани, — выталкивающая сила: Выталкивающая сила в физике - виды, формулы и определения с примерами На тело, помещенное в газ, тоже действует выталкивающая сила, но она значительно меньше выталкивающей силы, действующей на то же тело в жидкости, поскольку плотность газа намного меньше плотности жидкости. Выталкивающую силу, которая действует на тело в жидкости или газе, называют также архимедовой силой (в честь древнегреческого ученого Архимеда (рис. 27.3), который первым указал на существование этой силы и вычислил ее значение).

Выталкивающая сила в физике - виды, формулы и определения с примерами

Расчет и вычисление силы Архимеда

Вычислим значение архимедовой (выталкивающей) силы для кубика, погруженного в жидкость (см. рис. 27.2). Вы уже знаете, что архимедова сила равна разности сил давлений жидкости на нижнюю и верхнюю грани кубика: Выталкивающая сила в физике - виды, формулы и определения с примерами где Выталкивающая сила в физике - виды, формулы и определения с примерами — сила давления жидкости на верхнюю грань кубика; Выталкивающая сила в физике - виды, формулы и определения с примерами — сила давления жидкости на нижнюю грань кубика. Зная Выталкивающая сила в физике - виды, формулы и определения с примерами, найдем выталкивающую силу: Выталкивающая сила в физике - виды, формулы и определения с примерами Разность глубин Выталкивающая сила в физике - виды, формулы и определения с примерами, на которых находятся нижняя и верхняя грани кубика, — это высота h кубика, следовательно, Выталкивающая сила в физике - виды, формулы и определения с примерами. Произведение площади S основания кубика на его высоту h — это объем V кубика: V= Sh, значит, формула для расчета архимедовой силы: Выталкивающая сила в физике - виды, формулы и определения с примерами Здесь Выталкивающая сила в физике - виды, формулы и определения с примерами — это масса жидкости в объеме кубика, то есть масса жидкости, объем которой равен объему кубика. Так как Выталкивающая сила в физике - виды, формулы и определения с примерами, то Выталкивающая сила в физике - виды, формулы и определения с примерами Архимедова сила равна весу жидкости в объеме кубика: Выталкивающая сила в физике - виды, формулы и определения с примерами

Мы рассмотрели случай с кубиком, полностью погруженным в жидкость. Однако полученный результат выполняется для тела любой формы, а также в случаях, когда тело погружено в жидкость частично (для расчетов следует брать объем погруженной в жидкость части тела). Кроме того, результат справедлив и для газов. А теперь сформулируем закон Архимеда: На тело, погруженное в жидкость или газ, действует выталкивающая сила, которая равна весу жидкости или газа в объеме погруженной части тела: Выталкивающая сила в физике - виды, формулы и определения с примерами где Выталкивающая сила в физике - виды, формулы и определения с примерами — архимедова сила; Выталкивающая сила в физике - виды, формулы и определения с примерами— плотность жидкости или газа; Выталкивающая сила в физике - виды, формулы и определения с примерами — объем погруженной части тела. Архимедова сила приложена к центру погруженной части тела и направлена вертикально вверх (рис. 27.4).

Выталкивающая сила в физике - виды, формулы и определения с примерами

Выясняем, всегда ли на тело, погруженное в жидкость, действует архимедова сила:

Подвесим к динамометру камешек на нити. Динамометр покажет вес камешка. Подставим стакан с водой так, чтобы камешек оказался полностью погруженным в воду. Показание динамометра уменьшится. Кажется, что камешек «потерял» часть своего веса. Но никакой потери веса тела в жидкости не происходит: вес перераспределяется между подвесом (нитью) и опорой (жидкостью). Даже если архимедова сила, действующая на тело, достаточна, чтобы его удержать, и подвес не будет растянут, тело все равно не находится в состоянии невесомости, ведь оно давит на опору — жидкость. Следует отметить: когда тело плавает, его вес распределяется на воду, окружающую всю поверхность тела. Поэтому во время плавания нам кажется, что мы потеряли вес. Такие комфортные условия поддержания тяжелого тела обусловили то, что в результате эволюции самые массивные существа на Земле живут в океане (рис. 27.5).

