В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около квадрата. Также разберем примеры решения задач для закрепления изложенного материала.
-
Формулы вычисления радиуса описанной окружности
- Через сторону квадрата
- Через диагональ квадрата
-
Примеры задач
Формулы вычисления радиуса описанной окружности
Через сторону квадрата
Радиус R окружности, описанной около квадрата, равняется длине его стороны a, умноженной на квадратный корень из двух и деленной на два.
Через диагональ квадрата
Радиус R описанной вокруг квадрата окружности равен половине его диагонали d.
Примеры задач
Задание 1
Длина стороны квадрата равняется 8 см. Найдите радиус описанной вокруг него окружности.
Решение
Применим первую формулу, рассмотренную выше:
Задание 2
Вычислите длину диагонали квадрата, если радиус описанной вокруг него окружности составляет 6 см.
Решение
Как мы знаем, радиус описанной окружности равняется половине диагонали квадрата. Следовательно, общая длина диагонали равняется 12 см (6 см ⋅ 2).
Радиус описанной окружности квадрата
Радиус описанной окружности квадрата равен половине его диагонали
a – сторона квадрата
d – диагональ
Формула радиуса описанной окружности квадрата (R):
Калькулятор – вычислить, найти радиус описанной окружности квадрата
- Подробности
-
Автор: Administrator
-
Опубликовано: 09 сентября 2011
-
Обновлено: 13 августа 2021
Окружность, описанная вокруг квадрата, касается всех его вершин и совпадает в центре с окружностью, вписанной в квадрат. Тем не менее, радиус вписанной окружности направлен под прямым углом в сторону, и два радиуса равны по значению стороне, в то время как радиус описанной окружности направлен в вершину квадрата, и два радиуса равны по значению диагонали квадрата. Таким образом, чтобы вычислить радиус окружности, описанной вокруг квадрата, нужно разделить его диагональ на два, или подставив формулу диагонали через сторону, разделить произведение стороны и корня из двух на два:
Радиус описанной окружности квадрата
Радиус описанной окружности квадрата равен половине его диагонали
a – сторона квадрата
d – диагональ
Формула радиуса описанной окружности квадрата (R):
Калькулятор – вычислить, найти радиус описанной окружности квадрата
Квадрат. Онлайн калькулятор
С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ квадрата, радиус вписанной в квадрат окружности, радиус описанной вокруг квадрата окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку “Вычислить”. Теоретическую часть и численные примеры смотрите ниже.
Определение 1. Квадрат − это четырехугольник, у которого все углы равны и все стороны равны (Рис.1):
Можно дать и другие определение квадрата.
Определение 2. Квадрат − это прямоугольник, у которого все стороны равны.
Определение 3. Квадрат − это ромб, у которого все углы прямые (или равны).
Свойства квадрата
- Длины всех сторон квадрата равны.
- Все углы квадрата прямые.
- Диагонали квадрата равны.
- Диагонали пересекаются под прямым углом.
- Диагонали квадрата являются биссектрисами углов.
- Диагонали квадрата точкой пересечения делятся пополам.
Изложеннные свойства изображены на рисунках ниже:
Диагональ квадрата
Определение 4. Диагональю квадрата называется отрезок, соединяющий несмежные вершины квадрата.
На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. У квадрата две диагонали.
Для вычисления длины диагонали воспользуемся теоремой Пифагора:
. | (1) |
Из равенства (1) найдем d:
. | (2) |
Пример 1. Сторона квадрата равна a=53. Найти диагональ квадрата.
Решение. Для нахождения диагонали квадрата воспользуемся формулой (2). Подставляя a=53 в (2), получим:
Ответ:
Окружность, вписанная в квадрат
Определение 5. Окружность называется вписанной в квадрат, если все стороны касаются этого квадрата (Рис.3):
Формула вычисления радиуса вписанной окружности через сторону квадрата
Из рисунка 3 видно, что диаметр вписанной окружности равен стороне квадрата. Следовательно, формула вычисления радиуса вписанной окружности через сторону квадрата имеет вид:
(3) |
Пример 2. Сторона квадрата равна a=21. Найти радиус вписанной окружности.
Решение. Для нахождения радиуса списанной окружности воспользуемся формулой (3). Подставляя a=21 в (3), получим:
Ответ:
Формула вычисления сторон квадрата через радиус вписанной окружности
Из формулы (3) найдем a. Получим формулу вычисления стороны квадрата через радиус вписанной окружности:
(4) |
Пример 3. Радиус вписанной в квадрат окружности равен r=12. Найти сторону квадрата.
