Как найти радиус через высоту правильного треугольника

Нахождение радиуса описанной вокруг треугольника окружности

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.

Формулы вычисления радиуса описанной окружности

Произвольный треугольник

Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:

где a, b, c – стороны треугольника, S – его площадь.

Прямоугольный треугольник

Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.

Равносторонний треугольник

Радиус описанной около правильного треугольника окружности вычисляется по формуле:

где a – сторона треугольника.

Примеры задач

Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.

Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:

Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:

Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.

Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:

Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.

Радиус описанной окружности равностороннего треугольника

– сторона треугольника

– высота

– радиус описанной окружности

Формула радиуса описанной окружности равностороннего треугольника через его сторону:

Калькулятор – вычислить, найти радиус описанной окружности равностороннего треугольника по стороне

Формула радиуса описанной окружности равностороннего треугольника через высоту:

Калькулятор – вычислить, найти радиус описанной окружности равностороннего треугольника по стороне

Радиус вписанной окружности в равносторонний треугольник онлайн

С помощю этого онлайн калькулятора можно найти радиус вписанной в любой треугольник окружности, в том числе радиус вписанной в равносторонний треугольник окружности. Для нахождения радиуса вписанной в треугольник окружности выберите тип треугольника, введите известные данные в ячейки и нажмите на кнопку “Вычислить”. Теоретическую часть и численные примеры смотрите ниже.

Открыть онлайн калькулятор

1. Радиус вписанной в равносторонний треугольник окружности, если известна сторона треугольника

Пусть известна сторона a равностороннего треугольника (Рис.1). Выведем формулу вычисления радиуса вписанной в треугольник окружности.

Радиус вписанной в равнобедренный треугольник окружности через основание a и боковую сторону b вычисляется из следующей формулы:

(1)

Учитывая, что у равностороннего треугольника все стороны равны (( small a=b )), имеем:

( small r=frac<large a> <large 2>cdot sqrt<frac<large 2a-a><large 2a+a>> ) ( small =frac<large a> <large 2>cdot sqrt<frac<large a><large 3a>> ) ( small =frac<large a><large 2 cdot sqrt<3>> )

( small r=frac<large a><large 2 cdot sqrt<3>> ) (2)

или, умножив числитель и знаменатель на ( small sqrt <3>):

( small r=frac<large sqrt<3>> <large 6 >cdot a ) (3)

Пример 1. Известна сторона a=17 равностороннего треугольника. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся одним из формул (2) и (3). Подставим значения ( small a=17 ) в (3):

Ответ:

2. Радиус вписанной в равносторонний треугольник окружности, если известна высота треугольника

Пусть известна высота h равностороннего треугольника (Рис.2). Выведем формулу радиуса вписанной в треугольник окружности.

Выведем формулу стороны равностороннего треугольника через высоту. Из Теоремы Пифагора имеем:

( small h^2+left( frac<large a> <large 2>right) ^2=a^2.)

( small h^2+ frac<large a^2> <large 4>=a^2; ; ) ( small frac<large 3><large 4>a^2 =h^2; ; ) ( small a^2=frac<large4h^2><large 3>.)

( small a= frac<large 2h><large sqrt<3>> .) (4)

Формула радиуса вписанной в равнобедренный треугольник окружности по основанию и высоте вычисляется из формулы

( small r= large frac> ) (5)

Подставляя (4) в (5), получим:

( small r= large frac<frac<large 2h^2><large sqrt<3>>><frac<large 2h><large sqrt<3>>+sqrt<frac<large 4h^2><large 3>+4h^2>> ) ( small = large frac<frac<large 2h^2><large sqrt<3>>><frac<large 2h><large sqrt<3>>+sqrt<frac<large 16h^2><large 3>>> ) ( small = large frac<frac<large 2h^2><large sqrt<3>>><frac<large 2h><large sqrt<3>>+frac<large 4h><large sqrt<3>>> ) ( small = large frac< 2h^2>< 6h>small =large frac<1> <3>small cdot h )

То есть, радиус вписанной в равносторонний треугольник окружности по высоте вычисляется из формулы:

( small r = large frac<1> <3>small cdot h ) (6)

Пример 2. Известна высота ( small h=39 ) равностороннего треугольника. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (6). Подставим значение ( small h=39 ) в (6):

Ответ:

3. Радиус вписанной в равносторонний треугольник окружности, если известна площадь треугольника

Пусть известна площадь S равностороннего треугольника (Рис.3). Найдем формулу радиуса вписанной в треугольник окружности.

