Как найти радиус кометы

Here’s my approach to solving this problem. You provide some of the initial steps, but I’ll still go through them just for completeness.

Orbital Distance

We’re told the period is $T=5.5:mathrm{years}$. This means we can immediately calculate the orbital distance (or more precisely, the semi-major axis, $a$). Since we’re talking about a comet orbiting the Sun, we can simply use:

$$T^2 = a^3$$

where $T$ is the orbital period in units of $mathrm{years}$ and $a$ is the semi-major axis in units of $mathrm{AU}$. I find that $a = 3.116:mathrm{AU} = 4.66times 10^{11}:mathrm{m}$. Good so far.

Volume of Evaporated Shell

We’re told that the radius of the comet decreases by $Delta R = 20:mathrm{cm}$. We can assume the comet is perfectly spherical and calculate the volume of the evaporated shell which should depend on both $R$, the radius of the comet, and $Delta R$. This will be necessary since we need to know the total amount of ice that was evaporated. The volume of this shell is given by

$$V = frac{4}{3}pi(R^3-(R-Delta R)^3)$$
$$V = frac{4}{3}pi(R^3-R^3+3R^2Delta R-3RDelta R^2 + Delta R^3)$$
$$V = frac{4}{3}pi(3R^2Delta R-3RDelta R^2)$$
$$V = 4pi R^2Delta Rleft(1-frac{Delta R}{R}right)$$

Note that I’ve made a specific choice here. I’ve dropped the $Delta R^3$ term from the second line. The reason being that it is a third order term and $Delta R^3 ll RDelta R^2$. You could argue that I could drop the second order term, $RDelta R^2$ since $RDelta R^2 ll R^2Delta R$, but I’m choosing to keep this second order term around so we wind up with an $R$ to solve for in the final answer.

Power Input

The next step is to find the total energy input per second to this comet, e.g., the power. You’ve basically already defined this part. The flux on this comet is defined as

$$F = frac{L_odot}{4pi a^2}$$

The power input is simply the flux times the area of the comet.

$$P_{mathrm{in}} = FA = frac{L_odot}{4pi a^2} pi R^2 = frac{1}{4}L_odot frac{R^2}{a^2}$$

Note that this assumes the comet is in a circular orbit and thus always at the orbital radius of $a$. If the comet’s orbit had any sort of eccentricity, then $F$ would be a function of radius and you’d have a much harder time.

Evaporation Energy

Now we need to calculate the total energy necessary to evaporate the evaporated shell of volume $V$ from above. In order to evaporate a solid ice, you have to go through four stages of heating. First, you raise the ice’s temperature to the melting point. The energy input for this is defined by the specific heat capacity for ice, $c_{mathrm{ice}}$. Then you add energy to convert the ice into water. The energy input for this is defined by the latent heat of fusion, $ell_f$. Now you can raise the temperature of the water until it reaches the next stage. This is defined by the specific heat of water, $c_{mathrm{water}}$. Finally, you add energy to convert the water to gas, defined by the latent heat of vaporization, $ell_v$.

All of these can be put together into a single equation.

$$E_{mathrm{evap}} = c_{mathrm{ice}}(m_{mathrm{shell}}Delta T_1) + ell_fm_{mathrm{shell}}+c_{mathrm{water}}(m_{mathrm{shell}}Delta T_2) + ell_vm_{mathrm{shell}}$$

$$E_{mathrm{evap}} = (c_{mathrm{ice}}Delta T_1 + ell_f +c_{mathrm{water}}Delta T_2 + ell_v)m_{mathrm{shell}}$$

Each one of the terms in this equation accounts for the energy input of one of the stages I described above. Note that $Delta T_1$ is the temperature change from the initial temperature to the melting point ($273.15:mathrm{K}$). A reasonable temperature change might be $73.15:mathrm{K}$ (assuming an initial temperature of $200:mathrm{K}$), based on the temperature of comet 67P as determined by Rosetta. The $Delta T_2$ is the temperature change from the melting point to the boiling point which is necessarily $100:mathrm{K}$.

You can look in a table somewhere and find that $c_{mathrm{ice}} = 2.108:mathrm{kJ:kg^{-1}:K^{-1}}$ and $c_{mathrm{water}} = 4.187:mathrm{kJ:kg^{-1}:K^{-1}}$.

Lastly, you need to define the mass of the evaporated shell, $m_{mathrm{shell}}$. This is simply the volume already determined, multiplied by the density of ice/water. Technically those densities will be different, but they’re close enough that we can just use $rho_{shell} = 1000:mathrm{kg:m^3}$. So ultimately we have:

$$E_{mathrm{evap}} = (c_{mathrm{ice}}Delta T_1 + ell_f +c_{mathrm{water}}Delta T_2 + ell_v)V rho_{mathrm{shell}}$$

For simplicity’s sake, I’m going to define

$$eta equiv (c_{mathrm{ice}}Delta T_1 + ell_f +c_{mathrm{water}}Delta T_2 + ell_v)$$

so that

$$E_{mathrm{evap}} = 4pi eta rho_{mathrm{shell}} R^2Delta Rleft(1-frac{Delta R}{R}right)$$

Putting it all together

We now know the total energy necessary to evaporate the comet’s $20:mathrm{cm}$ shell as well as the energy input per second. We know that it receives this energy input per second for one orbital period of $5.5:mathrm{years}$ which means we can say:

$$T = frac{E_{mathrm{evap}}}{P_{mathrm{in}}}$$

$$T = frac{4pi eta rho_{mathrm{shell}} R^2Delta Rleft(1-frac{Delta R}{R}right)}{frac{1}{4}L_odot frac{R^2}{a^2}}$$

$$T = 8pi eta rho_{mathrm{shell}} Delta R frac{a^2}{L_odot} left(1-frac{Delta R}{R}right)$$

Again, for simplicity, I’ll define

$$xi equiv 8pi eta rho_{mathrm{shell}} Delta R frac{a^2}{L_odot}$$

so that

$$T = xi left(1-frac{Delta R}{R}right)$$

It should be pretty easy to see now that

$$boxed{R = frac{Delta R}{1-T/xi}}$$

The rest is just plugging everything in.

Содержание статьи

  • Движение и пространственное распределение.
  • Структура.
  • Происхождение.
  • Газовый состав.
  • ОРБИТЫ И КЛАССИФИКАЦИЯ
  • Орбита и скорость.
  • Классификация кометных орбит.
  • РАСПРЕДЕЛЕНИЕ В ПРОСТРАНСТВЕ И ПРОИСХОЖДЕНИЕ
  • Почти параболические кометы.
  • Короткопериодические кометы.
  • Негравитационные силы.
  • Кометы, задевающие Солнце.
  • Комета Галлея.
  • Комета Энке.
  • Комета Джакобини – Циннера.
  • ФИЗИКА КОМЕТ
  • Ядро.
  • Блеск.
  • Размер ядра.
  • Сублимация.
  • Кома.
  • Водородная корона.
  • Хвост и сопутствующие явления.
  • Столкновения в Солнечной системе.

КОМЕТА, небольшое небесное тело, движущееся в межпланетном пространстве и обильно выделяющее газ при сближении с Солнцем. С кометами связаны разнообразные физические процессы, от сублимации (сухое испарение) льда до плазменных явлений. Кометы – это остатки формирования Солнечной системы, переходная ступень к межзвездному веществу. Наблюдение комет и даже их открытие нередко осуществляются любителями астрономии. Иногда кометы бывают столь яркими, что привлекают всеобщее внимание. В прошлом появление ярких комет вызывало у людей страх и служило источником вдохновения для художников и карикатуристов.

Движение и пространственное распределение.

Все или почти все кометы являются составными частями Солнечной системы. Они, как и планеты, подчиняются законам тяготения, но движутся весьма своеобразно. Все планеты обращаются вокруг Солнца в одном направлении (которое называют «прямым» в отличие от «обратного») по почти круговым орбитам, лежащим примерно в одной плоскости (эклиптики), а кометы движутся как в прямом, так и обратном направлениях по сильно вытянутым (эксцентричным) орбитам, наклоненным под различными углами к эклиптике. Именно характер движения сразу выдает комету.

Долгопериодические кометы (с орбитальным периодом более 200 лет) прилетают из областей, расположенных в тысячи раз дальше, чем самые удаленные планеты, причем их орбиты бывают наклонены под всевозможными углами. Короткопериодические кометы (период менее 200 лет) приходят из района внешних планет, двигаясь в прямом направлении по орбитам, лежащим недалеко от эклиптики. Вдали от Солнца кометы обычно не имеют «хвостов», но иногда имеют еле видимую «кому», окружающую «ядро»; вместе их называют «головой» кометы. С приближением к Солнцу голова увеличивается и появляется хвост.

Структура.

В центре комы располагается ядро – твердое тело или конгломерат тел диаметром в несколько километров. Практически вся масса кометы сосредоточена в ее ядре; эта масса в миллиарды раз меньше земной. Согласно модели Ф.Уиппла, ядро кометы состоит из смеси различных льдов, в основном водяного льда с примесью замерзших углекислоты, аммиака и пыли. Эту модель подтверждают как астрономические наблюдения, так и прямые измерения с космических аппаратов вблизи ядер комет Галлея и Джакобини – Циннера в 1985–1986.

Когда комета приближается к Солнцу ее ядро нагревается, и льды сублимируются, т.е. испаряются без плавления. Образовавшийся газ разлетается во все стороны от ядра, унося с собой пылинки и создавая кому. Разрушающиеся под действием солнечного света молекулы воды образуют вокруг ядра кометы огромную водородную корону. Помимо солнечного притяжения на разреженное вещество кометы действуют и отталкивающие силы, благодаря которым образуется хвост. На нейтральные молекулы, атомы и пылинки действует давление солнечного света, а на ионизованные молекулы и атомы сильнее влияет давление солнечного ветра.

Поведение частиц, формирующих хвост, стало значительно понятнее после прямого исследования комет в 1985–1986. Плазменный хвост, состоящий из заряженных частиц, имеет сложную магнитную структуру с двумя областями различной полярности. На обращенной к Солнцу стороне комы формируется лобовая ударная волна, проявляющая высокую плазменную активность.

ЧАСТИ КОМЕТЫ: схематически показаны ядро, кома, хвосты и другие важные элементы.

Хотя в хвосте и коме заключено менее одной миллионной доли массы кометы, 99,9% света исходит именно из этих газовых образований, и только 0,1% – от ядра. Дело в том, что ядро очень компактно и к тому же имеет низкий коэффициент отражения (альбедо).

Потерянные кометой частицы движутся по своим орбитам и, попадая в атмосферы планет, становятся причиной возникновения метеоров («падающих звезд»). Большинство наблюдаемых нами метеоров связано именно с кометными частицами. Иногда разрушение комет носит более катастрофический характер. Открытая в 1826 комета Биелы в 1845 на глазах у наблюдателей разделилась на две части. Когда в 1852 эту комету видели в последний раз, куски ее ядра удалились друг от друга на миллионы километров. Деление ядра обычно предвещает полный распад кометы. В 1872 и 1885, когда комета Биелы, если бы с нею ничего не случилось, должна была пересекать орбиту Земли, наблюдались необычайно обильные метеорные дожди. См. также МЕТЕОР; МЕТЕОРИТ.

Иногда кометы разрушаются при сближении с планетами. 24 марта 1993 на обсерватории Маунт-Паломар в Калифорнии астрономы К. и Ю.Шумейкеры совместно с Д.Леви открыли недалеко от Юпитера комету с уже разрушенным ядром. Вычисления показали, что 9 июля 1992 комета Шумейкеров – Леви-9 (это уже девятая открытая ими комета) прошла вблизи Юпитера на расстоянии половины радиуса планеты от ее поверхности и была разорвана его притяжением более чем на 20 частей. До разрушения радиус ее ядра составлял ок. 20 км.

Таблица 1. Основные газовые составляющие комет

Таблица 1. ОСНОВНЫЕ ГАЗОВЫЕ СОСТАВЛЯЮЩИЕ КОМЕТ
Атомы Молекулы Ионы
H H2O H2O+
O OH H3O+
C C2 OH+
S C3 CO+
Na CN CO2+
Fe CH CH+
Co CO CN+
Ni HCN  
  3CN  
  HCO  

Растянувшись в цепочку, осколки кометы удалились от Юпитера по вытянутой орбите, а затем в июле 1994 вновь приблизились к нему и столкнулись с облачной поверхностью Юпитера.

Происхождение.

Ядра комет – это остатки первичного вещества Солнечной системы, составлявшего протопланетный диск. Поэтому их изучение помогает восстановить картину формирования планет, включая Землю. В принципе некоторые кометы могли бы приходить к нам из межзвездного пространства, но пока ни одна такая комета надежно не выявлена.

Газовый состав.

В табл. 1 перечислены основные газовые составляющие комет в порядке убывания их содержания. Движение газа в хвостах комет показывает, что на него сильно влияют негравитационные силы. Свечение газа возбуждается солнечным излучением.

ОРБИТЫ И КЛАССИФИКАЦИЯ

Чтобы лучше понять этот раздел, советуем познакомиться со статьями: НЕБЕСНАЯ МЕХАНИКА; КОНИЧЕСКИЕ СЕЧЕНИЯ; ОРБИТА; СОЛНЕЧНАЯ СИСТЕМА.

Орбита и скорость.

Движение ядра кометы полностью определяется притяжением Солнца. Форма орбиты кометы, как и любого другого тела в Солнечной системе, зависит от ее скорости и расстояния до Солнца. Средняя скорость тела обратно пропорциональна квадратному корню из его среднего расстояния до Солнца (a). Если скорость всегда перпендикулярна радиусу-вектору, направленному от Солнца к телу, то орбита круговая, а скорость называют круговой скоростью (vc) на расстоянии a. Скорость ухода из гравитационного поля Солнца по параболической орбите (vp) в раз больше круговой скорости на этом расстоянии. Если скорость кометы меньше vp, то она движется вокруг Солнца по эллиптической орбите и никогда не покидает Солнечной системы. Но если скорость превосходит vp, то комета один раз проходит мимо Солнца и навсегда покидает его, двигаясь по гиперболической орбите.

На рисунке показаны эллиптические орбиты двух комет, а также почти круговые орбиты планет и параболическая орбита. На расстоянии, которое отделяет Землю от Солнца, круговая скорость равна 29,8 км/с, а параболическая – 42,2 км/с. Вблизи Земли скорость кометы Энке равна 37,1 км/с, а скорость кометы Галлея – 41,6 км/с; именно поэтому комета Галлея уходит значительно дальше от Солнца, чем комета Энке.

ТИПЫ ОРБИТ. Эллиптическая орбита кометы Галлея имеет наклонение 18° к плоскости земной орбиты. Орбита кометы Энке наклонена на 12°. Показана также параболическая орбита.

Классификация кометных орбит.