Именно архимедова сила помогает нам поднимать в воде тяжелые камни или другие предметы, ведь часть силы тяжести, действующей на эти тела, уравновешивается не силой наших рук, а выталкивающей силой.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Однако случается, что вода не помогает поднять тело, а наоборот — препятствует этому. Это происходит, если тело лежит на дне и плотно к нему прилегает. Вода не может попасть под нижнюю поверхность тела и помочь своим давлением поднять его. В таком случае, чтобы оторвать тело от дна, нужно преодолеть не только силу тяжести, действующую на тело, но и силу давления воды на верхнюю поверхность тела (рис. 27.6). Данное явление может стать причиной трагедии: если подводная лодка опустится на глинистое дно и вытеснит из­ под себя воду, всплыть сама она не сможет.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Пример №1

Однородный алюминиевый брусок массой 540 г полностью погружен в воду и не касается дна и стенок сосуда. Определите архимедову силу, действующую на брусок. Анализ физической проблемы. Для вычисления архимедовой силы нужно знать плотность воды и объем бруска. Объем бруска определим по его массе и плотности. Плотности воды и алюминия узнаем из таблиц плотностей (с. 249). Задачу будем решать в единицах СИ.

Дано:

Выталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами

Найти:

Выталкивающая сила в физике - виды, формулы и определения с примерами

Решение:

По закону Архимеда: Выталкивающая сила в физике - виды, формулы и определения с примерами По определению плотности: Выталкивающая сила в физике - виды, формулы и определения с примерами

Подставим выражение для объема бруска в формулу для расчетов архимедовой силы:Выталкивающая сила в физике - виды, формулы и определения с примерами

Проверим единицу, найдем значение искомой величины:

Выталкивающая сила в физике - виды, формулы и определения с примерамиВыталкивающая сила в физике - виды, формулы и определения с примерами

Ответ: Выталкивающая сила в физике - виды, формулы и определения с примерами

Итоги:

На тело, находящееся в жидкости или газе, действует выталкивающая (архимедова) сила. Причина ее появления в том, что давление, которое оказывает жидкость или газ на верхнюю поверхность тела, отличается от давления, оказываемого на нижнюю поверхность тела. Закон Архимеда: на тело, погруженное в жидкость или газ, действует выталкивающая сила, которая направлена вертикально вверх и равна весу жидкости или газа в объеме погруженной части тела:Выталкивающая сила в физике - виды, формулы и определения с примерами

Условия плавания тел

При приготовлении раствора соли определенной плотности хозяйки погружают в него сырое яйцо: если плотность раствора недостаточна, яйцо тонет, если достаточна — всплывает. аналогично определяют плотность сахарного сиропа при консервации.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Вы наверняка можете привести множество примеров плавания тел. Плавают корабли и лодки, деревянные игрушки и воздушные шарики, плавают рыбы, дельфины, другие существа. А от чего зависит способность тела плавать? Проведем опыт. Возьмем небольшой сосуд с водой и несколько шариков, изготовленных из разных материалов. Будем поочередно погружать тела в воду, а потом отпускать их без начальной скорости. Далее в зависимости от плотности тела возможны разные варианты (см. таблицу).

Выталкивающая сила в физике - виды, формулы и определения с примерами

Погружение

Тело начинает тонуть и в конце концов опускается на дно сосуда. Выясним, почему это происходит. На тело действуют две силы: 1) сила тяжести Выталкивающая сила в физике - виды, формулы и определения с примерами (поскольку Выталкивающая сила в физике - виды, формулы и определения с примерами), направленная вертикально вниз; 2) выталкивающая сила Выталкивающая сила в физике - виды, формулы и определения с примерами направленная вертикально вверх. Тело погружается, а это значит, что сила, направленная вниз, больше: Выталкивающая сила в физике - виды, формулы и определения с примерами Поскольку Выталкивающая сила в физике - виды, формулы и определения с примерами . После сокращения на Выталкивающая сила в физике - виды, формулы и определения с примерами имеем:

Выталкивающая сила в физике - виды, формулы и определения с примерами тело тонет в жидкости или газе, если плотность тела больше, чем плотность жидкости или газа. Вариант 2. Плавание внутри жидкости. Тело не тонет и не всплывает, а остается плавать внутри жидкости. Попробуйте доказать, что в данном случае плотность тела равна плотности жидкости:

Выталкивающая сила в физике - виды, формулы и определения с примерами

тело плавает внутри жидкости или газа, если плотность тела равна плотности жидкости или газа. Вариант 3. Всплытие. Тело начинает всплывать и в конце концов останавливается на поверхности жидкости, погрузившись в жидкость частично. Пока тело всплывает, архимедова сила больше силы тяжести: Выталкивающая сила в физике - виды, формулы и определения с примерами или: Выталкивающая сила в физике - виды, формулы и определения с примерами Остановка тела на поверхности жидкости означает, что архимедова сила и сила тяжести уравновешены: Выталкивающая сила в физике - виды, формулы и определения с примерами тело всплывает в жидкости или газе либо плавает на поверхности жидкости, если плотность тела меньше, чем плотность жидкости или газа.

