Углы в математике (а также в тригонометрии и физике) высчитываются и измеряются в градусах или в радианах. Важно понимать и определять связь между этими единицами измерения, и переводить их из одной в другую. Понимание и определение этой связи позволяет оперировать углами и перевести градусы в радианы, а также осуществить перевод из радиан в градусы с помощью специальной тригонометрической формулы – формулы перевода градусов в радианы. В данной статье мы разберемся, зачем все это нужно конвертировать (и что делать с конвертируемым), выведем формулу для перевода градусов в радианы и обратно – из радианов в градусы, а также разберем несколько примеров из практики по конвертации.
Связь между градусами и радианами
Что такое радиан? Радиан вместе с градусом является выражением угловой меры: это величина, которая используется для измерения плоских углов. Поэтому, когда говорят о таблице градусов и радиан, то имеют в виду таблицу, в которой представлены соответствия угловых градусов радианам (что позволяет вам не находить и не считать самостоятельно на калькуляторе, к примеру).
Как перевести радианы в градусы — есть формула? Для нахождения связи между градусами и радианами, необходимо узнать, сколько будет градусная и ридианная (радиальная) мера какого-либо угла (и для этого нам не нужно пользоваться каким-либо переводчиком онлайн). Например, возьмем центральный угол, который опирается на диаметр окружности радиуса r. Чтобы вычислить радианную меру этого угла, необходимо рассчитать определенные данные: длину дуги разделить на длину радиуса окружности. Рассматриваемому углу соответствует длина дуги, равная половине длины окружности π·r. Разделим длину дуги на радиус и получим радианную меру угла: π·rr=π рад.
Итак, рассматриваемый угол равен π радиан. С другой стороны, это развернутый угол, равный 180°. Следовательно, 180°=π рад.
Связь между радианами и градусами выражается следующей полной формулой
π радиан =180°
Формулы перевода из градусов в радианы и наоборот
Как перевести градусы в радианы не более, чем за минуту? Что делать с координатами в градусах, если нужны в радианах? Из содержания формулы, полученной выше, можно вывести другие формулы для перевода углов из радианов в градусы и обратно из градусов в радианы (взаимно преобразовывать и пересчитывать).
Как онлайн найти градусную меру угла и сделать пересчет? Выразим 1 радиан в градусах. Для этого разделим левую и правую части радиуса на пи.
1 рад=180π° – град. мера угла в 1 радиан равна 180π.
Также можно выразить один градус в радианах. Чему равен 1 радиан и во что он будет переходить? Вот простой расчет.
1°=π180рад
Можно произвести приблизительные вычисления величин угла в радианах и наоборот. Для этого возьмем значения числа π с точностью до десятитысячных и подставим в полученные формулы.
1 рад=180π°=1803,1416°=57,2956°
Значит, в одном радиане примерно 57 градусов
1°=π180рад=3,1416180рад=0,0175 рад
Один градус содержит 0,0175 радиана.
По какой формуле перевести радианы в градусы?
x рад=х·180π°
Чтобы перевести угол из радианов в градусы, нужно значение угла в радианах умножить на 180 и разделить на пи.
Примеры перевода градусов в радианы и радианов в градусы
Рассмотрим пример, как перевести градусы в радианы по формуле.
Конечно, в интернете это все может считаться за секунду, но у самостоятельного подсчета другие преимущества.
Пусть α=3,2 рад. Нужно узнать градусную меру этого угла.
Применим формулу перехода от радианов к градусам и получим:
3,2 рад=3,2·180π°≈3,2·1803,14°≈5763,14°≈183,4°
Аналогично можно получить формулу перевода в радианы из градусов.
y°=y·π180рад
Переведем 47 градусов в радианы.
Согласно формуле, умножим 47 на пи и разделим на 180.
47°≈47·3,14180≈0,82 рад
Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта
Угол может измеряться следующими величинами:
- Градусами (и соответствующими ему величинами: угловыми минутами и секундами);
- Радианами.