Орбиты у большинства комет эллиптические, поэтому они принадлежат Солнечной системе. Правда, у многих комет это очень вытянутые эллипсы, близкие к параболе; по ним кометы уходят от Солнца очень далеко и надолго. Принято делить эллиптические орбиты комет на два основных типа: короткопериодические и долгопериодические (почти параболические). Пограничным считается орбитальный период в 200 лет.

РАСПРЕДЕЛЕНИЕ В ПРОСТРАНСТВЕ И ПРОИСХОЖДЕНИЕ

Почти параболические кометы.

К этому классу относятся многие кометы. Поскольку их периоды обращения составляют миллионы лет, в течение века в окрестности Солнца появляется лишь одна десятитысячная их часть. В 20 в. наблюдалось ок. 250 таких комет; следовательно, всего их миллионы. К тому же далеко не все кометы приближаются к Солнцу настолько, чтобы стать видимыми: если перигелий (ближайшая к Солнцу точка) орбиты кометы лежит за орбитой Юпитера, то заметить ее практически невозможно.

Учитывая это, в 1950 Ян Оорт предположил, что пространство вокруг Солнца на расстоянии 20–100 тыс. а.е. (астрономических единиц: 1 а.е. = 150 млн. км, расстояние от Земли до Солнца) заполнено ядрами комет, численность которых оценивается в 1012, а полная масса – в 1–100 масс Земли. Внешняя граница «кометного облака» Оорта определяется тем, что на этом расстоянии от Солнца на движение комет существенно влияет притяжение соседних звезд и других массивных объектов (см. ниже). Звезды перемещаются относительно Солнца, их возмущающее влияние на кометы изменяется, и это приводит к эволюции кометных орбит. Так, случайно комета может оказаться на орбите, проходящей вблизи Солнца, но на следующем обороте ее орбита немного изменится, и комета пройдет вдали от Солнца. Однако вместо нее из облака Оорта в окрестность Солнца будут постоянно попадать «новые» кометы.

Короткопериодические кометы.

При прохождении кометы вблизи Солнца ее ядро нагревается, и льды испаряются, образуя газовые кому и хвост. После нескольких сотен или тысяч таких пролетов в ядре не остается легкоплавких веществ, и оно перестает быть видимым. Для регулярно сближающихся с Солнцем короткопериодических комет это означает, что менее чем за миллион лет их популяция должна стать невидимой. Но мы их наблюдаем, следовательно, постоянно поступает пополнение из «свежих» комет.

Пополнение короткопериодических комет происходит в результате их «захвата» планетами, главным образом Юпитером. Ранее считалось, что захватываются кометы из числа долгопериодических, приходящих из облака Оорта, но теперь полагают, что их источником служит кометный диск, называемый «внутренним облаком Оорта». В принципе представление об облаке Оорта не изменилось, однако расчеты показали, что приливное влияние Галактики и воздействие массивных облаков межзвездного газа должны довольно быстро его разрушать. Необходим источник его пополнения. Таким источником теперь считают внутреннее облако Оорта, значительно более устойчивое к приливному влиянию и содержащее на порядок больше комет, чем предсказанное Оортом внешнее облако. После каждого сближения Солнечной системы с массивным межзвездным облаком кометы из внешнего облака Оорта разлетаются в межзвездное пространство, а им на смену приходят кометы из внутреннего облака.

Переход кометы с почти параболической орбиты на короткопериодическую происходит в том случае, если она догоняет планету сзади. Обычно для захвата кометы на новую орбиту требуется несколько ее проходов через планетную систему. Результирующая орбита кометы, как правило, имеет небольшое наклонение и большой эксцентриситет. Комета движется по ней в прямом направлении, и афелий ее орбиты (наиболее удаленная от Солнца точка) лежит вблизи орбиты захватившей ее планеты. Эти теоретические соображения полностью подтверждаются статистикой кометных орбит.

Негравитационные силы.

Газообразные продукты сублимации оказывают реактивное давление на ядро кометы (подобное отдаче ружья при выстреле), которое приводит к эволюции орбиты. Наиболее активный отток газа происходит с нагретой «послеполуденной» стороны ядра. Поэтому направление силы давления на ядро не совпадает с направлением солнечных лучей и солнечного тяготения. Если осевое вращение ядра и его орбитальное обращение происходят в одном направлении, то давление газа в целом ускоряет движение ядра, приводя к увеличению орбиты. Если же вращение и обращение происходят в противоположных направлениях, то движение кометы тормозится, и орбита сокращается. Если такая комета первоначально была захвачена Юпитером, то через некоторое время ее орбита целиком оказывается в области внутренних планет. Вероятно, именно это случилось с кометой Энке.

Кометы, задевающие Солнце.

Особую группу короткопериодических комет составляют кометы, «задевающие» Солнце. Вероятно, они образовались тысячелетия назад в результате приливного разрушения крупного, не менее 100 км в диаметре, ядра. После первого катастрофического сближения с Солнцем фрагменты ядра совершили ок. 150 оборотов, продолжая распадаться на части. Двенадцать членов этого семейства комет Крейца наблюдались между 1843 и 1984. Возможно, их происхождение связано с большой кометой, которую видел Аристотель в 371 до н.э.

 IGDA     В ПРОШЛОМ кометы иногда считались предвестницами несчастий. На иллюстрации (1579) вождь ацтеков Монтесума наблюдает небесный знак падения своего царства.

Комета Галлея.

Это самая знаменитая из всех комет. Она наблюдалась 30 раз с 239 до н.э. Названа в честь Э.Галлея, который после появления кометы в 1682 рассчитал ее орбиту и предсказал ее возвращение в 1758. Орбитальный период кометы Галлея – 76 лет; последний раз она появилась в 1986 и в следующий раз будет наблюдаться в 2061. В 1986 ее изучали с близкого расстояния 5 межпланетных зондов – два японских («Сакигаке» и «Суйсей»), два советских («Вега-1» и «Вега-2») и один европейский («Джотто»). Оказалось, что ядро кометы имеет картофелеобразную форму длиной ок. 15 км и шириной ок. 8 км, а его поверхность «чернее угля».Возможно, оно покрыто слоем органических соединений, например полимеризованного формальдегида. Количество пыли вблизи ядра оказалось значительно выше ожидаемого. См. также ГАЛЛЕЙ, ЭДМУНД.

ЯДРО КОМЕТЫ ГАЛЛЕЯ, схематическое изображение кометы.

Комета Энке.

Эта тусклая комета была первой включена в семейство комет Юпитера. Ее период 3,29 года – наиболее короткий среди комет. Орбиту впервые вычислил в 1819 немецкий астроном И.Энке (1791–1865), отождествивший ее с кометами, наблюдавшимися в 1786, 1795 и 1805. Комета Энке ответственна за метеорный поток Тауриды, наблюдающийся ежегодно в октябре и ноябре.

КОМЕТА ХЕЙЛА – БОППА, приближавшаяся к Солнцу весной 1997.

Комета Джакобини – Циннера.

Эту комету открыл М.Джакобини в 1900 и переоткрыл Э.Циннер в 1913. Ее период 6,59 лет. Именно с ней 11 сентября 1985 впервые сблизился космический зонд «International Cometary Explorer», который прошел через хвост кометы на расстоянии 7800 км от ядра, благодаря чему были получены данные о плазменной компоненте хвоста. С этой кометой связан метеорный поток Джакобиниды (Дракониды).

ФИЗИКА КОМЕТ

Ядро.

Все проявления кометы так или иначе связаны с ядром. Уиппл предположил, что ядро кометы является сплошным телом, состоящим в основном из водяного льда с частицами пыли. Такая модель «грязного снежка» легко объясняет многократные пролеты комет вблизи Солнца: при каждом пролете испаряется тонкий поверхностный слой (0,1–1% полной массы) и сохраняется внутренняя часть ядра. Возможно, ядро является конгломератом нескольких «кометезималей», каждая не более километра в диаметре. Такая структура могла бы объяснить распад ядер на части, как это наблюдалось у кометы Биелы в1845 или у кометы Веста в 1976.

Блеск.

Наблюдаемый блеск освещенного Солнцем небесного тела с неизменной поверхностью меняется обратно пропорционально квадратам его расстояний от наблюдателя и от Солнца. Однако солнечный свет рассеивается в основном газопылевой оболочкой кометы, эффективная площадь которой зависит от скорости сублимации льда, а та, в свою очередь, – от теплового потока, падающего на ядро, который сам изменяется обратно пропорционально квадрату расстояния до Солнца. Поэтому блеск кометы должен меняться обратно пропорционально четвертой степени расстояния до Солнца, что и подтверждают наблюдения.

Размер ядра.

Размер ядра кометы можно оценить из наблюдений в то время, когда оно далеко от Солнца и не окутано газопылевой оболочкой. В этом случае свет отражается только твердой поверхностью ядра, и его видимый блеск зависит от площади сечения и коэффициента отражения (альбедо). У ядра кометы Галлея альбедо оказалось очень низким – ок. 3%. Если это характерно и для других ядер, то диаметры большинства из них лежат в диапазоне от 0,5 до 25 км.

Сублимация.

Переход вещества из твердого состояния в газообразное важен для физики комет. Измерения яркости и спектров излучения комет показали, что плавление основных льдов начинается на расстоянии 2,5–3,0 а.е., как должно быть, если лед в основном водяной. Это подтвердилось при изучении комет Галлея и Джакобини – Циннера. Газы, наблюдающиеся первыми при сближении кометы с Солнцем (CN, C2), вероятно, растворены в водяном льде и образуют газовые гидраты (клатраты). Каким образом этот «составной» лед будет сублимироваться, в значительной степени зависит от термодинамических свойств водяного льда. Сублимация пыле-ледяной смеси происходит в несколько этапов. Потоки газа и подхваченные ими мелкие и пушистые пылинки покидают ядро, поскольку притяжение у его поверхности крайне слабое. Но плотные или скрепленные между собой тяжелые пылинки газовый поток не уносит, и формируется пылевая кора. Затем солнечные лучи нагревают пылевой слой, тепло проходит внутрь, лед сублимируется, и газовые потоки прорываются, ломая пылевую кору. Эти эффекты проявились при наблюдении кометы Галлея в 1986: сублимация и отток газа происходили лишь в нескольких областях ядра кометы, освещенных Солнцем. Вероятно, в этих областях обнажился лед, тогда как остальная поверхность была закрыта корой. Вырвавшиеся на свободу газ и пыль формируют наблюдаемые структуры вокруг ядра кометы.

Кома.

Пылинки и газ из нейтральных молекул (табл. 1) образуют почти сферическую кому кометы. Обычно кома тянется от 100 тыс. до 1 млн. км от ядра. Давление света может деформировать кому, вытянув ее в антисолнечном направлении.

Водородная корона.

Поскольку льды ядра в основном водяные, то и кома в основном содержит молекулы H2O. Фотодиссоциация разрушает H2O на H и OH, а затем OH – на O и H. Быстрые атомы водорода улетают далеко от ядра прежде чем оказываются ионизованными, и образуют корону, видимый размер которой часто превосходит солнечный диск.

Хвост и сопутствующие явления.

Хвост кометы может состоять из молекулярной плазмы или пыли. Некоторые кометы имеют хвосты обоих типов.

Пылевой хвост обычно однородный и тянется на миллионы и десятки миллионов километров. Он образован пылинками, отброшенными давлением солнечного света от ядра в антисолнечном направлении, и имеет желтоватый цвет, поскольку пылинки просто рассеивают солнечный свет. Структуры пылевого хвоста могут объясняться неравномерным извержением пыли из ядра или разрушением пылинок.

Плазменный хвост в десятки и даже сотни миллионов километров длиной – это видимое проявление сложного взаимодействия между кометой и солнечным ветром. Некоторые покинувшие ядро молекулы ионизуются солнечным излучением, образуя молекулярные ионы (H2O+, OH+, CO+, CO2+) и электроны. Эта плазма препятствует движению солнечного ветра, пронизанного магнитным полем. Наталкиваясь на комету, силовые линии поля оборачиваются вокруг нее, принимая форму шпильки для волос и образуя две области противоположной полярности. Молекулярные ионы захватываются в эту магнитную структуру и образуют в центральной, наиболее плотной ее части видимый плазменный хвост, имеющий голубой цвет из-за спектральных полос CO+. Роль солнечного ветра в формировании плазменных хвостов установили Л.Бирман и Х.Альвен в 1950-х годах. Их расчеты подтвердили измерения с космических аппаратов, пролетевших через хвосты комет Джакобини – Циннера и Галлея в 1985 и 1986.

В плазменном хвосте происходят и другие явления взаимодействия с солнечным ветром, налетающим на комету со скоростью ок. 400 км/с и образующим перед ней ударную волну, в которой уплотняется вещество ветра и головы кометы. Существенную роль играет процесс «захвата»; суть его в том, что нейтральные молекулы кометы свободно проникают в поток солнечного ветра, но сразу после ионизации начинают активно взаимодействовать с магнитным полем и ускоряются до значительных энергий. Правда, иногда наблюдаются весьма энергичные молекулярные ионы, необъяснимые с точки зрения указанного механизма. Процесс захвата возбуждает также плазменные волны в гигантском объеме пространства вокруг ядра. Наблюдение этих явлений имеет фундаментальный интерес для физики плазмы.

Замечательное зрелище представляет «обрыв хвоста». Как известно, в нормальном состоянии плазменный хвост связан с головой кометы магнитным полем. Однако нередко хвост отрывается от головы и отстает, а на его месте образуется новый. Это случается, когда комета проходит через границу областей солнечного ветра с противоположно направленным магнитным полем. В этот момент магнитная структура хвоста перестраивается, что выглядит как обрыв и формирование нового хвоста. Сложная топология магнитного поля приводит к ускорению заряженных частиц; возможно, этим объясняется появление упомянутых выше быстрых ионов.

Столкновения в Солнечной системе.

Из наблюдаемого количества и орбитальных параметров комет Э.Эпик вычислил вероятность столкновения с ядрами комет различного размера (табл. 2). В среднем 1 раз за 1,5 млрд. лет Земля имеет шанс столкнуться с ядром диаметром 17 км, а это может полностью уничтожить жизнь на территории, равной площади Северной Америки. За 4,5 млрд. лет истории Земли такое могло случаться неоднократно. Гораздо чаще происходят катастрофы меньшего масштаба: в 1908 над Сибирью, вероятно, вошло в атмосферу и взорвалось ядро небольшой кометы, вызвав полегание леса на большой территории.

