Как найти радиус цилиндра если известен объем

В данной публикации мы рассмотрим, как можно вычислить радиус цилиндра и разберем примеры решения задач для закрепления материала.

  • Формулы вычисления радиуса цилиндра

    • 1. Через объем и высоту

    • 2. Через площадь боковой поверхности

    • 3. Через полную площадь поверхности

  • Примеры задач

Формулы вычисления радиуса цилиндра

Радиус цилиндра

1. Через объем и высоту

Радиус цилиндра рассчитывается по формуле:

Формула радиуса цилиндра через объем и высоту

V – объем цилиндра; считается как произведение числа π на высоту фигуры на квадрат радиуса круга, являющего ее основанием.

V = πR2h

  • R – радиус основания цилиндра, т.е. окружности;
  • π – число, округленное значение которого равняется 3,14.

2. Через площадь боковой поверхности

Радиус цилиндра считается таким образом:

Формула радиуса цилиндра через площадь боковой поверхности

Sбок. – площадь боковой поверхности цилиндра; равна произведению длины окружности (2πR), являющейся основанием фигуры, на его высоту:

S = 2πRh

3. Через полную площадь поверхности

Радиус цилиндра равен:

Формула радиуса цилиндра через полную площадь поверхности

Данная формула получена следующим образом:

S – полная площадь поверхности фигуры, равная:

S = 2πRh + 2πR2 или S = 2πR(h + R)

Возьмем первое выражение. Если перенести S в правую часть, получим:

2πR2 + 2πRh – S = 0

Можно заметить, что это квадратное уравнение вида ax+ bx + c = 0, где:

  • a = 2π
  • b = 2πh
  • c = -S

R является корнем данного уравнения (x). Подставив в стандартную формулу для расчета корней наши значения a, b и с получаем*:

Формула радиуса цилиндра через полную площадь поверхности

* в нашем случае – только один положительный корень, т.к. радиус не может быть отрицательным.

Примеры задач

Задание 1
Высота цилиндра равняется 5 см, а объем – 141,3 см3. Вычислите его радиус.

Решение:
Воспользуемся соответствующей формулой, подставив в нее известные по условиям задачи значения:
Вычисление радиуса цилиндра через объем и высоту

Задание 2
Найдите радиус цилиндра, если площадь его боковой поверхности равна 175,84 см2, а высота составляет 7 см.

Решение:
Применим формулу, в которой задействованы заданные величины:
Вычисление радиуса цилиндра через площадь боковой поверхности

Задание 3
Рассчитайте радиус цилиндра, если полная площадь его поверхности – 602,88 см2, а высота – 10 см.

Решение:
Используем третью формулу для нахождения неизвестной величины:
Расчет радиуса цилиндра через полную площадь поверхности

Радиус цилиндра

Радиус

При вращении прямоугольника вокруг своей стороны получается геометрическое тело, называемое цилиндром. Данная геометрическая фигура ограничена цилиндрической поверхностью и двумя пересекающими ее параллельными плоскостями — основаниями цилиндра. Радиусом считается отрезок, соединяющий на плоскости основания точку центральной оси цилиндра с точкой его поверхности.

— Если известен объем и высота цилиндра, можно найти его радиус, как корень квадратный из объема деленного на произведение числа пи на высоту цилиндра:

R = √V / πh

где V — объем цилиндра, h — высота.
Полная площадь поверхности цилиндра складывается из сумм площадей его боковой поверхности и двух оснований:

S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr2=πr (2h+r)

Площадь боковой поверхности равняется длине окружности основания умноженной на высоту:

S (б.п.) = hP = 2πrh

— Если известна площадь бок. поверхности S (б.п.) и высота h цилиндра, радиус будет равен частному от деления S (б.п.) на произведение 2пи на высоту:

r = S (б.п.) / 2πh

Площадь двух оснований равна удвоенному произведению пи на радиус в квадрате:

2S (осн.) = πr2

— Если известна площадь основания и высота, радиус находим как корень квадратный из площади одного основания деленного на пи:

r = √S (осн.) / π

S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr2

где S (п.п.) — полная площадь поверхности цилиндра; r — радиус; h — высота.

r = (√(8πS + √(2πh)) — 2πh) / 2π

Рассчитать радиус цилиндра через площадь и высоту

Калькулятор объема цилиндра

Рассчитайте онлайн объем любого цилиндрического объекта: трубы, бочки, банки.

Что известно

Размерность

Радиус основания

см

Диаметр основания

см

Площадь основания

см2

Высота

см

Раcсчитать

Оглавление:

  • 📝 Как это работает?
  • 🤔 Частые вопросы и ответы
  • 📋 Похожие материалы
  • 📢 Поделиться и комментировать

🛢️ Когда требуется знать объем цилиндра?