Градусная мера угла
Если взять развернутый угол (это два прямых угла) и поделить его на 180 частей, то одна такая часть будет называться одним градусом. Для того, чтобы измерить градусную меру угла, необходимо посчитать, сколько раз 1 градус входит в данный угол. Полученное число и будет ответом.
Если угол таков, что его нельзя измерить целым числом, либо же он меньше единичного угла, то используют такие меры измерения как угловые минуты и секунды.
Если градус поделить на 60 частей, то одной такой частью будет минута. В свою же очередь, если минуту разделить на те же 60 частей, то полученным числом будет 1 секунда.
Радианная мера угла
Радианом называют угол, образованный дугой окружности длинной равной радиусу этой окружности.
Длина окружности равна:
l=2⋅π⋅rl=2cdotpicdot r,
где rr — радиус этой окружности.
Тогда, разделив на радиус, получаем, что полный угол в радианах равен:
lr=2⋅π⋅rr=2⋅π радианfrac{l}{r}=frac{2cdotpicdot r}{r}=2cdotpitext{ радиан}
В градусах этот же угол равен, как известно, 360∘360^{circ}.
Отсюда находим связь между радианами и градусами:
2⋅π радиан=360∘2cdotpitext{ радиан}=360^{circ}
Это та главная формула, которая нужна, чтобы переводить градусы в радианы и наоборот.
Один радиан равен:
1 радиан=360∘2⋅π≈57.3∘1text{ радиан}=frac{360^{circ}}{2cdotpi}approx57.3^{circ}
Один радиан в минутах:
1 радиан=360∘2⋅π⋅60≈3438′1text{ радиан}=frac{360^{circ}}{2cdotpi}cdot60approx3438′
Один радиан в секундах:
1 радиан=360∘2⋅π⋅60⋅60≈206280′′1text{ радиан}=frac{360^{circ}}{2cdotpi}cdot60cdot60approx206280”
Перевод градусов в радианы
Если по условию известна градусная мера угла, то чтобы перевести ее в радианную, нужно сделать следующие действия: умножить ее на πpi и разделить на 180.
y радиан=π180⋅xytext{ радиан}=frac{pi}{180}cdot x
xx — значение угла в градусах;
yy — значение того же угла в радианах.
Переведите 45 градусов в радианную меру измерения. Ответ округлите до десятой доли.
Решение
45∘=π180⋅45 радиан≈0.8 радиан45^{circ}=frac{pi}{180}cdot 45text{ радиан}approx0.8text{ радиан}
Ответ
0.8 радиан0.8text{ радиан}
Земля совершила треть от половины оборота вокруг Солнца. На какой угол в радианах она повернулась?
Решение
Найдем сначала этот угол в градусах. Полный угол составляет 360∘360^circ. Половина от полного оборота это 180∘180^{circ}. Нам же нужна треть этого угла, то есть:
180∘3=60∘frac{180^circ}{3}=60^circ
Земля отклонилась на угол 60∘60^circ от своего начального положения. Переведем теперь этот угол в радианы:
60∘=π180⋅60 радиан≈1 радиан60^circ=frac{pi}{180}cdot 60text{ радиан}approx1text{ радиан}
Решение
1 радиан1text{ радиан}
Перевод радиан в градусы
Чтобы перевести радианы в градусы, нужно умножить угол в радианах на 180 и разделить на πpi.
y∘=180π⋅xy^{circ}=frac{180}{pi}cdot x
xx — значение угла в радианах;
yy — значение того же угла в градусах.
Переведите 3 радиана в градусную меру угла.
Решение
3 радиана=180π⋅3≈172∘3text{ радиана}=frac{180}{pi}cdot3approx172^circ
Ответ
172∘172^circ
Ищете, где можно заказать задачу по математике недорого? Обратитесь к нашим экспертам в данной области!
Тест по теме «Перевод градусов в радианы и наоборот»
Degrees to Radians conversion is useful for measuring and converting angles in different units. Degrees and Radians are used to measure an angle. A complete revolution is represented by 2π (in radians) or 360° (in degrees). Thus, the degree to radian identity can be represented as:
π radian = 180 degree
Measurement of various types of angles is done in two different systems. Sexagesimal System is a system in which a right angle is divided into 90 equal sections, which are referred to as degrees. Each degree is divided into 60 equal parts known as minutes, which are further divided into 60 equal pieces known as seconds.