Таблица 2. Столкновения Земли с ядрами комет

Таблица 2. СТОЛКНОВЕНИЯ ЗЕМЛИ С ЯДРАМИ КОМЕТ
Диаметр ядра, км 0,5–1 1–2 2–4 4–8 8–17 >17
Средний интервал между столкновениями, млн. лет 1,3 5,6 24 110 450 1500

 W. LILLER AND M. GICLAS     ЯВЛЕНИЕ ОБРЫВА хвоста кометы, показанное на серии фотографий кометы Галлея (сверху вниз). PHOTO RESEARCHERS/European Space Agency/Science Photo Library     ЯДРО КОМЕТЫ Галлея

Обновлено: 20.05.2023

КОМЕТА, небольшое небесное тело, движущееся в межпланетном пространстве и обильно выделяющее газ при сближении с Солнцем. С кометами связаны разнообразные физические процессы, от сублимации (сухое испарение) льда до плазменных явлений. Кометы – это остатки формирования Солнечной системы, переходная ступень к межзвездному веществу. Наблюдение комет и даже их открытие нередко осуществляются любителями астрономии. Иногда кометы бывают столь яркими, что привлекают всеобщее внимание. В прошлом появление ярких комет вызывало у людей страх и служило источником вдохновения для художников и карикатуристов.

Движение и пространственное распределение.

Структура.

В центре комы располагается ядро – твердое тело или конгломерат тел диаметром в несколько километров. Практически вся масса кометы сосредоточена в ее ядре; эта масса в миллиарды раз меньше земной. Согласно модели Ф.Уиппла, ядро кометы состоит из смеси различных льдов, в основном водяного льда с примесью замерзших углекислоты, аммиака и пыли. Эту модель подтверждают как астрономические наблюдения, так и прямые измерения с космических аппаратов вблизи ядер комет Галлея и Джакобини – Циннера в 1985–1986.

Когда комета приближается к Солнцу ее ядро нагревается, и льды сублимируются, т.е. испаряются без плавления. Образовавшийся газ разлетается во все стороны от ядра, унося с собой пылинки и создавая кому. Разрушающиеся под действием солнечного света молекулы воды образуют вокруг ядра кометы огромную водородную корону. Помимо солнечного притяжения на разреженное вещество кометы действуют и отталкивающие силы, благодаря которым образуется хвост. На нейтральные молекулы, атомы и пылинки действует давление солнечного света, а на ионизованные молекулы и атомы сильнее влияет давление солнечного ветра.

Поведение частиц, формирующих хвост, стало значительно понятнее после прямого исследования комет в 1985–1986. Плазменный хвост, состоящий из заряженных частиц, имеет сложную магнитную структуру с двумя областями различной полярности. На обращенной к Солнцу стороне комы формируется лобовая ударная волна, проявляющая высокую плазменную активность.

Хотя в хвосте и коме заключено менее одной миллионной доли массы кометы, 99,9% света исходит именно из этих газовых образований, и только 0,1% – от ядра. Дело в том, что ядро очень компактно и к тому же имеет низкий коэффициент отражения (альбедо).

Иногда кометы разрушаются при сближении с планетами. 24 марта 1993 на обсерватории Маунт-Паломар в Калифорнии астрономы К. и Ю.Шумейкеры совместно с Д.Леви открыли недалеко от Юпитера комету с уже разрушенным ядром. Вычисления показали, что 9 июля 1992 комета Шумейкеров – Леви-9 (это уже девятая открытая ими комета) прошла вблизи Юпитера на расстоянии половины радиуса планеты от ее поверхности и была разорвана его притяжением более чем на 20 частей. До разрушения радиус ее ядра составлял ок. 20 км.

Таблица 1. ОСНОВНЫЕ ГАЗОВЫЕ СОСТАВЛЯЮЩИЕ КОМЕТ
Атомы Молекулы Ионы
H H2O H2O +
O OH H3O +
C C2 OH +
S C3 CO +
Na CN CO2 +
Fe CH CH +
Co CO CN +
Ni HCN
3CN
HCO

Таблица 1. Основные газовые составляющие комет

Растянувшись в цепочку, осколки кометы удалились от Юпитера по вытянутой орбите, а затем в июле 1994 вновь приблизились к нему и столкнулись с облачной поверхностью Юпитера.

Происхождение.

Ядра комет – это остатки первичного вещества Солнечной системы, составлявшего протопланетный диск. Поэтому их изучение помогает восстановить картину формирования планет, включая Землю. В принципе некоторые кометы могли бы приходить к нам из межзвездного пространства, но пока ни одна такая комета надежно не выявлена.

Газовый состав.

В табл. 1 перечислены основные газовые составляющие комет в порядке убывания их содержания. Движение газа в хвостах комет показывает, что на него сильно влияют негравитационные силы. Свечение газа возбуждается солнечным излучением.

ОРБИТЫ И КЛАССИФИКАЦИЯ

Чтобы лучше понять этот раздел, советуем познакомиться со статьями: НЕБЕСНАЯ МЕХАНИКА; КОНИЧЕСКИЕ СЕЧЕНИЯ; ОРБИТА; СОЛНЕЧНАЯ СИСТЕМА.

Орбита и скорость.

Движение ядра кометы полностью определяется притяжением Солнца. Форма орбиты кометы, как и любого другого тела в Солнечной системе, зависит от ее скорости и расстояния до Солнца. Средняя скорость тела обратно пропорциональна квадратному корню из его среднего расстояния до Солнца (a). Если скорость всегда перпендикулярна радиусу-вектору, направленному от Солнца к телу, то орбита круговая, а скорость называют круговой скоростью (vc) на расстоянии a. Скорость ухода из гравитационного поля Солнца по параболической орбите (vp) в раз больше круговой скорости на этом расстоянии. Если скорость кометы меньше vp, то она движется вокруг Солнца по эллиптической орбите и никогда не покидает Солнечной системы. Но если скорость превосходит vp, то комета один раз проходит мимо Солнца и навсегда покидает его, двигаясь по гиперболической орбите.

На рисунке показаны эллиптические орбиты двух комет, а также почти круговые орбиты планет и параболическая орбита. На расстоянии, которое отделяет Землю от Солнца, круговая скорость равна 29,8 км/с, а параболическая – 42,2 км/с. Вблизи Земли скорость кометы Энке равна 37,1 км/с, а скорость кометы Галлея – 41,6 км/с; именно поэтому комета Галлея уходит значительно дальше от Солнца, чем комета Энке.

Классификация кометных орбит.

Орбиты у большинства комет эллиптические, поэтому они принадлежат Солнечной системе. Правда, у многих комет это очень вытянутые эллипсы, близкие к параболе; по ним кометы уходят от Солнца очень далеко и надолго. Принято делить эллиптические орбиты комет на два основных типа: короткопериодические и долгопериодические (почти параболические). Пограничным считается орбитальный период в 200 лет.

РАСПРЕДЕЛЕНИЕ В ПРОСТРАНСТВЕ И ПРОИСХОЖДЕНИЕ

Почти параболические кометы.

К этому классу относятся многие кометы. Поскольку их периоды обращения составляют миллионы лет, в течение века в окрестности Солнца появляется лишь одна десятитысячная их часть. В 20 в. наблюдалось ок. 250 таких комет; следовательно, всего их миллионы. К тому же далеко не все кометы приближаются к Солнцу настолько, чтобы стать видимыми: если перигелий (ближайшая к Солнцу точка) орбиты кометы лежит за орбитой Юпитера, то заметить ее практически невозможно.

Короткопериодические кометы.

Переход кометы с почти параболической орбиты на короткопериодическую происходит в том случае, если она догоняет планету сзади. Обычно для захвата кометы на новую орбиту требуется несколько ее проходов через планетную систему. Результирующая орбита кометы, как правило, имеет небольшое наклонение и большой эксцентриситет. Комета движется по ней в прямом направлении, и афелий ее орбиты (наиболее удаленная от Солнца точка) лежит вблизи орбиты захватившей ее планеты. Эти теоретические соображения полностью подтверждаются статистикой кометных орбит.

Негравитационные силы.

Кометы, задевающие Солнце.

 IGDA В ПРОШЛОМ кометы иногда считались предвестницами несчастий. На иллюстрации (1579) вождь ацтеков Монтесума наблюдает небесный знак падения своего царства.

Комета Галлея.

Комета Энке.

Эта тусклая комета была первой включена в семейство комет Юпитера. Ее период 3,29 года – наиболее короткий среди комет. Орбиту впервые вычислил в 1819 немецкий астроном И.Энке (1791–1865), отождествивший ее с кометами, наблюдавшимися в 1786, 1795 и 1805. Комета Энке ответственна за метеорный поток Тауриды, наблюдающийся ежегодно в октябре и ноябре.

КОМЕТА ХЕЙЛА – БОППА, приближавшаяся к Солнцу весной 1997.

Комета Джакобини – Циннера.

ФИЗИКА КОМЕТ

Блеск.

Наблюдаемый блеск освещенного Солнцем небесного тела с неизменной поверхностью меняется обратно пропорционально квадратам его расстояний от наблюдателя и от Солнца. Однако солнечный свет рассеивается в основном газопылевой оболочкой кометы, эффективная площадь которой зависит от скорости сублимации льда, а та, в свою очередь, – от теплового потока, падающего на ядро, который сам изменяется обратно пропорционально квадрату расстояния до Солнца. Поэтому блеск кометы должен меняться обратно пропорционально четвертой степени расстояния до Солнца, что и подтверждают наблюдения.

Размер ядра.

Размер ядра кометы можно оценить из наблюдений в то время, когда оно далеко от Солнца и не окутано газопылевой оболочкой. В этом случае свет отражается только твердой поверхностью ядра, и его видимый блеск зависит от площади сечения и коэффициента отражения (альбедо). У ядра кометы Галлея альбедо оказалось очень низким – ок. 3%. Если это характерно и для других ядер, то диаметры большинства из них лежат в диапазоне от 0,5 до 25 км.

Сублимация.

Пылинки и газ из нейтральных молекул (табл. 1) образуют почти сферическую кому кометы. Обычно кома тянется от 100 тыс. до 1 млн. км от ядра. Давление света может деформировать кому, вытянув ее в антисолнечном направлении.

Водородная корона.

Поскольку льды ядра в основном водяные, то и кома в основном содержит молекулы H2O. Фотодиссоциация разрушает H2O на H и OH, а затем OH – на O и H. Быстрые атомы водорода улетают далеко от ядра прежде чем оказываются ионизованными, и образуют корону, видимый размер которой часто превосходит солнечный диск.

Хвост и сопутствующие явления.

Хвост кометы может состоять из молекулярной плазмы или пыли. Некоторые кометы имеют хвосты обоих типов.

Пылевой хвост обычно однородный и тянется на миллионы и десятки миллионов километров. Он образован пылинками, отброшенными давлением солнечного света от ядра в антисолнечном направлении, и имеет желтоватый цвет, поскольку пылинки просто рассеивают солнечный свет. Структуры пылевого хвоста могут объясняться неравномерным извержением пыли из ядра или разрушением пылинок.

Плазменный хвост в десятки и даже сотни миллионов километров длиной – это видимое проявление сложного взаимодействия между кометой и солнечным ветром. Некоторые покинувшие ядро молекулы ионизуются солнечным излучением, образуя молекулярные ионы (H2O + , OH + , CO + , CO2 + ) и электроны. Эта плазма препятствует движению солнечного ветра, пронизанного магнитным полем. Наталкиваясь на комету, силовые линии поля оборачиваются вокруг нее, принимая форму шпильки для волос и образуя две области противоположной полярности. Молекулярные ионы захватываются в эту магнитную структуру и образуют в центральной, наиболее плотной ее части видимый плазменный хвост, имеющий голубой цвет из-за спектральных полос CO + . Роль солнечного ветра в формировании плазменных хвостов установили Л.Бирман и Х.Альвен в 1950-х годах. Их расчеты подтвердили измерения с космических аппаратов, пролетевших через хвосты комет Джакобини – Циннера и Галлея в 1985 и 1986.

Столкновения в Солнечной системе.

Из наблюдаемого количества и орбитальных параметров комет Э.Эпик вычислил вероятность столкновения с ядрами комет различного размера (табл. 2). В среднем 1 раз за 1,5 млрд. лет Земля имеет шанс столкнуться с ядром диаметром 17 км, а это может полностью уничтожить жизнь на территории, равной площади Северной Америки. За 4,5 млрд. лет истории Земли такое могло случаться неоднократно. Гораздо чаще происходят катастрофы меньшего масштаба: в 1908 над Сибирью, вероятно, вошло в атмосферу и взорвалось ядро небольшой кометы, вызвав полегание леса на большой территории.

Цели: обобщить и систематизировать знания о малых телах Солнечной системе: астероидах, кометах, метеорах.

Астероид – это небольшое планетоподобное тело Солнечной системы, размером от нескольких метров до тысячи километров, астероиды часто называют малыми планетами (но не карликовыми планетами!

Астероидам с точно известными орбитами присваивают не только порядковые номера, но и имена: 3 Юнона, 44 Ниса, 1566 Икар. Известны точные элементы орбит более 8000 астероидов из 33 000 открытых на сегодня. Номер в обозначении астероида указывает порядок его открытия.

Так, группа Троянцев движется по орбите Юпитера; большинство из этих астероидов очень темные и красные.

Астероиды группы Аполлона пересекают орбиту Земли; среди них 1533 Икар, ближе всех подходящий к Солнцу. Очевидно, рано или поздно эти астероиды испытывают опасное сближение с планетами, которое заканчивается столкновением или серьезным изменением орбиты.

Виды астероидов:каменные и железные

Более 100 000 астероидов носятся в пространстве вокруг нашей планеты, но всего лишь один (из тех, что известны) грозит в ближайшие 30 лет без приглашения наведаться к нам в гости. Это Апофис – астероид, названный именем древнеегипетского бога. Крупнейший астероид (карликовая планета) – Церера (первый пояс)

Астероиды по размерам сильно различаются, самые маленькие из них не отличаются от частиц пыли.Среди астероидов выделяют семейства астероидов с примерно одинаковыми характеристиками. Самые важные среди таких – астероиды, орбиты которых лежат вблизи Земли.. За последние годы крупные астероиды пролетали неоднократно, вызывая страх и тревогу.

Оценка опасности столкновения Земли
с астероидами и кометами

События, не имеющие последствий (Белая Зона) Вероятность столкновения в ближайшие десятилетия равна 0. К этой же категории событий относятся столкновения с объектами, которые не смогут достигнуть поверхности Земли, сгорев в ее атмосфере.
Заслуживающие внимания (Зеленая Зона) Вероятность столкновения крайне низка, порядка вероятности случайного столкновения Земли с объектом такого же размера. (скорее всего, слежения подобные тела в ближайшие десятилетия с Землей не встретятся)
Вызывающие беспокойство (Желтая Зона) Близкий, но не являющийся чем-то необычным, пролет. Столкновение очень маловероятно. (подобные события происходят нередко)
Близко пролетающее тело, вероятность столкновения 1% или выше. Столкновение способно вызвать только локальные разрушения.
Близкий пролет с вероятностью столкновения 1% или более. Столкновение способно вызвать региональные разрушения.
Явно угрожающие события (Оранжевая Зона) Близкий пролет, который может с существенной вероятностью вызвать столкновение, приводящее к региональной катастрофе.
Близкий пролет, который с существенной вероятностью может вызвать столкновение, приводящее к катастрофе с вероятными глобальными последствиями.
Близкий пролет, который с существенной вероятностью может вызвать столкновение, приводящее к катастрофе с неизбежными глобальными последствиями.
Неизбежное столкновение (Красная Зона) Столкновение приводящее к локальным разрушениям. Такие столкновения с Землей происходят от одного раза в 50 лет до раза в 1000 лет.
Столкновение приводящее к региональным разрушениям. Такие события происходят от одного раза в 10000 лет до одного раза в 100000 лет.
Столкновение приводящее к глобальной катастрофе с изменением климата. Такие события случаются один раз в 100000 лет или реже.