Для чего и как узнать объема цилиндра

Знание объема цилиндра может потребоваться в различных ситуациях, к примеру:

  1. Расчет объема бака или резервуара: если вы планируете хранить жидкость или газ в баке или резервуаре, то может быть важно знать его объем, чтобы знать, сколько материала вы можете в него поместить.
  2. Расчет объема емкости для транспортировки: если вы занимаетесь перевозкой жидкостей или газов, то может потребоваться знать объем емкости, чтобы убедиться, что вы можете перевезти нужное количество материала.
  3. Расчет объема цилиндрических труб: если вы занимаетесь установкой трубопроводов или работой с другими цилиндрическими объектами, то может быть полезно знать их объем, чтобы правильно рассчитать количество материала, необходимого для работы.
  4. Расчет объема бутылки или бочки: если вы хотите знать, сколько жидкости вы можете вместить в определенную бутылку или бочку, то калькулятор объема цилиндра может помочь рассчитать объем емкости.
  5. Определение объема цилиндрических объектов, используемых в декоративных целях, например, колонн, скульптур и других элементов архитектуры и дизайна.

Также умение рассчитывать объем цилиндра пригодится в строительстве, химии и фармацевтике, механике и технике, производстве, учебе и творчестве.

📏 Как рассчитывается объем цилиндра?

Объем цилиндра можно рассчитать по формуле:

V = πr²h

где V – объем цилиндра, r – радиус основания цилиндра, h – высота цилиндра, π (пи) – математическая константа, приблизительно равная 3,14.

Чтобы использовать эту формулу, необходимо знать значения радиуса основания и высоты цилиндра. Радиус основания – это расстояние от центра основания до края, высота цилиндра – это расстояние между основаниями цилиндра.

Например, если радиус основания цилиндра равен 5 см, а высота цилиндра составляет 10 см, то объем цилиндра можно рассчитать следующим образом:

V = 3,14 x 5² x 10 = 785 см3

Обратите внимание, что единицы измерения должны быть одинаковыми, чтобы получить правильный ответ. Если радиус основания и высота цилиндра измеряются в сантиметрах, то и объем цилиндра должен быть выражен в кубических сантиметрах.

🧮 Что такое калькулятор объема цилиндра?

Калькулятор объема цилиндра – это инструмент, который позволяет автоматически рассчитывать объем цилиндра по его размерам. Обычно калькулятор объема цилиндра предоставляет пользователю простую форму, где нужно ввести значение радиуса основания и высоты цилиндра, а затем нажать кнопку «Рассчитать». Калькулятор объема цилиндра может быть представлен в виде программы на компьютере или мобильном устройстве, а также в виде онлайн-сервиса на веб-сайте, как у нас.

Использование калькулятора объема цилиндра упрощает и ускоряет процесс расчета объема цилиндра, особенно если нужно рассчитать объем нескольких цилиндров или если значения радиуса и высоты цилиндра имеют сложные числовые значения. Калькулятор объема цилиндра может быть полезен в различных областях, включая науку, технику, строительство, производство, учебу и домашнее хозяйство.

📏 Как работает калькулятор объема цилиндра?

Калькулятор объема цилиндра

Калькулятор объема цилиндра работает на основе математической формулы для расчета объема цилиндра, рассмотренной выше.

Чтобы рассчитать объем цилиндра, пользователь должен ввести значения радиуса основания и высоты цилиндра в соответствующие поля калькулятора и нажать кнопку «Рассчитать». Калькулятор использует введенные значения, выполняет математическую операцию по формуле и выводит результат в соответствующем поле на экране.

Некоторые калькуляторы объема цилиндра могут иметь дополнительные функции, такие как выбор единиц измерения (например, сантиметры или дюймы) и возможность рассчитать объем цилиндра, используя диаметр основания вместо радиуса.

🛢 Как использовать калькулятор объема цилиндра?

Для использования калькулятора объема цилиндра следуйте этим простым шагам:

  • Откройте калькулятор объема цилиндра, который находится на компьютере, мобильном устройстве или на веб-сайте.
  • Введите значение радиуса основания цилиндра в соответствующее поле калькулятора. Если вы используете калькулятор, который принимает во внимание диаметр, убедитесь, что вы выбрали правильную единицу измерения.
  • Введите значение высоты цилиндра в соответствующее поле калькулятора. Убедитесь, что вы выбрали правильную единицу измерения.
  • Нажмите кнопку «Рассчитать» или «Получить результат». Калькулятор выполнит расчеты и выведет объем цилиндра в соответствующем поле.
  • Проверьте результаты и убедитесь, что все значения введены правильно и выбраны правильные единицы измерения.
  • Если нужно рассчитать объем нескольких цилиндров, повторите шаги 2-5 для каждого цилиндра.
  • Сохраните результаты или скопируйте их в буфер обмена, если нужно использовать их в другой программе или приложении.