- 60 seconds (or 60”) = 1 minute (or 1’)
- 90 degrees (or 90°) = 1 right angle
What is Degrees to Radians Conversion?
In mathematics, we need to measure various angles, these angles are measured in basically two units Degree and Radian. So it is necessary to change degree in radian and vice versa. This can be achieved by using the formula discussed below, Also for Radian to Degree formula click here,
Degrees to Radians Formula
Degrees to Radians conversion is very important and can be achieved by the formulas listed below:
- Degrees × (π/180) = Radians
- Degrees × (180/π) = Radians
- 180 degrees = π radians
How to Convert Degrees to Radians?
Both the degree and the radian in geometry represent the measurement of an angle. 2π (in radians) or 360° can be used to symbolize a complete anticlockwise revolution (in degrees). As a result, the terms degree and radian can be interchanged.
Steps to convert an angle in the degree to radians.
Step 1: Take the numerical value of the given angle in degrees
Step 2: Multiply the numerical value from step 1 by(π/180)
Step 3: Rationalize the obtained expression in step 2
Step 4: Result obtained is the required answer in degrees
Example: Convert 270 degrees to radians.
Solution:
given angle = 270 degrees
Angle in radian = Angle in degree x (π/180)
= 270 x (π/180)
= 2π/3
Hence, 270 degrees is equal to 2π/3 radian.
Degrees to Radians Conversion Table
The table given below shows the values angle in degrees and their respective value in radian.
Angle in degree | Angle in radian |
0° | 0 |
30° | π/6 |
45° | π/4 |
60° | π/3 |
90° | π/2 |
180º | π |
270º | (3π)/2 |
360º | 2π |
Solved Examples on Degrees to Radians
Example 1: Convert 300° to radians.
Solution:
We know 180° = π radians = πc or 1° = (π/180)c
Hence, 300° = 300 × π/180 = 5π/3
Thus, 300° = 5π/3 radians
Example 2: Convert 35° to radians.
Solution:
We know 180° = π radians = πc or 1° = (π/180)c
Hence, 35° = 35 × π/180 = 7π/36
Thus, 35° = 7π/36 radians
Example 3: Convert −300° to radians.
Solution:
We know 180° = π radians = πc or 1° = (π/180)c
Hence, −300° = −300 × π/180 = −5π/3
Thus, −300° = −5π/3 radians
Example 4: Convert 7°30′ to radians.
Solution:
We know 180° = π radians = πc or 1° = (π/180)c
Hence, 7°30′ = (7 × π/180)c × (30/60)° = (7½)° × (π/180)c = (15π/360)c = π/24
Thus, 7°30′ = π/24 radians
FAQs on Degrees to Radians
Question 1: What is the value of 1 radian?
Answer:
The value of π radian = 180 degrees from this 1 radian = 57.298 degree
Question 2: How to convert degrees to radians?
Answer:
180 degrees is equal to π radians and so converting degree to radian is given by multiplying π/180 by the value of a degree.
Question 3: What is the relation between π radians and 180 degrees?
Answer:
The relation between π radians and 180 degrees is given by π radians is equal to 180 degrees
Question 4: What is the value of 1 degree?
Answer:
The value of π radian = 180 degrees from this 1 degree = 0.0174533 radians.
Related Article
- Types of angles
- Pair of Angles
Last Updated :
21 Sep, 2022
Like Article
Save Article
Перевод градусов в радианы и обратно
- Главная
- /
- Математика
- /
- Геометрия
- /
- Перевод градусов в радианы и обратно
Чтобы перевести градусы в радианы и обратно, воспользуйтесь нашим удобным онлайн конвертером:
Перевод градусов в радианы
°
Округление ответа: Округление числа π:
Просто введите значение угла в градусах и получите результат в радианах с подробным решением.
Перевод радиан в градусы
Числовое значение:
рад.
=
0
°
Значение с π:
⋅π рад. =
180
°
Округление ответа: Округление числа π:
Просто введите значение угла в радианах и получите результат в градусах с подробным решением.