Кометы

По мере приближения кометы к Солнцу, лёд ядра кометы начинает испаряться, потоки газа и пыли начинают выбрасываться в космос. Кома кометы и хвосты начинают образовываться на расстоянии от Солнца примерно 5 а. е. (орбита Юпитера).

Характеристика орбит комет

Кометы движутся по вытянутым траекториям. Орбита комет характеризуется параметрами, которые описывают размер орбиты, ее положение относительно Солнца: перигелийным расстоянием q (минимальным расстоянием от Солнца) и эксцентриситетом е (степенью вытянутости орбиты), периодом обращения кометы Р, большой полуосью орбиты а. Орбита кометы может лежать не в плоскости эклиптики.

Домашнее задание: ответить на вопросы теста

К малым телам Солнечной системы относятся:

2. Самый крупный астероид:

3. В солнечной системе пояс астероидов находится между орбитами:

1. Меркурия и Венеры

2. Марса и Юпитера

3. Урана и Нептуна

4. Юпитера и Сатурна

4. В каком состоянии находится вещество ядра кометы:

1. Твердое тело – смесь замерших газов, пыли, частиц тугоплавких металлов

2. Жидкость – смесь воды и жидкого азота

3. Разреженный газ и пыль

5. Хвосты комет обычно направлены:

1. В сторону Солнца

2. В сторону, противоположную Солнцу

3. Перпендикулярно линии, соединяющей комету и Солнце

4. У кометы вообще нет хвоста

6. По своему составу метеориты бывают:

7. Метеор это:
А. Маленькая частичка, обращающаяся вокруг Солнца;
В. Твердое тело, достигающее поверхности Земли;
С. Явление сгорания небольших падающих тел в атмосфере Земли;
Д. Нет верного ответа.

8. Какое из перечисленных явлений нельзя наблюдать на Луне:

1. Солнечное затмение

4. Солнечные вспышки

9. В результате вторжения в плотные слои атмосферы метеорного тела на небе наблюдается огненный шар. Это:

Критерии оценивания:

Преподаватель: Михайлова Татьяна Борисовна

Примеры решений задач по астрономии: Фокусное расстояние объектива телескопа составляет 900 мм, а фокусное .

Появление большинства комет непредсказуемо. Люди обращали внимание на них с незапамятных времен. Невозможно не заметить на небе зрелища столь редкостного, а значит, ужасающего, пострашнее любого затмения, когда на небе видно туманное светило, иногда настолько яркое, что может сверкать сквозь облака (1577 год), затмевая даже Луну. А из недр незваного небесного гостя вырываются огромные хвосты…Изучая появление кометы в 1577 году, Тихо Браге установил, что она движется далеко за орбитой Луны. Начиналось время исследования орбит комет.

Первым фанатиком, жаждущим открытия комет, был служащий Парижской обсерватории Шарль Мессье. В историю астрономии он вошел как составитель каталога туманностей и звездных скоплений, предназначавшегося для поиска комет, чтобы не принимать далекие туманные объекты за новые кометы. В каталог вошли рассеянные и шаровые скопления и галактики. Туманность Андромеды носит по каталогу Мессье наименование М31. За 39 лет наблюдений Мессье открыл 14 новых комет!

По оценкам ученых, на далеких окраинах Солнечной системы, в так называемом облаке Оорта – гигантском сферическом скоплении кометного вещества – сосредоточено около 10 12 –10 13 комет, обращающихся вокруг Солнца на расстояниях от 3000 до 160 000 а. е. По мере приближения кометы к Солнцу, лёд ядра кометы начинает испаряться, потоки газа и пыли начинают выбрасываться в космос. Кома кометы и хвосты начинают образовываться на расстоянии от Солнца примерно 5 а.е. (орбита Юпитера).

Характеристика орбит

Кометы движутся по вытянутым траекториям. Орбита комет характеризуется параметрами, которые описывают размер орбиты, ее положение относительно Солнца: перигелийным расстоянием q (минимальным расстоянием от Солнца) и эксцентриситетом е (степенью вытянутости орбиты), периодом обращения кометы Р, большой полуосью орбиты а. Орбита кометы может лежать не в плоскости эклиптики. Поэтому орбита кометы может характеризоваться углом наклона плоскости орбиты кометы i к плоскости эклиптики.

Кометы могут периодически возвращаться к Солнцу. Такие кометы называют периодическими. У периодических комет определены перигелий q (минимальное расстояние от Солнца), афелий Q (максимальное расстояние от Солнца).

Названия комет

Кометы открывают достаточно часто. Названия комет отражают время от открытия. Многие кометы носят названия NEAT , а далее год открытия и цифры. Так называют кометы, открытые в рамках наблюдений по программе NEAT (Near Earth Asteroid Tracking – программа слежения за астероидами, пролетающими вблизи Земли).

Обозначения комет расшифровываются так – C/2004 R 1: 2004 – текущий год , R – буквенное обозначение полумесяца открытия 1- номер кометы в данном полумесяце.

Буква P ставится впереди, если комета периодическая, например P/2004 R 1.

Кометы движутся по вытянутым траекториям. Орбита комет характеризуется параметрами, которые описывают размер орбиты, ее положение относительно Солнца: перигелийным расстоянием q (минимальным расстоянием от Солнца) и эксцентриситетом е (степенью вытянутости орбиты), периодом обращения кометы Р, большой полуосью орбиты а. Орбита кометы может лежать не в плоскости эклиптики. Поэтому орбита кометы может характеризоваться углом наклона плоскости орбиты кометы i к плоскости эклиптики.

Типы хвостов комет

Хорошо заметны белый пылевой и синий плазменный хвосты кометы.

Типы хвостов комет исследовал русский астроном Ф. А. Бредихин. В конце XIX века от разделил хвосты комет на три типа:

· I тип хвостов комет прямой и направлен в сторону от Солнца по радиусу вектору.

· II тип хвостов широкий, изогнутый.

· III тип хвостов направлен вдоль орбиты кометы. Такие хвосты неширокие.

Довольно редко встречаются кометы, хвосты которых направлены к Солнцу. Это так называемые аномальные хвосты.

Под воздействием солнечного ветра пылевые частицы отбрасываются в направлении, противоположном Солнцу, формируя пылевой хвост кометы. Пылевой хвост кометы имеет обычно желтоватый цвет и светится отражённым от Солнца светом.

Плазменный хвост кометы обычно голубоватого цвета. Плазменный хвост кометы образуется из газа, который электризуется под действием ультрафиолетового излучения Солнца – плазмы.

Строение кометы

У каждой кометы несколько различных составных частей:

  • Ядро: относительно твердое и стабильное, состоящее в основном изо льда и газа с небольшими добавками пыли и других твердых веществ.
  • Голова (кома): светящаяся газовая оболочка, возникающая под действием электромагнитного и корпускулярного излучения Солнца. Плотное облако водяного пара, углекислого и других нейтральных газов сублимирующих из ядра.
  • Пылевой хвост: состоит из очень мелких частиц пыли уносимых от ядра потоком газа. Эта часть кометы лучше всего видна невооруженным глазом.
  • Плазменный (ионный) хвост: состоит из плазмы (ионизованных газов), интенсивно взаимодействует с солнечным ветром.

IV. Выполнение заданий по карточкам (дифференцированная форма контроля, на первом месте № варианта, на втором – сложность)

Малые тела Солнечной системы 1 – 1 1. Назовите три самых крупных астероида главного пояса астероидов и приведите их примерные размеры. 2. Какие периодические кометы вы знаете? Каковы примерные их расстояния от Солнца? 3. Можно ли наблюдать метеоры на Луне? 4. Каков химический состав метеоритов?

Малые тела Солнечной системы 2 – 1 1. Где находятся орбиты большинства астероидов? 2. От каких причин зависит видимая угловая длина кометных хвостов? Как отличить при наблюдении комету без хвоста от обычной туманности? 3. Почему на астероидах отсутствует атмосфера? 4. Найти большую полуось кометы Галлея, период обращения которой 76 лет.

  1. Каково строение большинства комет? Каковы размеры хвостов комет и от чего эти размеры зависят
  2. Какой из известных астероидов удаляется от Солнца на наибольшее расстояние?
  3. Может ли комета, периодически возвращающаяся к Солнцу, вечно сохранять свой вид неизменным?
  4. Вычислите период обращения одной из самых короткопериодических комет – кометы Энке, если большая полуось ее орбиты 2,2 а.е.
  1. Почему хвосты всех комет направлены в сторону противоположную Солнцу?
  2. Какие астероиды носят название Троянцы, как они расположены в солнечной системе?
  3. Комета имеет период обращения 770 лет. Найти её большую полуось.
  4. Каков примерно период обращения кометы, которая в афелии отстоит от Солнца на 4000 а.е.?

  1. Каковы размеры астероидов?
  2. В чем отличие астероида от метеорита и кометы от астероида?
  3. Могут ли у астероидов и карликовых планет быть спутники?
  4. Комета Тутля имеет большую полуось орбиты 5,7 а.е. Найти период обращения этой кометы.
  1. По каким орбитам движутся в Солнечной системе кометы?
  2. Что представляет собой ядро кометы и ее хвост? В чём отличие ионного хвоста от пылевого?
  3. Предположим, что наблюдается полет яркого метеора, затмевающего своим светом звезды. Как это явление может наблюдать космонавт с Луны?
  4. Комета Галлея обращается вокруг Солнца с периодом обращения 76 лет. Нептун имеет период обращения 164,8 лет. Кто из них более удален от Солнца в точке афелия своей орбиты?
  1. Охарактеризуйте физическую природу и строение кометы
  2. Сравните массу всех астероидов главного пояса с массой Земли. Сравните размеры астероидов с размерами Земли и Луны. Что больше и во сколько раз?
  3. В чем отличие метеора от метеорита?
  4. Какова скорость кометы в перигелии и в афелии своей орбиты? В какой точке орбиты она максимальна и в какой минимальна?
  1. По каким орбитам движутся в Солнечной системе кентавры? Какие у них эксцентриситеты?
  2. Что называют поясом Койпера?
  3. Предположим, что наблюдается полет яркого метеора, затмевающего своим светом звезды. Как это явление может наблюдать космонавт с Луны?
  4. Кентавр Несс обращается вокруг Солнца по орбите с большой полуосью 24,5 а.е. Найти период обращения Несса вокруг Солнца. Эксцентриситет Несса 0,518. Между какими орбитами больших планет движется Несс?
  1. По какой орбите движется в Солнечной системе Хирон? По какой орбите движется Харон? В чем их самая главная разница в движении?
  2. Что представляет собой облако Оорта и чем отличается от пояса Койпера?
  3. Чем метеорит отличается от метеороида и от метеора?
  4. Кентавр Фол обращается вокруг Солнца по орбите с большой полуосью 20,2 а.е. Найти период обращения Фола вокруг Солнца.

МАЛЫЕ ТЕЛА СОЛНЕЧНОЙ СИСТЕМЫ 1 – 1

МАЛЫЕ ТЕЛА СОЛНЕЧНОЙ СИСТЕМЫ 2 – 1

МАЛЫЕ ТЕЛА СОЛНЕЧНОЙ СИСТЕМЫ 3 – 2

МАЛЫЕ ТЕЛА СОЛНЕЧНОЙ СИСТЕМЫ 4 – 3

МАЛЫЕ ТЕЛА СОЛНЕЧНОЙ СИСТЕМЫ 5 – 2

МАЛЫЕ ТЕЛА СОЛНЕЧНОЙ СИСТЕМЫ 6 – 2

МАЛЫЕ ТЕЛА СОЛНЕЧНОЙ СИСТЕМЫ 7 – 3

МАЛЫЕ ТЕЛА СОЛНЕЧНОЙ СИСТЕМЫ 8 – 2

МАЛЫЕ ТЕЛА СОЛНЕЧНОЙ СИСТЕМЫ 9 – 2

МАЛЫЕ ТЕЛА СОЛНЕЧНОЙ СИСТЕМЫ 10 – 2

Кометы движутся по вытянутым траекториям. Орбита комет характеризуется параметрами, которые описывают размер орбиты, ее положение относительно Солнца: перигелийным расстоянием q (минимальным расстоянием от Солнца) и эксцентриситетом е (степенью вытянутости орбиты), периодом обращения кометы Р, большой полуосью орбиты а. Орбита кометы может лежать не в плоскости эклиптики. Поэтому орбита кометы может характеризоваться углом наклона плоскости орбиты кометы i к плоскости эклиптики.

Типы хвостов комет

Хорошо заметны белый пылевой и синий плазменный хвосты кометы.

Типы хвостов комет исследовал русский астроном Ф. А. Бредихин. В конце XIX века от разделил хвосты комет на три типа:

· I тип хвостов комет прямой и направлен в сторону от Солнца по радиусу вектору.

· II тип хвостов широкий, изогнутый.

· III тип хвостов направлен вдоль орбиты кометы. Такие хвосты неширокие.

Довольно редко встречаются кометы, хвосты которых направлены к Солнцу. Это так называемые аномальные хвосты.

Под воздействием солнечного ветра пылевые частицы отбрасываются в направлении, противоположном Солнцу, формируя пылевой хвост кометы. Пылевой хвост кометы имеет обычно желтоватый цвет и светится отражённым от Солнца светом.

Плазменный хвост кометы обычно голубоватого цвета. Плазменный хвост кометы образуется из газа, который электризуется под действием ультрафиолетового излучения Солнца – плазмы.

Строение кометы

У каждой кометы несколько различных составных частей:

  • Ядро: относительно твердое и стабильное, состоящее в основном изо льда и газа с небольшими добавками пыли и других твердых веществ.
  • Голова (кома): светящаяся газовая оболочка, возникающая под действием электромагнитного и корпускулярного излучения Солнца. Плотное облако водяного пара, углекислого и других нейтральных газов сублимирующих из ядра.
  • Пылевой хвост: состоит из очень мелких частиц пыли уносимых от ядра потоком газа. Эта часть кометы лучше всего видна невооруженным глазом.
  • Плазменный (ионный) хвост: состоит из плазмы (ионизованных газов), интенсивно взаимодействует с солнечным ветром.