Площадь равностороннего треугольника по радиусу вписанной окружности вычисляется из следующей формулы:

( small S= 3cdot sqrt<3>r^2.)

( small r^2= large frac<3 cdot sqrt<3>> ) ( small = large frac <sqrt<3> cdot S > <9>)
( small r= large frac <sqrt[4]<3>> <3>small cdot sqrt ) (7)

Пример 3. Известна площадь равностороннего треугольника: ( small S=42 . ) Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (7). Подставим значение ( small S=42 ) в (7):

Ответ:

[spoiler title=”источники:”]

http://www-formula.ru/2011-09-22-04-51-34

http://matworld.ru/geometry/radius-vpisannoj-okruzhnosti-v-ravnostoronnij-treugolnik.php

[/spoiler]

Радиус вписанной окружности в равносторонний треугольник онлайн

С помощю этого онлайн калькулятора можно найти радиус вписанной в любой треугольник окружности, в том числе радиус вписанной в равносторонний треугольник окружности. Для нахождения радиуса вписанной в треугольник окружности выберите тип треугольника, введите известные данные в ячейки и нажмите на кнопку “Вычислить”. Теоретическую часть и численные примеры смотрите ниже.

Содержание

  1. Радиус вписанной в равносторонний треугольник окружности, если известна сторона треугольника
  2. Радиус вписанной в равносторонний треугольник окружности, если известна высота треугольника
  3. Радиус вписанной в равносторонний треугольник окружности, если известна площадь треугольника

1. Радиус вписанной в равносторонний треугольник окружности, если известна сторона треугольника

Пусть известна сторона a равностороннего треугольника (Рис.1). Выведем формулу вычисления радиуса вписанной в треугольник окружности.

Радиус вписанной в равнобедренный треугольник окружности через основание a и боковую сторону b вычисляется из следующей формулы:

Учитывая, что у равностороннего треугольника все стороны равны (( small a=b )), имеем:

То есть

или, умножив числитель и знаменатель на ( small sqrt{3} ):

Пример 1. Известна сторона a=17 равностороннего треугольника. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся одним из формул (2) и (3). Подставим значения ( small a=17 ) в (3):

Ответ:

2. Радиус вписанной в равносторонний треугольник окружности, если известна высота треугольника

Пусть известна высота h равностороннего треугольника (Рис.2). Выведем формулу радиуса вписанной в треугольник окружности.

Выведем формулу стороны равностороннего треугольника через высоту. Из Теоремы Пифагора имеем:

Тогда:

Откуда:

Формула радиуса вписанной в равнобедренный треугольник окружности по основанию и высоте вычисляется из формулы

Подставляя (4) в (5), получим:

То есть, радиус вписанной в равносторонний треугольник окружности по высоте вычисляется из формулы:

Пример 2. Известна высота ( small h=39 ) равностороннего треугольника. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (6). Подставим значение ( small h=39 ) в (6):

Ответ:

3. Радиус вписанной в равносторонний треугольник окружности, если известна площадь треугольника

Пусть известна площадь S равностороннего треугольника (Рис.3). Найдем формулу радиуса вписанной в треугольник окружности.