Теория
Градусы в радианы
Чтобы перевести градусы в радианы, нужно воспользоваться следующий формулой:
Формула
рад. = гр. ⋅ π180
Пример
К примеру, переведём 45° в радианы:
45°=45 ⋅ 3.14180=0.785 рад.
45°=45 ⋅ π180=45 : 45 ⋅ π180 : 45=π4 рад.
Радианы в градусы
Чтобы перевести радианы в градусы, нужно воспользоваться следующий формулой:
Формула
гр. = рад. ⋅ 180π
Пример №1
К примеру, переведём 0.785 рад. в градусы:
0.785 рад.=0.785 ⋅ 1803.14=45°
Пример №2
К примеру, переведём π4 рад. в градусы:
π4 рад.=π4 ⋅ 180π=1804=45°
Наталья Игоревна Восковская
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Что такое радиан
Радиан — это мера угла, альтернативная более привычной градусной.
Определение 1
Один радиан — это угол, который стягивает дуга, длина которой равна радиусу окружности, причём сам угол берёт начало в центре рассматриваемой окружности. Кратко единица измерения «радиан» обозначается сокращением «рад».
Так как радиан является отношением длины к длине, то он является величиной безразмерной. Однако для удобства и избегания путаницы обозначения радианной меры с какой-либо ещё, радианную меру угла принято подписывать «рад».
Формулы и правила
Для того чтобы узнать количество радиан, которые содержит в себе угол, нужно длину дуги разделить на радиус окружности. Размер полного угла из определения радиана равен $2π$ рад.
Сделаем домашку
с вашим ребенком за 380 ₽
Уделите время себе, а мы сделаем всю домашку с вашим ребенком в режиме online
Бесплатное пробное занятие
*количество мест ограничено
Через радианную меру можно выразить длину дуги, которая стягивает угол, она будет равна $α cdot R$, где $R$ — радиус окружности, а $α$ – мера угла, выраженная в радианах.
Теперь немного отвлечёмся и узнаем, что такое число $π$.
Определение 2
Число $π$ — это отношение длины окружности к её диаметру. Вне зависимости от диаметра окружности, оно всегда одно и то же и приблизительно равно $3,1415$.
Соответственно определению числа $π$, длина всей окружности равна $2π$, что соответствует величине полного углового оборота, то есть $360º$. Число $π$ используют в радианной мере.
Рисунок 1. Число пи в радианах равно 3,1415. Автор24 — интернет-биржа студенческих работ
«Градусы в радианы: формула» 👇
А сейчас рассмотрим, как осуществить перевод из рад в градусы. Для этого нужно помнить, что число «Пи» равно $180º$ и при необходимости перевода радиан в градусы подставлять вместо $π$ это значение.
Пример 1
Найдите, сколько градусов в 1 радиане.
Решение
В половине окружности, равной 180 градусам, содержится приблизительно 3,1415 радиан, соответственно, для того чтоб найти, сколько градусов в одном радиане, нужно 180 разделить на число «Пи», получим:
$1 рад = frac{180}{ π} ≈ 57,29º$
В случае же если нужно осуществить перевод углов в градусах в радианы, необходимо значение в радианах для одного градуса умножать на градусное значение угла.
Пример 2
Чему равен 1 градус в радианах?
Решение
Число π соответствует $180º$, то есть: $π= 180º$, а один градус в 180 раз меньше, чем 180 градусов. Поэтому необходимо всё выражение разделить на $180$, получаем: $1º= frac{π}{180}left(1right)$. Теперь вы знаете, сколько радиан в 1 градусе.
Для того чтобы перевести любой угол в радианы, достаточно число, полученное для угла в один градус с использованием формулы $(1)$ умножить на значение угла в градусах, например:
$45º=frac{π cdot 45}{180} = frac{ π}{4}$
В общем виде эта формула для перевода угла, заданного в градусах в радианы будет выглядеть так:
$y рад = frac{π cdot x}{180}$, где $x$ — градусная мера угла, а $y$ — мера угла в радианах.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме