Как найти радиус если известна периметр

Нахождение радиуса круга: формула и примеры

В данной публикации мы рассмотрим, как можно вычислить радиус круга (окружности) и разберем примеры решения задач для закрепления материала.

Формулы вычисления радиуса круга

1. Через длину окружности/периметр круга

Радиус круга/окружности рассчитывается по формуле:

C – это длина окружности/периметр круга; равняется удвоенному произведению числа π на его радиус:

C = 2 π R

π – число, приближенное значение которого равно 3,14.

2. Через площадь круга

Радиус круга/окружности вычисляется таким образом:

S – это площадь круга; равна числу π , умноженному на квадрат его радиуса:

S = π R 2

Примеры задач

Задание 1
Длина окружности равняется 87,92 см. Найдите ее радиус.

Решение:
Используем первую формулу (через периметр):

Задание 2
Найдите радиус круга, если его площадь составляет 254,34 см 2 .

Решение:
Воспользуемся формулой, выраженной через площадь фигуры:

Как найти радиус окружности через периметр

Нахождение радиуса круга: формула и примеры

В данной публикации мы рассмотрим, как можно вычислить радиус круга (окружности) и разберем примеры решения задач для закрепления материала.

Формулы вычисления радиуса круга

1. Через длину окружности/периметр круга

Радиус круга/окружности рассчитывается по формуле:

C – это длина окружности/периметр круга; равняется удвоенному произведению числа π на его радиус:

C = 2 π R

π – число, приближенное значение которого равно 3,14.

2. Через площадь круга

Радиус круга/окружности вычисляется таким образом:

S – это площадь круга; равна числу π , умноженному на квадрат его радиуса:

S = π R 2

Примеры задач

Задание 1
Длина окружности равняется 87,92 см. Найдите ее радиус.

Решение:
Используем первую формулу (через периметр):

Задание 2
Найдите радиус круга, если его площадь составляет 254,34 см 2 .

Решение:
Воспользуемся формулой, выраженной через площадь фигуры:

Как рассчитать периметр круга или длину окружности

На данной странице калькулятор поможет рассчитать периметр круга или длину окружности онлайн. Для расчета задайте радиус или диаметр.

Круг – множество точек плоскости, удаленных от заданной точки этой плоскости (центр круг) на расстояние, не превышающее заданное (радиус круга).

Окружность – замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая.

Как найти радиус окружности

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

Возможно тебе интересно узнать — как найти длину окружности?

Формула радиуса окружности

Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.

Если известна площадь круга

R = √ S : π, где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Если известна длина

R = P : 2 * π, где P — длина (периметр круга).

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Если известен диаметр окружности

R = D : 2, где D — диаметр.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

Если известна диагональ вписанного прямоугольника

R = d : 2, где d — диагональ.

Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:

d = √ a 2 + b 2 , где a, b — стороны вписанного прямоугольника.

Если известна сторона описанного квадрата

R = a : 2, где a — сторона.

Сторона описанного квадрата равна диаметру окружности.

Если известны стороны и площадь вписанного треугольника

R = (a * b * c) : (4 * S), где a, b, с — стороны, S — площадь треугольника.

Если известна площадь и полупериметр описанного треугольника

R = S : p, где S — площадь треугольника, p — полупериметр треугольника.

Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.

Если известна площадь сектора и его центральный угол

R = √ (360° * S) : (π * α), где S — площадь сектора круга, α — центральный угол.

Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.

Если известна сторона вписанного правильного многоугольника

R = a : (2 * sin (180 : N)), где a — сторона правильного многоугольника, N — количество сторон.

В правильном многоугольнике все стороны равны.

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Как найти радиус окружности

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

Возможно тебе интересно узнать – как найти длину окружности?

Формула радиуса окружности

Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.

Если известна площадь круга

R = √ S : π, где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Если известна длина

R = P : 2 * π, где P — длина (периметр круга).

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Если известен диаметр окружности

R = D : 2, где D — диаметр.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

Если известна диагональ вписанного прямоугольника

R = d : 2, где d — диагональ.

Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:

d = √ a 2 + b 2 , где a, b — стороны вписанного прямоугольника.

Если известна сторона описанного квадрата

R = a : 2, где a — сторона.

Сторона описанного квадрата равна диаметру окружности.

Если известны стороны и площадь вписанного треугольника

R = (a * b * c) : (4 * S), где a, b, с — стороны, S — площадь треугольника.

Если известна площадь и полупериметр описанного треугольника

R = S : p, где S — площадь треугольника, p — полупериметр треугольника.

Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.

Если известна площадь сектора и его центральный угол

R = √ (360° * S) : (π * α), где S — площадь сектора круга, α — центральный угол.

Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.

Если известна сторона вписанного правильного многоугольника

R = a : (2 * sin (180 : N)), где a — сторона правильного многоугольника, N — количество сторон.

В правильном многоугольнике все стороны равны.

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

[spoiler title=”источники:”]

http://b4.cooksy.ru/articles/kak-nayti-radius-okruzhnosti-cherez-perimetr

http://skysmart.ru/articles/mathematic/radius-okruzhnosti

[/spoiler]

В данной публикации мы рассмотрим, как можно вычислить радиус круга (окружности) и разберем примеры решения задач для закрепления материала.

  • Формулы вычисления радиуса круга

    • 1. Через длину окружности/периметр круга

    • 2. Через площадь круга

  • Примеры задач

Формулы вычисления радиуса круга

Радиус круга

1. Через длину окружности/периметр круга

Радиус круга/окружности рассчитывается по формуле:

Формула радиуса круга через его периметр

C – это длина окружности/периметр круга; равняется удвоенному произведению числа π на его радиус:

C = 2πR

π – число, приближенное значение которого равно 3,14.

2. Через площадь круга

Радиус круга/окружности вычисляется таким образом:

Формула радиуса круга через его площадь

S – это площадь круга; равна числу π, умноженному на квадрат его радиуса:

S = πR2

Примеры задач

Задание 1
Длина окружности равняется 87,92 см. Найдите ее радиус.

Решение:
Используем первую формулу (через периметр):
Вычисление радиуса круга через его периметр

Задание 2
Найдите радиус круга, если его площадь составляет 254,34 см2.

Решение:
Воспользуемся формулой, выраженной через площадь фигуры:
Вычисление радиуса круга через его площадь

Этот простой калькулятор определит радиус окружности, если известна ее площадь, периметр или диаметр. Для того чтобы получить результат со всеми величинами вместе с формулами нахождения, достаточно заполнить только одну ячейку и нажать на кнопку “Рассчитать”.
При любом введенном значении в калькулятор окружности становится возможным использование двух последующих калькуляторов, которые помогут найти показатели сектора и сегмента круга.

Калькулятор окружности:

Достаточно заполнить только одну ячейку — остальное калькулятор посчитает сам.

Периметр или длина окружности (P)

Калькулятор сектора окружности:

Достаточно ввести только одно значение и указать радиус окружности — остальное калькулятор посчитает сам.

Центральный угол сектора в градусах (α)

Площадь сектора окружности (S1)

Калькулятор сегмента окружности:

Достаточно ввести только одно* значение и указать радиус окружности — остальное калькулятор посчитает сам.
Исключения:
* – при известном периметре (P2) нужно дополнительно указать длину дуги (l1) или хорды (c).
* – при известной площади (S2) нужно дополнительно указать длину хорды (c) или высоты (h).

Угол сегмента в градусах (α1)

Площадь сегмента окружности (S2)

Округление:

* – обязательно заполнить

При помощи нашего калькулятора вы легко сможете узнать радиус круга или окружности.

Для того что бы вычислить радиус круга необходимо знать его длину или площадь. Если нам известа одна из указаннх величин, для нас не составит труда вычислить радиус круга.
Радиус круга рассчитывается по следующим формулам:

  1. Если нам известна длина:

    Формула для расчета радиуса круга через его длину:
    R=P/(2π)

    Вычислить радиус круга через его длину

  2. Если нам известна площадь:

    Формула для расчета радиус круга через площадь:
    R=

    S/π

    Вычислить радиус круга через площадь

  3. Если нам известен диаметр:

    Формула для расчета радиус круга через диаметр:
    R=D/2

    Вычислить радиус круга через диаметр

Где R – радиус круга, S – площадь круга, P – длина круга, D – диаметр, π – число Пи которое всегда примерно равно 3,14.