IV. Выполнение заданий по карточкам (дифференцированная форма контроля, на первом месте № варианта, на втором – сложность)

КОМЕ́ТЫ (от греч. ϰ ομ ήτης – во­ло­са­тый, кос­ма­тый), не­боль­шие по раз­ме­ру и мас­се не­бес­ные те­ла Сол­неч­ной сис­те­мы, об­ра­щаю­щие­ся во­круг Солн­ца по силь­но вы­тя­ну­тым ор­би­там и рез­ко по­вы­шаю­щие свою яр­кость при сбли­же­нии с Солн­цем. Вбли­зи Солн­ца К. вы­гля­дят на не­бе как све­тя­щие­ся ша­ры, за ко­то­ры­ми тя­нет­ся длин­ный хвост (рис. 1). К. пред­став­ля­ют со­бой ле­дя­ные не­бес­ные те­ла (ино­гда на­зы­вае­мые кос­мич. айс­бер­га­ми), яр­кое све­че­ние ко­то­рых соз­да­ёт­ся рас­сея­ни­ем сол­неч­но­го све­та и др. фи­зич. эф­фек­та­ми. Пол­ное на­зва­ние К. вклю­ча­ет в се­бя име­на от­кры­ва­те­лей (не бо­лее трёх), год от­кры­тия, про­пис­ную бу­к­ву лат. ал­фа­ви­та и чис­ло, ука­зы­ваю­щие, в ка­кой мо­мент го­да бы­ла от­кры­та К., и пре­фикс, обо­зна­чаю­щий тип К. (Р – ко­рот­ко­пе­риодиче­ская К., С – дол­го­пе­рио­диче­ская К., D – раз­ру­шив­шая­ся К. и пр.). Еже­год­но в лю­би­тель­ский те­ле­скоп мож­но на­блю­дать при­мер­но 10–20 ко­мет.

Читайте также:

      

  • Социально неадаптированные дети в начальной школе
  •   

  • Карантин в нижегородской области в школах осенью 2021
  •   

  • Актуальность темы здоровьесберегающие технологии в начальной школе
  •   

  • Мониторинг удовлетворенности педагогов доу
  •   

  • Автоматизированные информационные системы на жд транспорте кратко
  Сегодня: 21 Мая 2023, Воскресенье

Солнечная система. Кометы

ВТ, 12/07/2010 – 15:13 — mav

Кометы

фотогалерея

дополнительно  в Википедии  Комета       

Комета Галлея • Комета Хейла — Боппа • Комета Хякутакэ • Комета Шумейкеров — Леви 9
Околосолнечная комета • Семейство комет Крейца • Большая комета • Список короткопериодических комет • Долгопериодические кометы

    Комета (от др.-греч. κομ?της, kom?t?s — «волосатый, косматый») — небольшое ледяное небесное тело, движущееся по орбите в Солнечной системе, которое частично испаряется при приближении к Солнцу, в результате чего возникает диффузная оболочка из пыли и газа, а также один или несколько хвостов.
    Первое появление кометы, которое удалось зарегистрировать в хрониках, датируется 2296 годом до н.э. И сделала это женщина, жена императора Яо, у которого появился на свет сын ставший впоследствии императором Та-Ю, основателем  династии Хиа. Именно с этого момента и следили за ночным небом китайские астрономы и лишь благодаря им, мы знаем об этой дате. С нее и начинает отсчет история кометной астрономии. Китайцы не только описывали кометы, но и наносили на звездную карту пути комет, что позволило современным астрономам отождествить самые яркие из их, проследить эволюцию их орбит и получить другую полезную информацию.
    Невозможно не заметить на небе зрелища столь редкостного, когда на небе видно туманное светило, иногда настолько яркое, что может сверкать сквозь облака (1577 год), затмевая даже Луну.  Аристотель в IV веке до н.э. объяснил явление кометы следующим образом: легкая, теплая, «сухая пневма» (газы Земли) поднимается к границам атмосферы, попадает в сферу небесного огня и воспламеняется – так образуются «хвостатые звезды». Аристотель утверждал, что кометы вызывают сильные бури, засуху. Его представления были общепризнанными в течение двух тысячелетий. В средние века кометы считались предвестниками войн и эпидемий. Так вторжение норманнов в Южную Англию в 1066 году связывали с появлением в небе кометы Галлея. С появлением в небе кометы ассоциировалось и падение Константинополя в 1456 году. Изучая появление кометы в 1577 году, Тихо Браге установил, что она движется далеко за орбитой Луны. Начиналось время исследования орбит комет…
     Первым фанатиком, жаждущим открытия комет, был служащий Парижской обсерватории Шарль Мессье. В историю астрономии он вошел как составитель каталога туманностей и звездных скоплений, предназначавшегося для поиска комет, чтобы не принимать далекие туманные объекты за новые кометы. За 39 лет наблюдений Мессье открыл 13 новых комет! В первой половине XIX столетия среди «ловцов» комет особенно отличился Жан Понс. Сторож Марсельской обсерватории, а позднее ее директор, соорудил небольшой любительский телескоп и, следуя примеру своего соотечественника Мессье, занялся поисками комет. Дело оказалось столь увлекательным, что за 26 лет он открыл 33 новых кометы! Не случайно астрономы прозвали его «Кометным магнитом». Рекорд, установленный Понсом, до сих пор остается непревзойденным. Доступно наблюдениям порядка 50 комет. В 1861 году получен первый снимок кометы. Однако, согласно архивных данных в анналах Гарвардского университете обнаружена запись от 28 сентября 1858 года, в которой Георг Бонд сообщил о попытке получить фотографическое изображение кометы в фокусе 15″ рефрактора! При выдержке 6′ проработалась наиболее яркая часть комы размером 15 угловых секунд. Фотография не сохранилась.
    Каталог кометных орбит 1999г содержит 1722 орбиты для 1688 кометных появлений, относящихся к 1036 различным кометам. С древнейших времен до наших дней замечено и описано уже около 2000 комет. За 300 лет после Ньютона вычислены орбиты более 700 из них. Общие результаты таковы. Большинство комет движется по эллипсам, умеренно или сильно вытянутым. Самым коротким маршрутом ходит комета Энке – от орбиты Меркурия до Юпитера и обратно за 3,3 года. Самая далекая из тех, что наблюдались дважды, – комета, открытая в 1788 г. Каролиной Гершель и вернувшаяся через 154 года с расстояния 57 а.е. В 1914 г. на побитие рекорда дальности пошла комета Делавана. Она удалится на 170 000 а.е. и “финиширует” через 24 млн лет.
    На данный момент обнаружено более 400 короткопериодических комет. Из них около 200 наблюдалось в более чем одном прохождении перигелия. Многие из них входят в так называемые семейства. Например, приблизительно 50 самых короткопериодических комет (их полный оборот вокруг Солнца длится 3—10 лет) образуют семейство Юпитера. Немного малочисленнее семейства Сатурна, Урана и Нептуна (к последнему, в частности, относится знаменитая комета Галлея).
    Земные наблюдения многих комет и результаты исследований кометы Галлея с помощью космических аппаратов в 1986г подтвердили гипотезу, высказанную впервые Ф. Уипплом в 1949г о том, что ядра комет представляют собой что-то вроде “грязных снежков” нескольких километров в поперечнике. По-видимому, они состоят из замерзших воды, двуокиси углерода, метана и аммиака с вмерзшей внутрь пылью и каменистым веществом. При приближении кометы к Солнцу лед под действием солнечного тепла начинает испаряться, а улетучивающийся газ образует вокруг ядра диффузную светящуюся сферу, называемую комой. Кома может достигать в поперечнике миллиона километров. Само по себе ядро слишком мало, чтобы его можно было непосредственно увидеть. Наблюдения в ультрафиолетовом диапазоне спектра, проведенные с космических аппаратов, показали, что кометы окружены огромными облаками водорода, размером во много миллионов километров. Водород получается в результате разложения молекул воды под действием солнечного излучения. В 1996г было обнаружено рентгеновское излучение кометы Хиякутаке, а впоследствии открыли, что и другие кометы являются источниками рентгеновского излучения.
    Наблюдения в 2001г, проведенные с помощью высоко-дисперсионного спектрометра телескопа Subara, позволили астрономам впервые измерить температуру заледенелого аммиака в ядре кометы. Значение температуры в 28 + 2 градуса по Кельвину позволяет предположить, что комета LINEAR (C/1999 S4) сформировалась между орбитами Сатурна и Урана. Это означает, что теперь астрономы могут не только определять условия, в которых формируются кометы, но и находить место их возникновения. С помощью спектрального анализа в головах и хвостах комет были обнаружены органические молекулы и частицы: атомарный и молекулярный углерод, гибрид углерода, окись углерода, сульфид углерода, цианистый метил; неорганические составляющие: водород, кислород, натрий, кальций, хром, кобальт, марганец, железо, никель, медь, ванадий. Наблюдаемые в кометах молекулы и атомы, в большинстве случаев, являются «обломками» более сложных родительских молекул и молекулярных комплексов. Природа происхождения родительских молекул в кометных ядрах до сих пор не разгадана. Пока только ясно, что это очень сложные молекулы и соединения типа аминокислот! Некоторые исследователи считают, что такой химический состав может служить катализатором возникновения жизни или начальным условием ее зарождения при попадании этих сложных соединений в атмосферы или на поверхности планет с достаточно устойчивыми и благоприятными условиями.

Обозначение комет

     Если раньше открывалось до десятка комет в год, то сейчас с помощью космической техники это количество увеличилось почти на порядок. Каждый год открывается порядка 100 комет.  Теперь общепринято, что многие кометы рождаются в сферическом облаке, которое окружает солнечную систему на расстоянии, возможно, 50000 а.е. Этот “резервуар” кометных ядер называется облаком Оорта. Другие кометы, по-видимому, происходят из пояса Койпера, расположенного вне орбиты Нептуна.
    Когда обнаруживается новая комета или вновь появляется потерянная ранее периодическая комета, она получает обозначение, состоящее из цифр года, сопровождаемых прописной буквой. Буква указывает на первую/вторую половину месяца открытия в текущем году, например A = 1-15 января, B = 16-31 января, … Y= 16-31 декабря. Для короткопериодических комет добавляется префикс P/ , а для долгопериодических – префикс C/. Для периодических комет, которые исчезли или разрушились, используется префикс D/. Новые кометы называются по имени их первооткрывателей (если имеется несколько независимых сообщений об открытии, то разрешается присвоение не более трех имен). Несколько комет были названы по имени ученых, вычисливших их орбиты (например, Галлей и Энке), а также по имени обсерваторий или искусственных спутников, где открытие было по существу результатом усилий группы исследователей. Когда параметры короткопериодической кометы установлены окончательно, ей присваивается номер (например, 1P/Галлея).
    Эта система обозначений и наименований комет была введена в 1995г. До 1995г обозначение кометы состояло из года открытия, временно сопровождаемого строчной буквой, указывающей порядковый номер открытия кометы в текущем году. Впоследствии строчная буква заменялась на постоянное обозначение в виде римской цифры, соответствующей порядку прохождения кометой перигелия в соответствующем году.
    Полномочия по наименованию комет закреплены за Международным астрономическим союзом. Его центр обобщает сообщения об открытиях и наблюдениях, сообщая информацию подписчикам.

Строение и хвосты комет

  Пыль и газ покидают ядро кометы с выбросами, образующимися на стороне, обращенной к Солнцу, а затем уносятся в направлении от Солнца. Хвосты небесных странниц комет различаются длиной и формой. Электрически заряженные ионизированные атомы отбрасываются магнитным полем солнечного ветра, образуя прямые ионные хвосты (называемые также хвостами типа I, плазменными или газовыми хвостами). Неравномерность солнечного ветра заставляет ионный хвост структурироваться или даже вызывает его разрыв. Небольшие нейтральные частицы пыли не уносятся солнечным ветром, но мягко “сдуваются” от Солнца лучистым давлением. Пылевые хвосты (также называемые хвостами типа II), как правило, широкие и плоские. У кометы Хейла-Боппа был обнаружен третий хвост, не относящийся к указанным выше типам, состоящий из атомов нейтрального натрия. Всегда направленные в сторону от Солнца, хвосты растут по мере приближения кометы к Солнцу и могут достичь длины ста миллионов километров. Большие частицы пыли разбрасываются вдоль орбиты кометы, образуя метеорные потоки. По длине у некоторых комет они тянутся через всё небо. Например, хвост кометы, появившейся в 1944 году, был длиной 20 млн км. А комета C/1680 V1 имела хвост, протянувшийся на 240 млн км. Также были зафиксированы случаи отделения хвоста от кометы.
    Несмотря на свой внушительный вид, кометы содержат очень немного вещества, – возможно, всего одну миллиардную часть массы Земли. Их хвосты настолько неплотные (его плотность гораздо меньше, чем плотность газа, выпущенного из зажигалки), что за один проход вокруг Солнце теряется лишь пятисотая часть массы ядра. Состав большинства пылинок схож с астероидным материалом солнечной системы, что выяснилось в результате исследования кометы Вильда (2) космическим аппаратом «Стардаст». По сути, это «видимое ничто»: человек может наблюдать хвосты комет только потому, что газ и пыль светятся. При этом свечение газа связано с его ионизацией ультрафиолетовыми лучами и потоками частиц, выбрасываемых с солнечной поверхности, а пыль просто рассеивает солнечный свет. Так подсчитано, что за 100 проходов комета Галлея уменьшилась в размере на 1,2км (по другим источникам “обтаивает” на каждом витке метров на 200. Когда около 100 тыс. лет назад Нептун ее захватил, это было солидное космическое тело диаметром несколько сот километров. А сейчас остался окатыш, которого едва хватит до конца III тысячелетия).
Строение:

  • ядро: относительно твердое и стабильное, состоящее в основном изо льда и газа с небольшими добавками пыли и других твердых веществ;
  • кома: плотное облако водяного пара, углекислого и других нейтральных газов сублимирующих из ядра;
  • водородное облако: огромная (миллионы км в диаметре), но очень разреженная оболочка нейтрального водорода;
  • пылевой хвост: до 10 миллионов км в длину, состоит из очень мелких частиц пыли уносимых от ядра потоком газа. Эта часть кометы лучше всего видна не вооруженным глазом;
  • газовый (ионный) хвост: до нескольких сотен миллионов км длинной, состоит из плазмы (ионизованных газов), интенсивно взаимодействует с солнечным ветром.