В зависимости от функционала калькулятор может иметь дополнительные функции, такие как выбор единиц измерения, возможность использовать диаметр вместо радиуса, а также возможность сохранения результатов в файл или их отправки по электронной почте.

В чем измеряется объем цилиндра?

Объем цилиндра измеряется в кубических единицах длины. Например, если размеры цилиндра измеряются в метрах, то его объем будет выражаться в кубических метрах (м³). Если размеры измеряются в сантиметрах, то объем будет выражаться в кубических сантиметрах (см³). Также можно использовать другие единицы измерения, такие как литры или галлоны, которые также выражают объем жидкости или газа, но они не являются кубическими единицами длины.

Несколько лайфхаков

Если вы хотите упростить расчет объема цилиндра, есть несколько лайфхаков, которые могут пригодиться:

  1. Используйте формулу площади основания цилиндра. Объем цилиндра можно вычислить, умножив площадь основания на высоту. Если вы знаете формулу площади основания цилиндра, то можете сначала вычислить ее, а затем умножить на высоту, чтобы найти объем.
  2. Используйте приближенное значение числа Пи. Число Пи является бесконечной десятичной дробью, но для большинства расчетов достаточно использовать его приближенное значение. Например, можно использовать значение 3,14 или 22/7 вместо точного значения числа Пи, которое равно примерно 3,14159265359.
  3. Используйте онлайн калькулятор. Наш онлайн калькулятор объема цилиндра поможет быстро выполнить расчеты за вас. Просто введите значения радиуса и высоты, и калькулятор автоматически вычислит объем.
  4. Используйте замены единиц измерения. Если вы хотите перевести объем из одной единицы измерения в другую, например, из кубических сантиметров в литры, можете также воспользоваться калькулятором на нашем сайте.

❓ Вопросы и ответы

Сейчас мы представим ответы на вопросы, которые часто возникают по данной теме.

Что такое цилиндр?

Цилиндр — это геометрическая фигура, которая имеет два плоских основания, обычно круглой формы, и боковую поверхность, которая состоит из параллельных прямых линий.

Как вычислить объем цилиндра?

Объем цилиндра можно вычислить, используя формулу:

V = πr²h

где V – объем цилиндра, π – число Пи (приблизительно равно 3.14), r – радиус основания цилиндра и h – высота цилиндра.

Можно ли использовать формулу объема цилиндра для вычисления объема других фигур?

Нет, формула объема цилиндра может использоваться только для вычисления объема цилиндра. Для других фигур существуют свои собственные формулы для расчета объема.

Как найти радиус или диаметр цилиндра, если они неизвестны?

Если известна площадь основания цилиндра, можно найти радиус, используя формулу:

r = √(A/π)

где A – площадь основания цилиндра.

Если известен объем цилиндра, можно найти радиус, используя формулу:

r = √(V/πh)

где V – объем цилиндра, h – высота цилиндра.

Диаметр можно найти, удваивая радиус.

Как найти объем трубы или канала?

Для трубы или канала формула для вычисления объема имеет немного другой вид:

V = πr²h

где V – объем, r – радиус, h – длина (высота) трубы или канала.

Например, если радиус трубы равен 10 см, а длина трубы составляет 2 м, то объем трубы будет:

V = 3.14 * 10² * 200 = 62,800 см³, что равно 62.8 литрам.

Как узнать, сколько литров вмещает бочка?

Чтобы узнать, сколько литров вмещает бочка, нужно знать ее объем. Если известны диаметр и высота бочки, то можно использовать формулу для объема цилиндра. Например, если диаметр бочки составляет 1 метр, а высота – 1,5 метра, то ее объем будет:

V = πr²h = 3.14 * (1/2)² * 1.5 = 1.18 кубических метров, что равно 1180 литрам. Таким образом, бочка вмещает 1180 литров жидкости.

Как узнать, сколько литров вмещает труба?

Для расчета объема трубы нужно знать ее длину и радиус. Если известны диаметр и длина трубы, то радиус можно найти, разделив диаметр на 2. Например, если диаметр трубы составляет 10 см, а длина трубы – 2 метра, то радиус будет 5 см. Тогда объем трубы можно найти, используя формулу:

V = πr²h = 3.14 * (5/100)² * 200 = 15.7 литров. Таким образом, труба вмещает 15.7 литров жидкости.

Какой тип калькулятора нужен для расчета объема цилиндра?

Для расчета объема цилиндра нужен специальный калькулятор, который может выполнить математические операции с использованием формулы для объема цилиндра.

Какие значения нужно ввести в калькулятор объема цилиндра?

Для расчета объема цилиндра необходимо ввести значение радиуса основания цилиндра и высоты цилиндра.