Площадь равностороннего треугольника по радиусу вписанной окружности вычисляется из следующей формулы:

Откуда:

Тогда:

Пример 3. Известна площадь равностороннего треугольника: ( small S=42 . ) Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (7). Подставим значение ( small S=42 ) в (7):

Ответ:

Смотрите также:

  • Окружность, описанная около треугольника
  • Радиус описанной окружности около треугольника онлайн
  • Радиус описанной окружности около равнобедренного треугольника онлайн
  • Радиус описанной окружности около равностороннего треугольника онлайн
  • Радиус описанной окружности около прямоугольного треугольника онлайн
  • Радиус вписанной в треугольник окружности онлайн

Формулы для определения радиуса описанной окружности

Найти радиус описанной окружности если известны стороны треугольника

Найти радиус описанной окружности если известны стороны треугольника

a , b , c  – стороны треугольника

s – полупериметр

P = (a+b+c)/2

O – центр окружности

Формула радиуса описанной окружности треугольника ( R  ) :

formula radius

радиус описанной окружности

Вычислить радиус описанной окружности равностороннего треугольника по стороне или высоте

a – сторона треугольника

h – высота

R – радиус описанной окружности

formula

Формула радиуса описанной окружности равностороннего треугольника если известна его высота:

R = 2h/3

Image

радиус описанной окружности треугольника

a , b , c blue    –  стороны треугольника

s12 black  – полупериметр

s (abc)2

O black  – центр окружности

Формула радиуса описанной окружности треугольника ( R  ) :

Формула радиуса описанной окружности треугольника

радиус описанной окружности равностороннего треугольника

сторона – сторона треугольника

высота – высота

радиус – радиус описанной окружности

Формула радиуса описанной окружности равностороннего треугольника через его сторону:

Формула радиуса описанной окружности равностороннего треугольника через сторону

Формула радиуса описанной окружности равностороннего треугольника через высоту:

Формула радиуса описанной окружности равностороннего треугольника через высоту

Зная стороны равнобедренного треугольника, можно по формуле, найти, радиус описанной окружности около этого треугольника.

радиус описанной окружности равнобедренного треугольника

a, b – стороны треугольника

Формула радиуса описанной окружности равнобедренного треугольника(R):

Формула радиуса описанной окружности равнобедренного треугольника

Радиус описанной окружности прямоугольного треугольника равен половине его гипотенузы.

радиус описанной окружности прямоугольного треугольника

a, b – катеты прямоугольного треугольника

c – гипотенуза

Формула радиуса описанной окружности прямоугольного треугольника (R):

Формула радиуса описанной окружности прямоугольного треугольника

Радиус описанной окружности трапеции

a – боковые стороны трапеции

c – нижнее основание

b – верхнее основание

d – диагональ

p – полупериметр треугольника DBC

p = (a+d+c)/2

Формула радиуса описанной окружности равнобокой трапеции, (R)

Формула радиуса описанной окружности равнобокой трапеции

Радиус описанной окружности квадрата равен половине его диагонали

радиус описанной окружности около квадрата

a – сторона квадрата

d – диагональ

Формула радиуса описанной окружности квадрата (R):

Формула радиуса описанной окружности квадрата

Радиус описанной окружности прямоугольника равен половине его диагонали

Радиус описанной окружности прямоугольника

a, b – стороны прямоугольника

d – диагональ

Формула радиуса описанной окружности прямоугольника (R):

Формула радиуса описанной окружности прямоугольника

Радиус описанной окружности правильного многоугольника

a – сторона многоугольника

N – количество сторон многоугольника

Формула радиуса описанной окружности правильного многоугольника, (R):

Формула радиуса описанной окружности правильного многоугольника

a – сторона шестиугольника

d – диагональ шестиугольника

Радиус описанной окружности правильного шестиугольника (R):

Как найти радиус описанной около правильного треугольника окружности, зная только высоту треугольника?

Nike



Мыслитель

(7218),
закрыт



8 лет назад

Дивергент

Высший разум

(1538442)


8 лет назад

Умножить высоту данного треугольника на две трети, всего и делов! Получишь радиус описанной окружности.

NikeМыслитель (7218)

8 лет назад

Это чо формула такая есть?

Дивергент
Высший разум
(1538442)
Ты не поверишь, для правильного треугольника – да! А радиус вписанной в него окружности равен ОДНОЙ ТРЕТИ его высоты!

Добавить комментарий