Плавание тел в живой природе

Тела обитателей морей и рек содержат в своем составе много воды, поэтому их средняя плотность близка к плотности воды. Чтобы свободно двигаться в жидкости, они должны «управлять» средней плотностью своего тела. Приведем примеры. У рыб с плавательным пузырем такое управление происходит за счет изменения объема пузыря (рис. 28.1). Моллюск наутилус (рис. 28.2), обитающий в тропических морях, может быстро всплывать и снова опускаться на дно благодаря тому, что может менять объем внутренних полостей в организме (моллюск живет в закрученной спиралью раковине). Распространенный в Европе водяной паук (рис. 28.3) несет с собой в глубину воздушную оболочку на брюшке — именно она дает ему запас плавучести и помогает вернуться на поверхность.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Выталкивающая сила в физике - виды, формулы и определения с примерами

Выталкивающая сила в физике - виды, формулы и определения с примерами

Пример №2

Медный шар массой 445 г имеет внутри полость объемом 450 см3. Будет ли этот шар плавать в воде? Анализ физической проблемы. Чтобы ответить на вопрос, как поведет себя шар в воде, нужно плотность шара Выталкивающая сила в физике - виды, формулы и определения с примерами сравнить с плотностью воды Выталкивающая сила в физике - виды, формулы и определения с примерами Для вычисления плотности шара следует определить его объем и массу. Масса воздуха в шаре незначительна по сравнению с массой меди, поэтому Выталкивающая сила в физике - виды, формулы и определения с примерами Объем шара — это объем медной оболочки Выталкивающая сила в физике - виды, формулы и определения с примерами и объем полости Выталкивающая сила в физике - виды, формулы и определения с примерами Объем медной оболочки можно определить, зная массу и плотность меди. О плотностях меди и воды узнаем из таблиц плотностей (с. 249). Задачу целесообразно решать в представленных единицах.

Дано:

Выталкивающая сила в физике - виды, формулы и определения с примерамиВыталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами

Найти:

Выталкивающая сила в физике - виды, формулы и определения с примерами

Решение:

По определению плотности:Выталкивающая сила в физике - виды, формулы и определения с примерами

Объем шара: Выталкивающая сила в физике - виды, формулы и определения с примерами — объем медной оболочки.

Таким образом, Выталкивающая сила в физике - виды, формулы и определения с примерами

Решим задачу по действиям. 1. Определим объем шара:

Выталкивающая сила в физике - виды, формулы и определения с примерами

2. Зная объем и массу шара, определим его плотность:

Выталкивающая сила в физике - виды, формулы и определения с примерами

Анализ результата: плотность шара меньше плотности воды, поэтому шар будет плавать на поверхности воды.

Ответ: да, шар будет плавать на поверхности воды.

  • Заказать решение задач по физике

Итоги:

Тело тонет в жидкости или газе, если плотность тела больше, чем плотность жидкости или газа Выталкивающая сила в физике - виды, формулы и определения с примерами плавает внутри жидкости или газа, если плотность тела равна плотности жидкости или газа Выталкивающая сила в физике - виды, формулы и определения с примерами Тело всплывает в жидкости или газе либо плавает на поверхности жидкости, если плотность тела меньше плотности жидкости или газа Выталкивающая сила в физике - виды, формулы и определения с примерами

Судоходство и воздухоплавание

Стальной брусок в воде тонет, а стальные корабли плавают. Нейлоновая ткань падает в воздухе, а воздушные шары, изготовленные из этой ткани, поднимаются вверх сами и поднимают гондолы с пассажирами. Почему же стальные корабли плавают в воде, а воздушные шары называют аппаратами, которые легче воздуха? Получить ответы на эти вопросы вам помогут знания об основах судоходства и воздухоплавания.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Почему плавают суда

На первый взгляд, сталь непригодна для изготовления плавучего средства: плотность стали намного больше плотности воды, поэтому стальная пластинка в воде тонет. Но если из пластинки сделать кораблик и опустить его на поверхность воды, кораблик будет плавать (рис. 29.1). Почему? Дело в том, что погруженная в воду часть кораблика вытесняет воды достаточно, чтобы архимедова сила уравновесила силу тяжести, действующую на кораблик. Другими словами, средняя плотность кораблика за счет воздуха внутри него намного меньше плотности воды. Именно поэтому кораблик плавает на поверхности воды лишь немного в нее погружаясь.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Этот принцип лежит в основе конструкции всех судов. Средняя плотность судов намного меньше плотности воды, поэтому суда плавают на ее поверхности, погружаясь на относительно небольшую часть своего объема.

Характеристики судов:

Когда новое судно спускают на воду, оно начинает погружаться. Нижняя часть судна начинает вытеснять воду, вследствие чего возникает архимедова сила. Когда архимедова сила уравновешивает силу тяжести, действующую на судно, оно прекращает погружение. Глубину, на которую погружается судно, называют осадкой. Осадка судна изменяется в зависимости от загруженности судна и от того, в речной или морской воде оно находится. Разумеется, судно нельзя перегружать.

На корпус судна нанесена ватерлиния — линия, указывающая максимально допустимую осадку судна, при которой оно может безопасно плавать (рис. 29.2). Когда судно полностью нагружено, оно находится в воде вровень с ватерлинией.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Вес воды, которую вытесняет судно, погруженное в воду до ватерлинии, то есть архимедова сила, действующая на полностью нагруженное судно, называется полным водоизмещением судна. Напомним: поскольку нагруженное судно плавает на поверхности воды, то архимедова сила, которая действует на него, по значению равна силе тяжести, действующей на судно с грузом: Выталкивающая сила в физике - виды, формулы и определения с примерами Самые большие суда — танкеры для нефти — имеют полное водоизмещение до 5 млн кН, то есть их масса вместе с грузом достигает 500 000 т. Если из полного водоизмещения исключить вес самого судна, то получим максимальный вес груза, который может взять на борт данное судно, то есть определим грузоподъемность судна. грузоподъемность судна — максимальный вес груза, который судно может взять на борт, — это разность между полным водоизмещением судна и его весом. Украина — морское государство. В стране есть морской и речной флот, а также порты, имеющие большое экономическое значение: Одесский, Ильичевский, Южный, Николаевский, Херсонский, Бердянский, Мариупольский.

Как осуществилась мечта человека летать

Люди уже давно используют воздушные шары (аэростаты), поднимающиеся в воздух благодаря заполнению их оболочки горячим воздухом или легким газом. На воздушный шар в воздухе действует выталкивающая сила. Средняя плотность воздушного шара меньше плотности воздуха, поэтому выталкивающая сила больше силы тяжести и шар поднимается вверх. Разность между выталкивающей (архимедовой) силой и силой тяжести представляет собой подъемную силу воздушного шара. Сейчас воздушные шары используют для метеорологических и других исследований, соревнований, перевозок пассажиров, туристических и познавательных путешествий. Воздушные шары, наполненные легким газом (в основном гелием), называют шарльерами. В последнее время распространены воздушные шары, наполненные горячим воздухом, — современные монгольфьеры (рис. 29.3). Высокую температуру воздуха внутри шара поддерживают газовые горелки, установленные в его горловине. Поскольку плотность воздуха с высотой уменьшается, воздушные шары не могут подняться на какую угодно высоту. Воздушные шары поднимаются только до той высоты, где плотность воздуха равна средней плотности шара вместе с грузом.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Пример №3

В речном порту судно взяло на борт 100 т груза. В результате осадка судна увеличилась на 0,2 м и достигла максимально допустимой. Какова площадь сечения судна на уровне ватерлинии? Анализ физической проблемы. Когда на судно взяли груз, оно увеличило осадку и дополнительно вытеснило некоторый объем воды. По закону Архимеда, вес груза равен весу дополнительно вытесненной воды: Выталкивающая сила в физике - виды, формулы и определения с примерами Осадка судна увеличилась всего на 20 см, значит, площадь сечения судна на уровне поверхности воды изменилась незначительно. Поэтому объем дополнительно вытесненной воды равен Выталкивающая сила в физике - виды, формулы и определения с примерами где h — увеличение осадки; S — площадь сечения судна на уровне ватерлинии (по условию судно достигло максимальной осадки). Порт речной, поэтому плотность воды равна Выталкивающая сила в физике - виды, формулы и определения с примерами Задачу следует решать в единицах СИ.

Дано:

Выталкивающая сила в физике - виды, формулы и определения с примерамиВыталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами

Найти:

Выталкивающая сила в физике - виды, формулы и определения с примерами

Решение:

1. Определим массу дополнительно вытесненной воды. По закону Архимеда:Выталкивающая сила в физике - виды, формулы и определения с примерами

Выталкивающая сила в физике - виды, формулы и определения с примерамипоэтому Выталкивающая сила в физике - виды, формулы и определения с примерами

2. Определим объем дополнительно вытесненной воды:

Выталкивающая сила в физике - виды, формулы и определения с примерами

3. Площадь S сечения судна на уровне ватерлинии найдем через объем вытесненной воды:

Выталкивающая сила в физике - виды, формулы и определения с примерами

Ответ:Выталкивающая сила в физике - виды, формулы и определения с примерами

Мы решили задачу 1 по действиям. Решите эту задачу в общем виде (получите общую формулу, найдите значение искомой величины).

Пример №4

Объем воздушного шара равен Выталкивающая сила в физике - виды, формулы и определения с примерами Шар натягивает трос, которым прикреплен к причалу, с силой 800 Н. После освобождения троса шар смог подняться на некоторую высоту. Какова плотность воздуха на этой высоте, если плотность воздуха у причала Выталкивающая сила в физике - виды, формулы и определения с примерами

Выталкивающая сила в физике - виды, формулы и определения с примерами

Анализ физической проблемы. Шар прекратил подъем потому, что на этой высоте его средняя плотность равна плотности воздуха Выталкивающая сила в физике - виды, формулы и определения с примерами. Чтобы определить среднюю плотность шара, следует найти его массу. Массу шара найдем по силе тяжести, действующей на шар. Для определения силы тяжести выполним пояснительный рисунок и покажем все силы, действовавшие на шар на причале: Выталкивающая сила в физике - виды, формулы и определения с примерами — сила тяжести; Выталкивающая сила в физике - виды, формулы и определения с примерами — архимедова сила, Выталкивающая сила в физике - виды, формулы и определения с примерами — сила натяжения троса. Шар на причале не двигался, поэтому силы, действовавшие на него, были скомпенсированы. Задачу будем решать по действиям в единицах СИ.

Дано:

Выталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами

Найти:

Выталкивающая сила в физике - виды, формулы и определения с примерами

Решение:

Силы, действовавшие на прикрепленный к причалу шар, были скомпенсированы, следовательно:

Выталкивающая сила в физике - виды, формулы и определения с примерами

1. Найдем архимедову силу, которая действовала на прикрепленный к причалу шар:

Выталкивающая сила в физике - виды, формулы и определения с примерами

2. Найдем силу тяжести, действующую на шар:

Выталкивающая сила в физике - виды, формулы и определения с примерами

3. Определим массу шара:Выталкивающая сила в физике - виды, формулы и определения с примерами

4. По известным массе и объему шара вычислим его среднюю плотность:

Выталкивающая сила в физике - виды, формулы и определения с примерами

5. Плотность воздуха на высоте максимального подъема шара равна средней плотности шара, потому на этой высотеВыталкивающая сила в физике - виды, формулы и определения с примерами

Ответ:Выталкивающая сила в физике - виды, формулы и определения с примерами

Итоги:

Взаимодействие тел:

Вы узнали, что причиной изменения скорости движения тел и причиной изменения формы и объема тел является взаимодействие.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Вы ознакомились с разными силами в механике.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Вы продолжили знакомство с физическими телами и веществами и узнали о физических величинах, характеризующих тело, вещество, взаимодействие.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Вы узнали о давлении жидкостей и газов, ознакомились с законом Паскаля, законом Архимеда, доказали наличие атмосферного давления.

Выталкивающая сила в физике - виды, формулы и определения с примерами

  • Условия плавания тел в физике 
  • Гидростатическое взвешивание в физике
  • Воздухоплавание в физике
  • Машины и механизмы в физике
  • Атмосферное давление в физике и его измерение
  • Манометры в физике
  • Барометры в физике
  • Жидкостные насосы в физике

Видеоурок: закон Архимеда

Зако́н Архиме́да — закон гидростатики и аэростатики: на тело, погружённое в жидкость или газ, действует выталкивающая сила, численно равная весу объема жидкости или газа, вытесненного телом. Закон открыт Архимедом в III веке до н. э. Выталкивающая сила также называется архимедовой силой или гидростатической подъёмной силой[1][2] (её не следует путать с аэро- и гидродинамической подъёмной силой, возникающей при обтекании тела потоком газа или жидкости).

Так как сила Архимеда обусловлена силой тяжести, то в невесомости она не действует.

В соответствии с законом Архимеда для выталкивающей силы выполняется[3]:

{displaystyle F_{A}=rho gV,}

где:

Описание[править | править код]

Выталкивающая или подъёмная сила по направлению противоположна силе тяжести, прикладывается к центру тяжести объёма, вытесняемого телом из жидкости или газа.

Если тело плавает (см. плавание тел) или равномерно движется вверх или вниз, то выталкивающая или подъёмная сила по модулю равна силе тяжести, действующей на вытесненный телом объём жидкости или газа.

Плавание тела. Сила Архимеда (F_{A}) уравновешивает вес тела (F_{p}):

{displaystyle F_{A}=F_{p};}
ρж g Vж = ρт g Vт

Например, воздушный шарик объёмом V, наполненный гелием, летит вверх из-за того, что плотность гелия ({displaystyle rho _{He}}) меньше плотности воздуха ({displaystyle rho _{air}}):

{displaystyle F_{A}>F_{p};}

{displaystyle rho _{air}gV>rho _{He}gV.}

Закон Архимеда можно объяснить при помощи разности гидростатических давлений на примере прямоугольного тела, погруженного в жидкость или газ. В силу симметрии прямоугольного тела, силы давления, действующие на боковые грани тела, уравновешиваются. Давление ({displaystyle P_{A}}) и сила давления ({displaystyle F_{A}}), действующие на верхнюю грань тела, равны:

{displaystyle P_{A}=rho gh_{A};}
{displaystyle F_{A}=rho gh_{A}S,}

где:

Давление ({displaystyle P_{B}}) и сила давления ({displaystyle F_{B}}), действующие на нижнюю грань тела, равны:

{displaystyle P_{B}=rho gh_{B};}
{displaystyle F_{B}=rho gh_{B}S,}

где:

Сила давления жидкости или газа на тело определяется разностью сил {displaystyle F_{B}} и {displaystyle F_{A}}:

{displaystyle F_{B}-F_{A}=rho gh_{B}S-rho gh_{A}S=rho gleft(h_{B}-h_{A}right)S=rho ghS=rho gV,}

где:

Разница давлений:

{displaystyle P_{B}-P_{A}=rho gh_{B}-rho gh_{A}=rho gh.}

В отсутствие гравитационного поля, то есть в состоянии невесомости, закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление (естественной) конвекции, поэтому, например, воздушное охлаждение и вентиляцию жилых отсеков космических аппаратов необходимо производить принудительно вентиляторами.

Обобщения[править | править код]

Некий аналог закона Архимеда справедлив также в любом поле сил, которое по-разному действуют на тело и на жидкость (газ), либо в неоднородном поле. Например, это относится к полю сил инерции (например, к полю центробежной силы) — на этом основано центрифугирование. Пример для поля немеханической природы: диамагнетик в вакууме вытесняется из области магнитного поля большей интенсивности в область с меньшей.

Вывод закона Архимеда для тела произвольной формы[править | править код]

Вывод через мысленный эксперимент[править | править код]

Если мысленно заменить погружённое в жидкость тело той же жидкостью, мысленно размещённая в том же объёме порция воды будет находиться в равновесии и действовать на окружающую воду с силой, равной силе тяжести, действующей на порцию воды. Так как перемешивания частиц воды не происходит, можно утверждать, что окружающая вода действует на выделенный объём с той же силой, но направленной в противоположном направлении, то есть с силой, равной {displaystyle mg=rho gV}[4][5][6].

Расчёт силы[править | править код]

Гидростатическое давление p на глубине h, оказываемое жидкостью с плотностью rho на тело, есть {displaystyle p=rho gh}. Пусть плотность жидкости (rho ) и напряжённость гравитационного поля (g) — постоянные величины, а h — параметр. Возьмём тело произвольной формы, имеющее ненулевой объём. Введём правую ортонормированную систему координат Oxyz, причём выберем направление оси z совпадающим с направлением вектора {vec  {g}}. Ноль по оси z установим на поверхности жидкости. Выделим на поверхности тела элементарную площадку dS. На неё будет действовать сила давления жидкости, направленная внутрь тела, d{vec  {F}}_{A}=-pd{vec  {S}}. Чтобы получить силу, которая будет действовать на тело, возьмём интеграл по поверхности:

{displaystyle {vec {F}}_{A}=-int limits _{S}{p,d{vec {S}}}=-int limits _{S}{rho gh,d{vec {S}}}=-rho gint limits _{S}{h,d{vec {S}}}=^{*}-rho gint limits _{V}{operatorname {grad} (h),dV}=^{**}-rho gint limits _{V}{{vec {e}}_{z}dV}=-rho g{vec {e}}_{z}int limits _{V}{dV}=(rho gV)(-{vec {e}}_{z}).}

При переходе от интеграла по поверхности к интегралу по объёму пользуемся обобщённой теоремой Остроградского-Гаусса.

{displaystyle {}^{*}h(x,y,z)=z;}
{displaystyle ^{**}operatorname {grad} h=nabla h={vec {e}}_{z}.}

Получаем, что модуль силы Архимеда равен {displaystyle rho gV}, и направлена сила Архимеда в сторону, противоположную направлению вектора напряжённости гравитационного поля.

Вывод через закон сохранения энергии[править | править код]

Закон Архимеда можно также вывести из закона сохранения энергии. Работа силы, действующей со стороны погружённого тела на жидкость, приводит к изменению её потенциальной энергии:

{displaystyle  A=-F*(h_{1}-h_{2})=-Delta E_{p}=-m_{text{ж}}gDelta h,}

где {displaystyle m_{text{ж}}} — масса вытесненной части жидкости, Delta h — перемещение её центра масс. Отсюда модуль вытесняющей силы:

{displaystyle  F=m_{text{ж}}g.}

По третьему закону Ньютона эта сила, равна по модулю и противоположна по направлению силе Архимеда, действующей со стороны жидкости на тело. Объём вытесненной жидкости равен объёму погруженной части тела, поэтому массу вытесненной жидкости можно записать как:

{displaystyle  m_{text{ж}}=rho _{text{ж}}V_{text{т}},} где {displaystyle V_{text{т}}} — объем погружённой части тела.

Таким образом, для силы Архимеда имеем:

{displaystyle  F_{A}= F=m_{text{ж}}g=rho _{text{ж}}gV_{text{т}}.}

Условие плавания тел[править | править код]

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести {displaystyle F_{T}} и силы Архимеда {displaystyle F_{A}}, которые действуют на это тело. Возможны следующие три случая:

  • {displaystyle F_{T}>F_{A}} — тело тонет;
  • {displaystyle F_{T}=F_{A}} — тело плавает в жидкости или газе;
  • {displaystyle F_{T}<F_{A}} — тело всплывает до тех пор, пока не начнёт плавать.

Другая формулировка (где {displaystyle rho _{t}} — плотность тела, {displaystyle rho _{s}} — плотность среды, в которую тело погружено):

  • {displaystyle rho _{t}>rho _{s}} — тело тонет;
  • {displaystyle rho _{t}=rho _{s}} — тело плавает в жидкости или газе;
  • {displaystyle rho _{t}<rho _{s}} — тело всплывает до тех пор, пока не начнёт плавать.

Примечания[править | править код]

  1. Архимеда закон : [арх. 1 января 2023] // Анкилоз — Банка. — М. : Большая российская энциклопедия, 2005. — С. 331. — (Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов ; 2004—2017, т. 2). — ISBN 5-85270-330-3.
  2. Архимеда закон // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 123. — 707 с. — 100 000 экз.
  3. Всё написанное ниже, если не оговорено иное, относится к однородному полю силы тяжести (например, к полю, действующему вблизи поверхности планеты).
  4. Перышкин А. , Оригинальное доказательство закона Архимеда. Дата обращения: 28 сентября 2020. Архивировано 20 июля 2020 года.
  5. Доказательство закона Архимеда для тела произвольной формы. Дата обращения: 28 сентября 2020. Архивировано 21 сентября 2020 года.
  6. Buoyancy (англ.). Архивировано 14 июля 2007 года.

Ссылки[править | править код]

  • Архимедов закон // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Закон Архимеда // Энциклопедия «Кругосвет».

Цель работы: исследовать зависимость архимедовой силы
от объёма погружённой в жидкость части тела.

Для выполнения этой работы нам предлагают использовать
комплект оборудования № 1, а именно: пластиковый цилиндр со шкалой вдоль
образующей, стакан или мензурка с водой и динамометр с пределом измерения 1 Н.

Прежде чем приступить к выполнению работы давайте с вами
вспомним, что сила Архимеда — это сила, действующая на тело, погружённое
в жидкость (газ), со стороны жидкости (газа) и направленная вертикально вверх.
Она определяется произведением плотности жидкости, ускорения свободного падения
и объёма погружённой в жидкость части тела:

А единицей измерения архимедовой силы в СИ:

Как видно из формулы, сила Архимеда линейно зависит от объёма
погружённой в жидкость части тела. Именно это мы с вами и должны проверить.
Однако для выполнения данной работы эта формула нам не подходит. А, судя по
предложенному оборудованию, выталкивающую силу мы будем определять по разнице
веса цилиндра в воздухе и в воде.

Начнём выполнять задания по порядку. Итак, первое, что нам
нужно сделать, — это сделать рисунок экспериментальной установки. Поэтому мы
сначала рисуем (схематически) динамометр с подвешенным грузом — так мы измеряем
вес тела в воздухе. А рядом нарисуем динамометр с цилиндром, частично
погружённым в воду. Обратите внимание, что во втором случае мы изобразили
пружину динамометра немного сжатой, тем самым показав, что вес тела в жидкости
уменьшился.

Далее нам с вами необходимо записать формулу, по которой мы
будем определять выталкивающую силу. Как мы уже вспоминали, архимедова сила будет
равна разности веса тела в воздухе и его веса в жидкости:

Так как по условию задания нам необходимо провести несколько
измерений, то целесообразно оформить их в виде таблицы. В её первую колонку мы
занесём глубину погружения цилиндра в воду, которая нам дана в условии. Во
второй колонке мы укажем вес цилиндра в воздухе. В третьей — вес цилиндра при
его погружениях в воду. И, наконец, последнюю колонку отведём для силы
Архимеда.

Давайте определим вес цилиндра в воздухе, для чего подвесим
его к крючку динамометра. Снимем показания с динамометра и занесём значения
веса в таблицу с учётом погрешности измерения.

Теперь аккуратно опустим подвешенный на динамометре цилиндр в
стакан с водой так, чтобы цилиндр погрузился в воду на 2 см. Динамометр
показывает вес примерно в 0,54 Н. Заносим это значение в таблицу.

Погружаем теперь цилиндр в воду на 4 см. Динамометр фиксирует
уменьшение веса цилиндра до 0,42 Н.

При погружении цилиндра до отметки 6 см его вес уменьшается
до 0,30 Н.

И, наконец, на отметке 8 см вес цилиндра оказывается равным
0,18 Н. Не пугайтесь, если ваши показания будут слегка искажены. Это
обусловлено материалом, из которого изготовлен наш цилиндр.

Теперь, чтобы определить выталкивающую силу, мы должны
вычесть из веса цилиндра в воздухе его вес в воде для каждого из четырёх
случаев:

Из таблицы уже видно, что выталкивающая сила линейно зависит
от объёма погруженной части тела. Однако для полной уверенности (и убеждения
проверяющих) можно построить график зависимости силы Архимеда от глубины
погружения.

Как видим, все четыре точки легли на прямую линию. Значит
вывод можно написать так: архимедова сила линейно увеличивается при увеличении
объёма погружённой части тела в жидкость.

Теперь исследуем
зависимость архимедовой силы от плотности жидкости.

Из оборудования
нам понадобятся: цилиндр, номер которого будет указан в работе, стакан с водой,
динамометр с пределом измерения 5 Н и поваренная соль с палочкой для
перемешивания.

Приступим к выполнению. Итак, первое, что нам нужно сделать,
— это сделать рисунок экспериментальной установки. Поэтому мы сначала покажем,
как мы измерим вес тела в воздухе. Рядом нарисуем динамометр с цилиндром,
полностью погружённым в воду. И, наконец, нарисуем практически такой же
рисунок, но укажем что в качестве жидкости у нас выступает насыщенный раствор
соли.

Далее нам с вами необходимо записать формулу, по которой мы
будем определять выталкивающую силу. Как мы уже вспоминали, архимедова сила
будет равна разности веса тела в воздухе и его веса в жидкости:

Так как по условию задания нам необходимо провести несколько
измерений, то как и в предыдущей работе, оформим их в виде таблицы. В её первую
колонку мы занесём вес цилиндра в воздухе. Во второй укажем вес этого цилиндра
в жидкости. А в третьей — силу Архимеда.

Итак, в начале мы определяем вес данного нам цилиндра в
воздухе. Снимем показания с динамометра и занесём значения веса в таблицу с
учётом погрешности измерения.

Теперь аккуратно опустим подвешенный на динамометре цилиндр в
стакан с водой так, чтобы цилиндр полностью погрузился в воду, но не касался
дна стакана. Показания динамометра — это вес нашего цилиндра в воде. Результат
измерения, как и в прошлом случае, записываем в таблицу с учётом погрешности
измерения:

Теперь, чтобы определить выталкивающую силу, мы должны
вычесть из веса цилиндра в воздухе его вес в воде:

Теперь мы с вами должны в стакан с водой добавить поваренную
соль и тщательно перемешать. Тем самым мы увеличим плотность жидкости.

После того, как соль практически вся растворится, мы должны
определить вес нашего цилиндра в полученном солевом растворе. Результат
измерения записываем в таблицу с учётом погрешности:

Далее определяем выталкивающую силу, действующую на цилиндр:

Глядя на результаты легко увидеть, что чем больше плотность жидкости, тем
большая выталкивающая сила
действует на погружённое в эту жидкость тело.

И, наконец, исследуем
зависимость архимедовой силы от массы тела.

Для этой работы нам понадобятся: два цилиндра одинакового
объёма, но разной массы, стакан с водой и динамометр с пределом измерения 5 Н.

Приступаем к выполнению задания. Как всегда, начинаем со
схематического рисунка нашей установки. Он у нас практически полностью
совпадает с рисунком для предыдущей работы. Единственное отличие будет
заключаться в том, что во втором и третьем рисунке мы подпишем цилиндры, а не
жидкости.

Далее мы запишем, что выталкивающая сила равна разности веса
тела в воздухе и его веса в жидкости:

Теперь определим вес первого и второго цилиндра в воздухе с
помощью динамометра. Результаты измерения записываем с учётом погрешности.

Далее поочерёдно опустим цилиндры на динамометре в стакан с
водой так, чтобы они полностью погрузились в воду, но не касались дна стакана.
Результаты измерения веса тел в воде записываем с учётом погрешности измерения:

После этого мы определяем выталкивающую силу для двух
случаев.

Результаты наших опытов показывают, что выталкивающая сила, действующая на
погружённое в жидкость тело, не зависит от массы этого тела.

Добавить комментарий