Периодические кометы   таблица

    Большинство изученных комет периодические, причем некоторые кометы являются короткопериодическими,  двигаясь по эллиптическим орбитам, полный оборот по которым занимает от 6 до 200 лет. Большинство же составляют долгопериодические кометы, орбиты которых настолько вытянуты, что период может измеряться многими тысячами лет. Орбиты короткопериодических комет лежат вблизи плоскости эклиптики, а орбиты длиннопериодических комет обычно не вписываются в основную плоскость Солнечной системы.
     Короткопериодические кометы были захвачены планетарной системой в результате гравитационного нарушения их орбит, что могло быть результатом сближения с Юпитером.  Набрасывая гравитационное лассо,  Юпитер “одомашнивает” кометы, переводит их на короткие орбиты – от Солнца до Юпитера и обратно. Сегодня в табуне Юпитера около сотни хвостов. По десятку комет держат Сатурн и Нептун. Три кометы пасет Уран. Есть еще подозрительное стадо, гуляющее до границы 50-60 а.е., но пастуха пока нет. РЕКОРДЫ


Приближение к Солнцу

    На расстоянии 4,5 а.е. от Солнца, когда обогрев кометы достигает 1/20 нагрева Земли и температура верхнего слоя льда поднимается до -140° С, открытые льды начинают испаряться. Не таять, а именно испаряться. Так улетучивается на холоде лед из замерзшего белья, так же в морозный день без таяния истончаются сугробы. Переход вещества из твердого состояния в газообразное, минуя стадию жидкости, называется возгонкой. День за днем процесс идет все заметнее. Сначала испаряется метан, аммиак, водород, циан, образуя прозрачную атмосферу – голову кометы. По мере приближения к орбите Марса возгоняется углекислота. Последней начинает испаряться вода, требующая большего тепла.
    Атмосферные газы кометы не остаются неизменными. Кванты солнечного света, налетая на молекулы газа, ионизуют вещество, выбивая из атомов электроны. Но от Солнца идет не только свет, а еще и солнечный ветер. Это поток заряженных частиц, которые разбегаются во все стороны от дневного светила и несут с собой обрывки солнечного магнитного поля. Налетая на голову кометы, ветер подхватывает магнитными полями, как сетями, ионы кометного газа и мчит их прочь от Солнца на скорости 500-1000 км/с, образуя длинный и прямой, как луч прожектора, плазменный хвост. На незаряженные частицы газа солнечный ветер не действует. Эти частицы задерживаются у ядра, пополняя голову кометы.
    Наконец, из-под коричневой корки начинают бить газовые фонтаны-гейзеры. Атмосфера все шире, голова все больше, и вот уже заметно ее холодное люминесцентное свечение. Кометный газ светится так же, как краски-люминофоры и как разреженный газ в лампах дневного света.
    Даже слабый напор газа подхватывает и вздымает ввысь громадные султаны пыли. В это время для земного наблюдателя голова кометы становится ярче, потому что пылевой туман отражает больше света, чем его излучают холодные прозрачные газы. Кванты света налетают на пылинки, и хотя их давление на пыль не так энергично и эффектно, как действие солнечного ветра на “окрошку” из атомов и молекул, но свет тоже гонит пылинки прочь от Солнца. Они образуют уже другой хвост – не прямой, как меч, а изогнутый, как сабля: пыль уходит из головы медленнее, и хвост волочится за ней по орбите, изгибаясь.
    Вид комет разнообразен, но, рассматривая их на фотографиях или в натуре, всегда легко заметить: у этой хвост из ионов, у той – пылевой, а у этой оба хвоста. Есть и другие фасоны хвостов, есть даже “бороды”, но обо всем не расскажешь.
    Войдя внутрь орбиты Земли, комета попадает в область сильного нагрева. Теперь гейзеры газа и пыли льются непрерывными струями в сторону Солнца. Ядро может терять 30-40 т пара ежесекундно! Но самое впечатляющее – это подкорковые взрывы. Как будто рвутся глубинные мины непонятной природы. Какие же силы и каким образом вдруг испаряют на глубине объем льда в пять шестнадцатиэтажных зданий и выбрасывают огромное количество газа на 20-30 тыс. километров, откуда и ядро-то еле видно? Это главная загадка комет.
    Очень близкое прохождение около Солнца (а также планеты гиганта, например Юпитера) грозит ядру развалом, разрывом на части, как уже не раз бывало, например:

  • В 1992г при прохождении кометы Шумейкер-Леви 9 (открыта Евгением и Каралиной Шумейкерами, а также Дэвидом Леви при помощи телескопа системы Шмидта) в 15 000 км от Юпитера, она была разорвана на несколько частей и 17-21 июля 1994г при очередном сближении с планетой все обломки врезались в атмосферу Юпитера.
  • Открытая в 1826 комета Биелы в 1845 на глазах у наблюдателей разделилась на две части.
  • 22 сентября 1995 года при прохождении перигелия комета 73Р/ Швассманна-Вахманна3 распалась на части, что заметили только в декабре 1995 года. Вообще то комета с момента открытия 2 мая 1930 года по фотографиям в Обсерватории Гамбурга (Германия) – Арнольд Швассман (Arnold Schwassmann) и Артур Арно Вахман (Arthur Arno Wachmann) 15 раз возвращалась к Солнцу, а наблюдалась только в 6 появлениях, когда проходила вблизи Земли. В начале марта 2006г астрономы насчитали 7 фрагментов.
  • Комета 16Р/ Brooks, открытая Бруксом в 1889 году распалась на несколько частей.
  • Комета Веста в 1973г распалась на несколько частей

  Но если комета благополучно миновала перигелий, она, побушевав еще немного, “успокаивается” и застывает до очередной встречи с Солнцем.


Задевающие Солнце

    Кометы, у которых перигелийное расстояние настолько мало, что фактически они проходят через внешние слои Солнца. Около десяти долгопериодических комет с небольшим расстоянием перигелия (и другими сходными характеристиками орбит) образуют общепринятую группу “задевающих Солнце”. Ее называют также группой Крейца по имени немецкого астронома Генриха Карла Фридриха Крейц (8.09.1854 — 13.07.1907), который в 1888г одним из первых отметил подобие орбит некоторых самых ярких наблюдаемых комет.
    За окрестностями Солнца постоянно ведет наблюдение космический телескоп SOHO (Solar and Heliospheric Observatory). Так 24 мая 2003г камера телескопа сфотографировала две кометы, которым удалось выжить, пролетев сквозь раскаленную солнечную корону, температура которой составляет несколько миллионов градусов. Они прошли над поверхностью Солнца на расстоянии всего одной десятой его радиуса. Правда, при этом они лишились своих голов (в состав головы кометы входит ядро и кома – пыль и газ, выделившиеся из ядра) и от комет остались одни хвосты. Конечно, эти хвосты выглядят очень тусклыми по сравнению с более ярким ядром, но в телескоп SOHO они были видны. Хвост кометы состоит главным образом из пылевых частиц, ранее входивших в состав ядра, но оказавшихся в космосе после испарения скреплявшего их льда. Причем после вылета из ядра эта пыль была отброшена далеко в космос (на миллионы километров) под действием светового давления солнечного излучения.
     Телескоп (коронограф) SOHO наблюдает пространство вокруг Солнца, в то время как яркая часть диска закрыта маской. За 10 лет непрерывной работы солнечной и гелиосферной обсерватории SOHO, находящейся в точке Лагранжа L1 (1.5 млн км от Земли на линии Солнце – Земля), открыто свыше 1000 комет (юбилейную, 1000-ю открыл 5 августа 2005г, а первая открыта 22 августа 1996г S. Stezelberger). Из общего количества наблюденных SOHO комет только несколько десятков объектов прошли на безопасном расстоянии от Солнца, остальные кометы испарились в солнечной атмосфере. Таким образом, эта популяция комет группой Крейца является самой короткоживущей, и мы являемся свидетелями исчезновения из Солнечной системы целого семейства малых тел.

Пояс астероидов: кометоподобные астероиды

    В астероидном поясе могут “Водиться” не только сами астероиды или такие необычные экземпляры как Сильвия с Ромулом и Ремом, но даже кометы. Три необычные кометы нового класса, орбиты которых пролегают в главном поясе астероидов между Марсом и Юпитером, могут стать ключом к разгадке тайны происхождения воды на Земле. Аспирант Генри Хси (Henry Hsieh) и профессором Дэвид Джевитт (David Jewitt) из Гавайского университета открыли новую группу комет – астрономы назвали их “кометами главного пояса астероидов”. Эти кометы нового класса, как предполагают ученые, образовались в более теплой области Солнечной системы, находящейся в пределах орбиты Юпитера, в отличие от других комет из пояса Койпера. (на фото = Снимки двух комет основного пояса (в центре каждого изображения). Остальные объекты – это звезды и галактики фона, размазанные в результате того, что телескоп следил за кометой. Снимки – на 2,2-метровом телескопе Гавайского университета.)
    Присутствие таких комет в главном поясе астероидов указывает на более тесную связь астероидов и комет, чем это считалось ранее, а также свидетельствует о том, что ледяные космические объекты из главного пояса астероидов вполне могли “доставить” воду на Землю.
     Открытие было сделано 26 ноября 2005 года на 8-метровом телескопе Gemini North, установленном в Мауна Ки. Д-р Хси и проф. Джевитт обнаружили, что объект, известный как астероид 118401, имеет пылевой хвост, подобно кометам. На основе наблюдений астрономы сделали вывод, что “астероид” 118401 (1999 RE70) относится к совершенно новому классу комет, к которому также принадлежат известная уже более 10 лет комета 133P/ Elst-Pizarro (астероид 7968) и комета P/2005 U1, открытая совсем недавно (в октябре 2005 года). По мнению д-ра Хси, уникальность комет главного пояса астероидов заключается в том, что они вращаются по круговым “астероидным” орбитам, в отличие от вытянутых орбит обычных комет. В то же время, к классу астероидов их отнести нельзя из-за внешнего сходства с кометами. Есть, конечно, астероиды и кометы, вращающиеся на умеренно вытянутых орбитах, однако возмущения планет (в особенности Юпитера) относительно быстро меняют траектории их движения.
     В 1996 и 2002 годах у необычной кометы главного пояса 133P/Elst-Pizarro, названной по именам двух открывших ее астрономов, был виден типичный для ледяных комет длинный пылевой хвост, несмотря на то, что она вращается по плоской, круговой орбите, характерной для “сухих” астероидов. До недавнего времени комета 133P/Elst-Pizarro была единственным объектом главного пояса астероидов, выглядевшим именно как комета, но имевшим загадочную природу.
    “Скорее всего, это обычный (хотя и ледяной) астероид, а не комета с периферии Солнечной системы,– комментирует проф. Джевитт. – Следовательно, лед может быть и на других астероидах в главном поясе”. Хвосты, которые тянутся за этими астероидами-кометами, указывают на потерю вещества. Но если у обычных комет это происходит в основном лишь при сближении с Солнцем, то у новых объектов потеря вещества идет практически непрерывно. Ясно, что долго так продолжаться не может. Исчерпав запасы летучих веществ, кометы основного пояса лишатся своих хвостов и перестанут выделяться среди обычных астероидов, как, судя по всему, не выделялись они и в прошлом, до того как стали выбрасывать в пространство газ и пыль. Чем же может быть вызвано явление, когда обычный астероид неожиданно начинает выбрасывать вещество, а потом снова замирает?. Причем, происходит это то с одним, то с другим астероидом. Наиболее простое и естественное объяснение предложил астроном из Массачусетского технологического института Ричард Бинзель (Richard Binzel). Он называет новые объекты “активированными астероидами”. На поверхности обычных астероидов нет летучих веществ, таких как вода или углекислый газ. Даже если они были изначально, за миллиарды лет все они испарились под действием солнечного излучения. Однако в глубине такие вещества могли сохраниться. Эти вещества могут начать выходить на поверхность при столкновении с метеоритами, если будет нарушена целостность внешних слоев астероида. Подобные столкновения регулярно происходят в основном поясе, где относительно велика плотность космических обломков самой разной величины. Само же наличие летучих газов внутри астероидов не является большой неожиданностью. Например, метеориты, относящиеся к классу углистых хондритов содержат до 10% летучих веществ. По грубым прикидкам, в основном поясе астероидов может быть несколько десятков тысяч астероидов с подобным составом. Они представляют значительный интерес для будущих космических миссий, поскольку, по всей видимости, первичное вещество залегает в них относительно неглубоко под поверхностью.
    Таким образом, новая находка показывает, что кометы и астероиды (по крайней мере, некоторые их типы) могут иметь более близкое родство, чем принято считать. Просто астероиды не могут без ударной активации обзавестись кометным хвостом. Вместе с тем, данное открытие говорит о том, что изначально астероиды могли содержать значительное количество воды. Согласно одной из теорий, вода попала на Землю из космоса. Предполагается, что поставщиками воды для нашей планеты были кометы и астероиды.  Однако результаты недавнего анализа кометного льда показали, что по своему составу он значительно отличается от земных океанов. Вполне возможно, что лед астероидов в большей степени соответствует характеристикам земной воды, но до сих пор предполагалось, что этот лед либо давно исчез, либо сохранился только в глубине крупных астероидов и недоступен для изучения с помощью космических зондов.

Облако Оорта (Оорта-Эпика) из Википедии Облака Оорта

    Гипотетическая сферическая оболочка, окружающая Солнечную систему на расстоянии около 1 светового года (50000 а.е.), в которой содержатся миллиарды комет с общей массой, равной примерно массе Земли. Это гигантское сферическое скопление кометного вещества – сосредоточено около 1012–1013 комет, обращающихся вокруг Солнца на расстояниях от 3000 до 160 000 а.е., что составляет половину расстояния до ближайших звезд.
    Облако считается источником комет, наблюдаемых в Солнечной системе, которые могли бы отклониться “внутрь” под влиянием проходящей относительно недалеко звезды. Под влиянием возмущений ближайших звезд некоторые кометы навсегда покидают Солнечную систему. Другие, наоборот, по сильно вытянутым орбитам устремляются к Солнцу и благодаря резкому усилению потока солнечной радиации становятся обычными кометами. Там, под действием тяготения планет-гигантов, они могут перейти на эллиптические орбиты. Эта идея впервые была выдвинута Эрнстом Юлиусом Эпик в 1932г, а затем в 1950-х гг. развивалась Яном Хендрик Оорт. (Отсюда возник иногда используемый альтернативный термин “облако Оорта-Эпика”). Никаких прямых свидетельств существования такого облака нет, если не считать потребности объяснить происхождение комет Солнечной системы. Если облако Оорта и существует, то остается неясным, как оно образовалось. Правда, согласно некоторым теориям, кометы образовались в районе нынешнего местоположения внешних планет и только позже разошлись на большие расстояния.

Комета: угроза Земле

     За время наблюдений всего 20 комет приблизились к Земле на расстояние меньше 15 млн.км. Ближе всех к Земле подошла комета Лекселла в 1770г – на расстояние 2.25 млн.км. В настоящее время известны 50 потенциально опасных комет, которые в перигелии пересекают орбиту Земли, то есть их перигелийные расстояния <1,3 а.е., а периоды обращения вокруг Солнца <200 лет. Это известные кометы Галлея (1P/Halley), Энке (2P/Encke), Темпля-Туттля (55P/Tempel-Tuttle) и др. Наверняка Тунгусский метеорит был кометой.
    В ближайшее время можно наблюдать сближения периодических комет с Землей. Комета 73P/Schwassmann-Wachmann 17 мая 2006г приблизится к Земле на расстояние примерно 7.8 млн.км. Другая комета, 103P/Hartley, пройдет 20 октября 2010г на расстоянии 15 млн.км, а комета 45P/Honda-Mrkos-Pajdusakova 15 августа 2011г окажется на расстоянии примерно 9 млн.км.
    Среднее время жизни короткопериодических комет больше, чем время сублимации (возгонки летучих веществ с поверхности). Поэтому можно предположить, что существуют кометы, которые израсходовали все свои летучие вещества – так называемые вымершие кометы (или астероиды), например астероид Бетулия. В 1976г он прошел на расстоянии 19,5 млн км от Земли. Это грубосферическое тело размером около 6 км, имеющее темный нейтральный цвет с геометрическим альбедо 6 %. Был определен состав объекта – углистые хондриты. Его орбита с эксцентриситетом 0,49 и наклоном 52o отличается от орбит всех астероидов.
    К вымершим кометам, по-видимому, относятся (944) Hidalgo (Гидальго), (2201) Oljato (Ольято) и (3200) Phaethon (Фаэтон). Например орбита Гидальго с большой полуосью 5,75 а.е. и эксцентриситетом 0,66 в перигелии приближается к Солнцу на 1,95 а.е., а в афелии удаляется на 9,55 а.е., то есть орбита очень напоминает кометную.

Исследование комет КА      Кометы, посещённые космическими аппаратами

Дата запуска

Название

Описание

12.08.1978 “ISEE 3/ICE” (США)  (Explorer 59) (Аппарат весом 390 кг) International Sun-Earth Explorer 3, миссия была третьей среди аппаратов подобного класса. Основная цель исследований – это взаимодействие магнитосферы Земли и солнечного ветра. Аппарат находился на орбите в так называемой точке Лагранджа L1. В 1982-83гг – изменение траектории орбиты, пятикратный облет Луны. 22 декабря 1983 года аппарат вышел из системы Земля-Луна для изучения кометы Giacobini-Zinner. Был переименован International Cometary Explorer. Цель исследований: взаимодействие солнечного ветра и атмосферы кометы. Аппарат 11 сентября 1985 года пересек плазменный хвост кометы. После (март 1986) аппарат наблюдал за еще одной кометой – кометой Галлея, вместе с другими аппаратами (Giotto, Planet-A, MS-T5, VEGA). ICE стал первым космическим аппаратом наблюдавшим сразу две кометы. С января 1984 года осуществлял поддержку связи/телеметрии с Землей и глубоким космосом. С 1991г продолжил изучение солнечного ветра и короны Солнца, были проведены ряд экспериментов с участием аппарата Ulysses. С мая 1995 года снижение работоспособности, работа в “паре” с Ulysses. Завершил миссию 5 мая 1997 года.
15.12.1984 «Вега-1» (СССР)  “Венера-Галлея” – вес каждого аппарата 2500 кг. Миссия состояла из двух аппаратов, запущенных с небольшой разницей во времени. Цель миссии это изучение планеты Венера и кометы Галлея (облет кометы). Два идентичных космических корабля. Аппараты прибыли к Венере 11-15 июня 1985 года, сбросили зонды-аэростаты в атмосферу планеты. После чего используя гравитационное поле планеты отправились на перехват кометы, достигли цели в марте 1986 года. Первый аппарат достиг кометы 6 марта. Поскольку положение ядра кометы точно не было определено, да и проблема защиты от кометной пыли присутствовала, первый аппарат совершил облет кометы на расстоянии 10 000 км, а второй – 3000 км. От кометной пыли аппараты были ограждены специальными щитами. Половина исследовательской аппарату на модулях была предназначена для изучения кометы, а другая половина – Венеры. Полный научный вес аппаратуры (полезного груза) – 150 кг.
21.12.1984 «Вега-2» (СССР)
02.07.1985 “Giotto” (Европа)  Вес аппарата – 582.7 кг. Миссия была разработана для изучения кометы Галлея (вторичная цель – изучение Grigg-Skjellerup). Главные цели миссии: 1 – получение цветных фотографий ядра кометы; 2 – определение молекулярного и изотопного состава атмосферы кометы; 3 – характеристика физических и химических процессов, происходящих в атмосфере и ионосфере кометы; 4 – определение молекулярного и изотопного состава частиц пыли; 5 – определение отношения пыль-газ; 6 – изучение взаимодействия солнечного ветра и кометы, изучение хвоста кометы. Космический аппарат достиг цели 13 марта 1986 года, на расстоянии 0,89 а.е от Солнца и 0,98 а.е. от Земли. Аппарат приблизился к комете на расстояние 600 км (596 км). Космический аппарат имел пылевой щит, который мог противостоять ударам частиц массой до 0,1 гр. Научная аппаратура состояла из 10 инструментов. Космический аппарат передавал научные данные в течении 32 минут. В течении этого рабочего интервала некоторые научные инструменты вышли из строя из-за бомбардировки пылевыми частицами. Передал данные, показавшие, что комета содержит сложные органические молекулы, богатые углеродом, водородом, кислородом и азотом. После кометы Галлея миссия аппарата была продлена для встречи с кометой Grigg-Skjellerup (10 июля 1992 года). Пролет около второй кометы на расстоянии 200 км. Плазменный анализатор аппарата обнаружил кометные ионы в 600 000 км от ядра кометы, за 12 часов до самого близкого прохода около кометы. 1 июля 1999 года аппарат пролетел около Земли на расстоянии 219 000 км.
08.01.1985 “Sakigake
MS-T5″ (Япония)
 Вес аппарата – 138.1 кг. Испытательный космический аппарат, подобный Suisei. Направление – комета Галлея. Пролет на расстоянии 7 миллионов километров от кометы 11 марта 1986 года. Аппарат нес три научных прибора, для изучения спектра, солнечного ветра и межпланетных магнитных полей. Аппарат 8 января 1992 года пролетел около Земли. Контакт с аппаратом потерян 15 ноября 1995 года на расстоянии от 106 млн км от Земли.
18.08.1985 “Planet-A” (Япония) Вес аппарата – 139.5 кг. Был запущен на гелиоцентрическую орбиту для исследования кометы Галлея. Главная цель миссии – получение изображений. Параметры солнечного ветра измерялись более длительное время чем предыдущей миссий. Космический аппарат приблизился к комете на расстояние в 151 тыс. км 8 марта 1986 года. Перенес два пылевых воздействия. 22 февраля 1991 года ресурс аппарата исчерпан.
24.10.1998 “Deep Space 1” (США)  Вес аппарата – 373,7 кг. Главной задачей проекта Deep Space 1 является демонстрация новых технологий в условиях космического полета. Кроме того встретился с астероидом Брайль (1992 KD) 28 июля 1999 года. После встречи с астероидом траектория станции была изменена и  22 сентября 2001 года встретился с еще одним объектом, кометой Борелли.  Во время сближения с кометой проводились следующие исследования: измерение энергии электронов и ионов, поиск магнитного поля, получение снимков ядра кометы, получение спектров ядра в ИК диапазоне. На фотографии представлено изображение ядра за несколько минут до момента максимального сближения КА и кометы. Минимальное расстояние между аппаратом и кометой составило 2200 км.
    Миссию станции Deep Space 1 можно считать завершенной, так как на борту практически не осталось топлива для гидразиновых двигателей ориентации.
07.02.1999 “Стардаст” (США)  Вес аппарата – 300 кг. КА StarDust встретился с кометой Wild-2 в начале 2004 года и собрал образцы кометного вещества. Затем 15  января 2006 года КА сбросил капсулу с образцами на Землю для последующего изучения. Ученые впервые получили реальные образцы кометного вещества. Подробнее  Дальнейший полет возможно будет к комете Темпель-1, которой аппарат сможет достигнуть в 2010г.
08.08.2001 “Genesis” (США)  Вес аппарата – 494 кг. Направлен «в погоню» за солнечной материей на достаточном удалении от геомагнитного поля Земли, что позволит собрать частицы солнечного ветра до их взаимодействия с магнитным полем нaшeй планеты. Целых два года из запланированных трех Genesis собирал солнечную материю (собрал от 10 до 20 мкг элементов солнечного ветра – а это вес нескольких крупинок соли, – представляющих интерес для ученых). Но аппарат Genesis 14.09.2004 приземлился очень жестко (разбился при скорости 300 км/час) в пустыне Юта (не открылись парашюты), однако доставленные образцы были извлечены и изучены.
12.01.2005 “Дип Импакт” (США) Вес аппарата – 650 кг. 4 июля 2005 аппарат выстрелил по комете 372-килограммовым зондом; в результате столкновения в окружающее пространство было выброшено порядка 250000 тонн воды и углеродных соединений, и большое количество пыли. Все, происходившее до, во время и после удара, фотографировали и камера аппарата Deep Impact, и космические, и наземные телескопы.  Подробнее

Будущие встречи

03.07.2002 “Contour” (США) Вес аппарата – 328 кг. АМС Contour (Comet Nucleus Tour) посетит и изучит, по крайней мере, три кометы. Впервые, удастся оценить, насколько разнообразны эти первоначальные строительные блоки солнечной системы. Contour также изучит, как кометы ведут себя, когда приближаются к Солнцу, и их льды начинают испаряться. Проект Contour, стоимостью 158 млн. $ выполняет по заказу NASA Лаборатория.
02.03.2004 “Розетта” (Европа) Вес аппарата – 1200 кг. Rosetta – кометная миссия Европейского Космического Агенства. После длительного полета аппарат встретиться с кометой Churyumov-Gerasimenko и выйдет на орбиту вокруг нее. На поверхность кометы опуститься посадочный модуль, который проведет научные исследования. В течении круизной фазы, КА выполнит гравитационные маневры, один раз около Марса и два раза около Земли. По пути встретится с астероидом Lutetia (21) (10.07.2010). Свидание с кометой планируется в мае 2014 года.
19.01.2006 “New Horizons” (США) Вес аппарата – 463 кг. “Новые Горизонты” – миссия предназначенная для облета Плутона и его спутника Харона, для трансляции на Землю изображений. После чего аппарат продолжит свое путешествие к Поясу Койпера (полет к Поясу Койпера займет еще 5-10 лет), где он должен будет исследовать объекты пояса. Первичные цели миссии – это получение глобальной геологической карты планеты и ее спутника (детали рельефа и т.д.) и характеристики атмосферы Плутона.

Некоторые из известных комет   Странности  комет

Комета Аренда-Ролана (C/1956 R1)
Яркая комета, обнаруженная в 1957г. Одно время казалось, что у нее образовывается “шип”, направленный к Солнцу. Но это был оптический эффект, вызванный тем, что освещенные пылевые частицы, оставляемые кометой за собой, при пересечении Землей плоскости орбиты кометы становятся видимыми как бы “впереди” кометы.
Комета Беннета (C/1969 Y1)
Красивая комета, обнаруженная 28 декабря 1969 г. Дж. К. Беннетом (Южная Африка). Ее яркость достигла нулевой звездной величины в марте 1970 г., когда комета имела хвост длиной в 30°. Наблюдения, проведенные с Орбитальной геофизической обсерватории (“ОГО-5”), показали наличие обширного водородного облака, окружающего голову и хвост и простирающегося в направлении, параллельном хвосту, на 13 млн. км.
Комета Биэлы (3D/Биэлы)
Комета девятнадцатого века, известная тем, что перед полным исчезновением разделилась на две части. Комета была открыта в 1772г Монтенем из Лиможа. Когда она была вновь обнаружена австрийским майором  Вильгельмом Йозефштадт фон Биэлой  27.02.1826г, ее орбита была вычислена достаточно точно, так что удалось идентифицировать два ее предыдущих появления. Период оказался равным 6,6 года. При появлении кометы в январе 1846г она уже была разделена на две части и по вычислениям получили, что деление произошло в конце 1844г. К 1852г две половины находились на расстоянии более двух миллионов километров, но двигались по одной и той же орбите. После этого их никогда не видели.
   Отдельные световые явления отмечались как до, так и после разделения кометы. С кометой Биэлы связан ноябрьский метеорный дождь (Андромедиды).
Комета Веста (C/1975 V1)
Яркая, видимая невооруженным глазом комета, которая появилась в 1975г. Ее хвост покрывал большую треугольную область неба, а ядро проявляло признаки необычной активности, распавшись на четыре части вскоре после прохождения перигелия.
Комета Галлея (комета 1P/Галлея)
   Самая известная из всех периодических комет, которая движется по удлиненной эллиптической орбите вокруг Солнца, возвращаясь к Земле каждые 75,5 лет, большая полуось орбиты 17,8 а.е, эксцентриситет 0,97, наклонение орбиты к плоскости эклиптики 162,2°, расстояние в перигелии 0,59 а.е.. Из исторических записей следует, что комета Галлея наблюдается в течение более 2200 лет, начиная с 239г до н.э. Она наблюдалась 30 раз. Это связано с тем, что комета Галлея намного больше и активнее других периодических комет. Ни для одной другой кометы нет исторических записей, которые могли бы сравниться с кометой Галлея.
 Эдмунд Галлей (1656-1742), в честь которого названа комета, не был ее открывателем, но он был первым, кто в 1705г понял связь между кометой, которую он наблюдал в 1682г, и некоторыми другими зарегистрированными появлениями комет, отделенными друг от друга интервалами в 76 лет. Он вычислил орбиты ряда комет, основываясь на недавно опубликованной теории Исаака Ньютона. Заметив подобие орбит комет, наблюдавшихся в 1531, 1607 и 1682гг, он предсказал возвращение кометы в 1758-59гг, которое действительно наблюдалось, но уже после его смерти. Перигелий орбиты кометы Галлея лежит на расстоянии 0,587 а.е. (между орбитами Меркурия и Венеры). Наиболее удаленная точка орбиты находится вне орбиты Нептуна на расстоянии 35,31 а.е. Орбита наклонена к основной плоскости солнечной системы на 162°, и комета движется по орбите в направлении, противоположном движению планет. Возвращение 1986г было очень неблагоприятным для наблюдения с Земли, но космические зонды, запущенные несколькими странами, провели успешные исследования кометы. Ближе всех к комете подошел европейский зонд “Джотто”, который 14 марта 1986г прошел примерно в 605 км от ее ядра. Советские зонды “Вега-1” и “Вега-2” наблюдали ядро 6 и 9 марта 1986г с расстояний 8890 и 8030 км, и собранная ими информация была использована для корректировки курса “Джотто” на последнем участке. Были запущены также два маленьких японских зонда. Было сделано более 1500 снимков кометы. Результаты наблюдений окончательно подтвердили существование у кометы твердого ядра, вероятно, состоящего из льда и пыли. Оно имеет неправильную удлиненную форму, напоминающую картофелину, размерами 14 x7,5х7,5 км. Ядро темное, отражающее только 4% падающего солнечного света. Оно медленно вращается, совершая один оборот за 7,1 суток (с 3,7-суточной прецессией). На обращенной к Солнцу стороне измеренная температура достигала 350 K, что достаточно для таяния льда, и там наблюдались выбросы выбросы газа и пыли прорываются через темную оболочку, покрывающую ледяное ядро. С кометой Галлея связаны два метеорных потока (Эта-Аквариды и Ориониды).
Комета Де Чезо
Исключительно яркая комета, открытая независимо Клинкенбергом из Гарлема 9 декабря и Де Чезо из Лозанны 13 декабря 1743 г. Она достигла звездной величины -7 и породила веер хвостов. Всего было замечено одиннадцать отдельных хвостов.
Комета Делавана (C/1913 Y1)
Яркая комета, обнаруженная Делаваном из Ла-Платы (Аргентина) в декабре 1913г. Она оставалась видимой в течение многих месяцев в 1914г. Ей принадлежит рекорд дальности. Она удалится на 170 000 а.е. и “финиширует” через 24 млн лет.
Комета Джакобини — Циннера (21P/Джакобини-Циннера)
 Периодическая комета, обнаруженная 20.12.1900г в Ницце (Франция) Джакобини, а 27.10.1913г Циннером. Период обращения вокруг Солнца – 6,52 лет. Ее диаметр составляет 6км. С этой кометой связан наблюдаемый иногда в октябре метеорный поток Драконид, образуемый при вхождении в атмосферу Земли мелкими частицами кометы, движущимися по той же самой орбите.
   В 1985г Американский космический зонд “ISEE-3” (ISEE – Sun–Earth Explorer – Международный солнечно-земной зонд), первоначально запущенный в 1978г с другой целью, получил задание пройти через хвост кометы Джакобини-Циннера в рамках проекта “ICE” (ICE – International Cometary Explorer – Международный кометный зонд).
Комета Донати (C1858 L1)
Комета, обнаруженная Джованни Б. Донати из Флоренции в 1858г. На рисунках того времени она изображена с широким изогнутым пылевым хвостом и двумя узкими прямыми ионными хвостами. Из ее головы в течение нескольких недель регулярно выбрасывались “фонтаноподобные” оболочки.
Комета Икея-Секи (C/1965 S1)
Исключительно яркая комета, открытая 18 сентября 1965г двумя японскими астрономами-любителями. Она была особенно заметна в южном полушарии после прохождения перигелия. Принадлежит к группе комет, известных как “задевающие Солнце”. У таких комет очень небольшой перигелий, так что фактически они проходят сквозь внешние слои Солнца.
Комета Коджиа (C/1874 H1)
Яркая комета, обнаруженная Ж.Э. Коджиа из Марселя в 1874г. Комета быстро перемещалась к югу, образуя хвост длиной в 40°. Можно было заметить несколько “фонтаноподобных” оболочек, выбрасываемых из активных областей ее вращающегося ядра.
Комета Когоутека (C/1973 E1)
 Комета, открытая в марте 1973г, за 9 месяцев до прохождения перигелия, когда она находилась вблизи орбиты Юпитера. Предположения о том, что эта комета должна оказаться достаточно красивой, не оправдались. Тем не менее она стала объектом обширной скоординированной программы профессионального наблюдения, которая включала и наблюдения с борта орбитальной лаборатории “Скайлэб”. В ходе этих наблюдений было получено много новой информации о кометах, включая первое прямое доказательство присутствия силикатов в пылевом хвосте кометы. Период ее обращения около 80000 лет.
Комета Лекселя
 Комета, открытая Шарлем Мессье 14 июня 1770г, но названная по имени Aндрея Ивановича (Андерса Иоганна) Лекселя (1740-1784), который исследовал ее орбиту и опубликовал результаты своих вычислений в 1772 и 1779гг. Он показал, что близкий подход кометы к Юпитеру в 1767г вызвал большое изменение ее орбиты, в результате чего комета приблизилась к Земле настолько, что стала видимой. Наименьшее расстояние до Земли было достигнуто 1 июля 1770г и составило 0,015 астрономических единицы (т.е. 2,244 миллиона километров). Это в шесть раз превышает расстояние до Луны. Когда комета находилась ближе всего, видимый размер ее комы был равен почти пяти диаметрам полной Луны. Это самым близким зарегистрированным подходом комет к Земле. Однако при следующем приближении к Юпитеру в 1779г орбита претерпела столь существенные изменения, что комета никогда больше не наблюдалась.
Комета Морхауза (C/1908 R1)
Комета, открытая в США в 1908г, которая первой из комет начала активно изучаться с применением фотографии. В структуре хвоста были замечены удивительные изменения. В течение дня 30 сентября 1908г эти изменения происходили непрерывно. 1 октября хвост оторвался, и его уже нельзя было наблюдать визуально, хотя фотография, сделанная 2 октября, показывает наличие трех хвостов. Разрыв и последующий рост хвостов происходили неоднократно.
Комета Мркоса (C/1957 P1)
Яркая комета 1957г, открытая чешским “охотником за кометами” Антонином Мркос при наблюдении невооруженным глазом.
Комета Теббутта (C/1861 J1)
Яркая комета, видимая невооруженным глазом, была открыта австралийским астрономом-любителем в 1861г. Земля прошла сквозь хвост кометы 30 июня 1861 г.
Комета Хейла-Боппа (C/1995 O1)
 Одна из наиболее ярких комет XX в., выделяющаяся очень большим размером. Открыта Аланом Хейлом и Томасом Боппом (22 июля 1995г) как объект 10-й звездной величины и достигла перигелия 1 апреля 1997г при максимальной яркости около величины -1. По оценкам, ее ядро имеет в поперечнике 90 км, а эксцентриситет 0,914. Максимальна длина ее ионного хвоста составила 148 млн км, а период ее обращения составляет 2380 лет. 23 марта 1997 года комета прошла на кратчайшем расстоянии от Земли – 196 миллионов километров, затем стала удаляться от Солнца. С помощью телескопа им. Хаббла в атмосфере кометы был обнаружен гидроксил ОН, образующийся в результате распада молекул воды под воздействием ультрафиолетового излучения Солнца. 15-метровым радиотелескопом на Гавайских островах в комете зарегистрировано излучение молекул цианистой кислоты – сильнейшего яда! В газовой оболочке небесной гостьи отмечено свечение и многих других молекул, характерных для состава комет, например, угарного газа, циана, продуктов распада аммиака. 
Комета Хиякутаке (C/1996 B2)
Большая комета, которая по яркости достигла нулевой величины в марте 1996г и образовала хвост, протяженность которого оценивается по крайней мере в 7°. Ее видимая яркость в значительной степени объясняется близостью к Земле – комета прошла от нее на расстоянии менее 15 млн. км. Максимальное сближение с Солнцем 0,23 а.е, а ее диаметр около 5км.
Комета Швассмана — Вахмана 1 (29P/Швассмана-Вахмана 1)
Периодическая комета, открытая наблюдателями из Гамбурга в 1927 г. Она вращается по почти круговой орбите, проходящей между орбитами Юпитера и Сатурна, с периодом 16,1 года. Комету можно видеть каждый год во время противостояния. Имея обычно 18-ю звездную величину, комета в течение 27 дней может увеличить свою яркость на 4-8 звездных величин. Такие вспышки сопровождаются изменениями в ядре и коме.
Комета Шумейкеров — Леви 9 (D/1993 F2)
Комета, которая врезалась в планету Юпитер в июле 1994 г. Когда эта комета была впервые обнаружена на фотографиях 25 марта 1993 г. Каролин и Юджином Шумейкерами и Дэвидом Леви, она находилась на удлиненной орбите вокруг Юпитера с 2-летним периодом обращения и представляла собой цепочку, состоящую примерно из 20 отдельных фрагментов. Расчеты показали, что она вращалась вокруг Юпитера в течение нескольких десятилетий, но разделилась под действием приливных сил при близком подходе к Юпитеру в июле 1992 г. Эта встреча обусловила и изменение движения фрагментов, вызвав их столкновение с планетой. Они друг за другом ударились о поверхность Юпитера между 16 и 22 июля 1994 г. В результате ударов в атмосфере Юпитера появились большие темные облака, причем в инфракрасном свете были заметны и яркие вспышки. Темные облака наблюдались в течение нескольких месяцев, пока не были рассеяны ветрами и турбулентными движениями.
Комета Энке (2P/Энке)
 Периодическая комета, впервые замеченная французским астрономом Пьером Мешеном (1744-1804) в 1786 г. Она была повторно зафиксирована Каролиной Гершель в 1795 г., Жаном Луи Понсом и другими в 1805г и снова Понсом в 1818г. Иоганн Ф. Энке (1791-1865) вычислил орбиту кометы, замеченной в 1818г, и установил связь с ее предыдущими появлениями. Сделанное им предсказание следующего появления этой кометы в 1822г успешно подтвердилось. Период обращения кометы по эллиптической орбите составляет 3,3 года и является самым коротким из известных. Радиус кометы 3,1км, а наибольшее приближение к Солнцу составляет 0,331а.е. С тех пор до 2001г было зарегистрировано 54 прохождения кометы через перигелий. Количество появлений этой кометы в небе можно, например, сравнить с 30 известными возвращениями кометы Галлея за огромный период времени – с 239 г. до н.э. до 1986 г.
В дальнейшем комета при каждом обороте достигала своего перигелия примерно на 2 часа раньше предсказанного времени; однако, с тех пор этот эффект постоянно уменьшается. Его можно объяснить “ракетным эффектом”, т.е. ускорением, получаемым ядром кометы из-за испарения газов под влиянием солнечного излучения, а также результатом вращения и прецессии ядра. Так как она никогда не удаляется от Солнца дальше, чем на 4 астрономических единицы, едва выходя за пределы пояса астероидов, при современных методах наблюдения ее можно наблюдать непрерывно. С кометой 2P/Энке связан метеорный дождь Таурид.
Комета Хьюмасона (C/1961 R1)
Гигантская комета, открытая в 1961 г. Ее хвосты, несмотря на столь большое удаление от Солнца, все еще простираются в длину на 5 а.е., что является примером необычно высокой активности.

Самая яркая комета 20-го века

 На основании сохранившихся записей нельзя судить о том, какая из наблюдавшихся в прошлом комет была самой яркой. Так как яркие кометы представляют собой очень протяженные небесные объекты, точно определить их яркость почти невозможно. Впечатления, получаемые наблюдателем от той или иной кометы, очень субъективны; они зависят от длины хвоста и от того, насколько темным было небо во время наблюдения. К самым ярким кометам XX столетия относятся так называемая Большая январская комета 1910 года, дневная комета (C/1910 A1) (1910 г.), Комета Галлея (1P/1909 R1)  (при появлении в том же 1910 г.), кометы Скьеллерупа — Маристани (C/1927 X1)  (1927г), Беннетта (C/1969 Y1) (1970г), Уэста (C/1975 V1) (1976г), Хейла — Боппа (C/1995 O1) (1997г). Самые яркие кометы XIX века, – вероятно, “Большие кометы” 1811, 1861, и 1882 гг. Ранее очень яркие кометы были зарегистрированы в 1743, 1577, 1471 и 1402гг. Самое близкое к нам (и наиболее яркое) появление кометы Галлея было отмечено в 837г.

Данные о некоторых кометах

Номер и название Орбитальный период Дата перигелия Дистанция перигелия Радиус орбиты Эксцентриситет орбиты Наклон орбиты Абсолютная величина
1 1P Halley 76,1 yrs 1986-02-09 0,587 АЕ 17,94 AЕ 0,967 162,2 deg 5,5
2 2P Encke 3,30 yrs 2003-12-28 0,340 AE 2,21 AE 0,847 11,8 deg 9,8
3 6P d’Arrest 6,51 yrs 2008-08-01 1,346 AE 3,49 AE 0,614 19,5 deg 8,5
4 9P Tempel 1 5,51 yrs 2005-07-05 1,500 AE 3,12 AE 0,519 10,5 deg 12,0
5 19P Borrelly 6,86 yrs 2001-09-14 1,358 AE 3,61 AE 0,624 30,3 deg 11,9
6 21P Giacobini-Zinner 6,52 yrs 1998-11-21 0,996 AE 3,52 AE 0,706 31,8 deg 9,0
7 26P Grigg-Skjellerup 5,09 yrs 1992-07-22 0,989 AE 2,96 AE 0,664 21,1 deg 12,5
8 27P Crommelin 27,89 yrs 1984-09-01 0,743 AE 9,20 AE 0,919 29,0 deg 12,0
9 45P Honda-Mrkos-Pajdusakova 5,29 yrs 1995-12-25 0,528 AE 3,02 AE 0,825 4,3 deg 13,5
10 46P Wirtanen 5,46 yrs 2013-10-21 1,063 AE 3,12 AE 0,652 11,7 deg 9,0
11 55P Tempel-Tuttle 32,92 yrs 1998-02-28 0,982 AE 10,33 AE 0,906 162,5 deg 9,0
12 67P Churyumov-Gerasimenko 6,57 yrs 2002-08-18 1,292 AE 3,51 AE 0,632 7,1 deg  
13 73P Schwassmann-Wachmann 3 5,36 yrs 2006-06-02 0,937 AE 3,06 AE 0,694 11,4 deg 11,7
14 75P Kohoutek 6,24 yrs 1973-12-28 1,571 AE 3,4 AE 0,537 5,4 deg 12,1
15 76P West-Kohoutek-Ikemura 6,46 yrs 2000-06-01 1,596 AE 3,45 AE 0,540 30,5 deg 10,6
16 81P Wild 2 6,39 yrs 2003-09-25 1,583 AE 3,44 AE 0,540 3,2 deg 6,5
17 95P Chiron 50,7 yrs 1996-02-14 8,46 AE 13,7 AE 0,383 7 deg  
18 107P Wilson-Harrington 4,29 yrs 2001-03-26 1,000 AE 2,64 AE 0,623 2,8 deg 9,0
19 Hale-Bopp 4000 yrs 1997-03-31 0,914 AE 250, AE 0,995 89,4 deg -1,0
20 Hyakutake 40000 yrs 1996-05-01 0,230 AЕ 1165, AЕ 0,9998 124,9 deg  
Дополнительно:
Кометография           Элементы орбит комет          Каталог комет

Copyright © ОблЦИТ 2001-2023    
 

Добавить комментарий