для вычисления радиуса по длине окружности

вам как минимум понадобится суперкомпьютер

древних греков – Антикитерский механизм

или древних арабов – Абак

создать программу

ввести в компьютер

и покрутить механизм по часовой стрелке

столько раз пока не получите ответ

приблизительно равный формуле =(Длина окружности / пи)/2

автор вопроса выбрал этот ответ лучшим

Хелен­очка
[61.9K]

7 лет назад 

Помню эту формулу со школы. Длина окружности равна диаметру, умноженному на число “пи” (3,14). Значит для вычисления диаметра делим длину окружности на 3,14. Чтобы найти радиус, делим диаметр на 2.

L=n*d n=3,14 L – длина окружности d – диаметр

R=L/2n

Вычислить радиус по длине окружности можно “обратив” действие известной формулы по нахождению длины окружности зная её радиус – l = 2πR.

Только в нашем случае, имеется длина окружности которую нужно разделить на 2Пи = радиус.

Ксарф­акс
[156K]

6 лет назад 

Для вычисления радиуса достаточно вспомнить формулу длины окружности l:

l = 2πR.

π – всем известное число, оно приблизительно равно 3,14.

Так как длина окружности известна, то радиус этой фигуры можно найти поделив значение её длины на удвоенное число π.

R = l/2π.


Пример

Дана длина окружности l = 10.

Найдём радиус по этой формуле: R ≈ 10/(2*3,14) ≈ 10 / 6,28 ≈ 1,592.

Strei­ght
[21.6K]

6 лет назад 

Найти радиус по длине окружности можно по простейшей формуле из курса геометрии или алгебры по школьной программе. Для вычисления используется формула R=l/2П. Где l – длина окружности, П – число Пи. В прочтении формула будет называться радиус равен отношению длины окружности к два на пи.

Число, которое получается при вычислении сугубо приблизительное, так как число Пи также является округляемой величиной.

Nelli­4ka
[114K]

6 лет назад 

Радиус окружности найти легко: нужно известную нам длину окружности (или периметр круга, как ее еще называют) разделить на 2Пи, где Пи – это

или попросту – 3,14. Число это округлено до сотых, на самом деле после запятой следует огромный ряд цифр, цикличность которых ни разу не повторяется.

Кстати, можно сегодня всех поздравлять с числом Пи.

Ладле­н
[266K]

6 лет назад 

Эта одна из самых первых и самых простых задач по геометрии на тему окружность. Так что конечно решение простое и каждый просто обязан знать как это делается. А делается просто. Берем формулу.

C = 2пR

где С- длина окр.

П – всем известное число равное 3,14.

И получается, что длину ркружности просто надо разделить на 6,28.

Нэпэй­шни
[18.2K]

6 лет назад 

Для начала нужно знать что такое диаметр.Диаметр-это отрезок проходяший через центр круга,который соединяет 2 точки.В итоге получает два ровных полукруга.Чтобы вычислить радиус делим диаметр на двое.Формула длины окружности С = 2πr π всегда равна 3,14.Например если длина равна 15 то будет выглядеть так r = 15/2π = 2,39.

morel­juba
[62.5K]

6 лет назад 

Радиус по длине окружности в принципе не будет сложно вычислить. Имеется формула нахождения длины окружности, согласно которой длина окружности приравнивается к произведению числа 2, числа”пи” и радиуса.

Так вот выведем отсюда формулу для радиуса через длину окружности:

Радиус = длина окружности/2*”пи”.

Татка­5016
[136]

6 лет назад 

Для нахождения радиуса окружности по длине надо пользоваться формулой : l = 2пR; где

L – это то, что нужно найти, то есть длина окружности.

п – это число равное трём зелым и четырнадцати сотым.

R – радиус окружности.

Тогда радиус окружности можно найти по формуле: R = длина окружности деленая на 2 при.

chipm­unk
[41.4K]

6 лет назад 

Для начала нужно исходить из формулы нахождения длины окружности.

Где,

L – длина окружности

R – радиус окружности

П – число “пи” (3,14)

Исходя из формулы, получается, что радиус окружности равен длине окружности, деленной на 2П

R= L/2П

Знаете ответ?

Добавить комментарий