Какие единицы измерения могут использоваться при вводе значений в калькулятор объема цилиндра?

Единицы измерения, которые могут использоваться при вводе значений в калькулятор объема цилиндра, это сантиметры, метры, дюймы и т.д.

Какие дополнительные функции могут быть включены в калькулятор объема цилиндра?

Некоторые калькуляторы объема цилиндра могут иметь дополнительные функции, такие как выбор единиц измерения, возможность использовать диаметр вместо радиуса, а также возможность сохранения результатов в файл или их отправки по электронной почте.

Где можно найти калькулятор объема цилиндра?

Калькулятор объема цилиндра можно найти в Интернете на специализированных сайтах, в приложениях для мобильных устройств и на компьютерах, а также в других программных приложениях, связанных с инженерными и научными расчетами.

Похожие калькуляторы

Возможно вам пригодятся ещё несколько калькуляторов по данной теме:

  • Калькулятор масштабов. Переведите онлайн именованный масштаб на чертеже в реальный и наоборот.
  • Калькулятор числа Пи. Узнайте, чему равно число Пи с точностью до нужного количества знаков после запятой.
  • Калькулятор объема параллелепипеда. Рассчитайте онлайн объем любого параллелепипеда по длинам его ребер и не только.
  • Калькулятор объема куба. Рассчитайте онлайн объем любого кубического предмета по длине стороны или диагоналям.
  • Калькулятор объема бака. Посчитайте объем цилиндрического, прямоугольного или автомобильного бака по габаритам (по расходу и пройденному расстоянию).
  • Калькулятор объема помещения. Посчитайте объем комнаты или любого помещения в кв.метра или литрах.
  • Калькулятор длины дуги. Рассчитайте онлайн длину дуги окружности по радиусу и углу или по формуле Гюйгенса.
  • Калькулятор объема трубы. Рассчитайте онлайн объем трубы в куб. м. или литрах в зависимости от диаметра и длины трубопровода.
  • Калькулятор объема пирамиды. Рассчитайте объем пирамиды по высоте, площади основания или стороне основания. Основание может быть любой формы.
  • Калькулятор объема и площади усеченного конуса. Рассчитайте онлайн объем и площадь поверхности усеченного конуса по его радиусам и высоте.

Если понравилось, поделитесь калькулятором в своих социальных сетях: вам нетрудно, а проекту полезно для продвижения. Спасибо!

Есть что добавить?

Напишите своё мнение, комментарий или предложение.

Показать комментарии

Екатерина



Ученик

(211),
на голосовании



10 лет назад

Голосование за лучший ответ

Татьяна

Просветленный

(24301)


10 лет назад

V=πR²H
R=√V/πH=√120/π3,6=√1200/π36=√3*√400/√π√36=20√3/6√π=10√3/3√π≈3,3
удачи!

Ushla

Профи

(511)


10 лет назад

Вот формула нахождения объёма: http://yandex.st/serp/34.202/contrib/z-math/blocks/z-math/formula/z-math__formula_for_cyl-volume-rh.png
Радиус, соответственно, находится так:
Радиус^2=V:Пи: Н
Т. е. R^2=120:3,6:3,14=10,615
R=3,258 см

А.К. (лично)

Искусственный Интеллект

(247048)


10 лет назад

я и то помню в 51 год формулу пи дэ квадрат на 4 умножить на Аш

Похожие вопросы

A cylinder is a three-dimensional object that looks like a rod with circular ends. If you know the volume of a cylinder and its height, you can determine its radius using the same formula used to calculate its volume when you do know the radius. Keep in mind that the radius is one half of the cylinder’s diameter, or the distance from the center of either end to its edge.

1. Know the Formula for the Volume of a Cylinder

The formula for the volume of a cylinder contains three elements: the radius of the cylinder (r), the height (h) of the cylinder, and the ratio of the circumference of a circle to its diameter pi. To find the volume of a cylinder, you multiply pi by the cylinder’s height and the square of its radius. Pi is approximately 3.14159 and can be rounded down to 3.14 if your calculator doesn’t have a pi key. Here is the formula in mathematical terms:

V = pi x h x r^2

2. Solve for the Radius (r)

Since you want to find the radius of the cylinder, you need to rearrange the formula to solve for the term r, which is the radius. First, divide both sides by pi and h. These terms will cancel on the right side of the equation, leaving only r^2. Now take the square root of both sides to get rid of the square on the radius. This leaves us with the following:

r = square root of (V / (pi x h))

3. Calculate the Radius

Now just plug your numbers into the equation and compute the radius. For example, if your cylinder has a height of 10 centimeters and a volume of 30 cubic centimeters, the calculation would look like the following:

r = square root of (30 cm^3 / (3.14 x 10 cm)) = 0.98 cm

Добавить комментарий