Решение. Для нахождения стороны квадраиа воспользуемся формулой (4). Подставляя r=12 в (4), получим:
Ответ:
Окружность, описанная около квадрата
Определение 6. Окружность называется описанной около квадрата, если все вершины квадрата находятся на этой окружности (Рис.4):
Формула радиуса окружности описанной вокруг квадрата
Выведем формулу вычисления радиуса окружности, описанной около квадрата через сторону квадрата.
Обозначим через a сторону квадрата, а через R − радиус описанной около квадрата окружности. Проведем диагональ BD (Рис.4). Треугольник ABD является прямоугольным треугольником. Тогда из теоремы Пифагора имеем:
(5) |
Из формулы (5) найдем R:
(6) |
или, умножая числитель и знаменатель на , получим:
. | (7) |
Пример 4. Сторона квадрата равна a=4.5. Найти радиус окружности, описанной вокруг квадрата.
Решение. Для нахождения радиуса окружности описанной вокруг квадрата воспользуемся формулой (7). Подставляя a=4.5 в (7), получим:
Ответ:
Формула стороны квадрата через радиус описанной около квадрата окружности
Выведем формулу вычисления стороны квадрата, через радиус описанной около квадрата окружности.
Из формулы (1) выразим a через R:
. | (8) |
Пример 5. Радиус описанной вокруг квадрата окружности равен Найти сторону квадрата.
Решение. Для нахождения стороны квадрата воспользуемся формулой (8). Подставляя в (8), получим:
Ответ:
Периметр квадрата
Периметр квадрата − это сумма всех его сторон. Обозначается периметр латинской буквой P.
Поскольку стороны квадрата равны, то периметр квадрата вычисляется формулой:
(9) |
где − сторона квадрата.
Пример 6. Сторона квадрата равен . Найти периметр квадрата.
Решение. Для нахождения периметра квадрата воспользуемся формулой (9). Подставляя в (9), получим:
Ответ:
Признаки квадрата
Признак 1. Если в четырехугольнике все стороны равны и один из углов четырехугольника прямой, то этот четырехугольник является квадратом.
Доказательство. По условию, в четырехугольнике противоположные стороны равны, то этот четырехугольник праллелограмм (признак 2 статьи Параллелограмм). В параллелограмме противоположные углы равны. Следовательно напротив прямого угла находится прямой угол. Тогда сумма остальных двух углов равна: 360°-90°-90°=180°, но поскольку они также являются противоположными углами, то они также равны и каждый из них равен 90°. Получили, что все углы четырехугольника прямые и, по определению 1, этот четырехугольник является квадратом.
Признак 2. Если в четырехугольнике диагонали равны, перпендикулярны и точкой пересечения делятся пополам, то такой четырехугольник является квадратом (Рис.5).
Доказательство. Пусть в четырехугольнике ABCD диагонали пересекаются в точке O и пусть
(10) |
Так как AD и BC перпендикулярны, то
Из (10) и (11) следует, что треугольники OAB, OBD, ODC, OCA равны (по двум сторонам и углу между ними (см. статью на странице Треугольники. Признаки равенства треугольников)). Тогда
(12) |
Эти реугольники также равнобедренные. Тогда
Из (13) следует, что
(14) |
Равенства (12) и (14) показывают, что четырехугольник ABCD является квадратом (определение 1).
Нахождение радиуса описанной вокруг квадрата окружности
В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около квадрата. Также разберем примеры решения задач для закрепления изложенного материала.
Формулы вычисления радиуса описанной окружности
Через сторону квадрата
Радиус R окружности, описанной около квадрата, равняется длине его стороны a, умноженной на квадратный корень из двух и деленной на два.
Через диагональ квадрата
Радиус R описанной вокруг квадрата окружности равен половине его диагонали d.
Примеры задач
Задание 1
Длина стороны квадрата равняется 8 см. Найдите радиус описанной вокруг него окружности.
Применим первую формулу, рассмотренную выше:
Задание 2
Вычислите длину диагонали квадрата, если радиус описанной вокруг него окружности составляет 6 см.
Как мы знаем, радиус описанной окружности равняется половине диагонали квадрата. Следовательно, общая длина диагонали равняется 12 см (6 см ⋅ 2).
[spoiler title=”источники:”]
http://matworld.ru/geometry/kvadrat.php
[/spoiler]
Радиус описанной окружности квадрата, формула
Формула радиуса описанной окружности квадрата выходит из теоремы Пифагора поскольку диагональ квадрата является диаметром описанной окружности.
[R=frac{sqrt{a^2+a^2}}{2}=frac{a}{sqrt{2}}]
(a – сторона квадрата; R – радиус описанной окружности квадрата)
Вычислить, найти радиус описанной окружности квадрата по формуле (1)
a (сторона квадрата)
Вычислить
нажмите кнопку для расчета
Радиус описанной окружности квадрата |
стр. 248 |
---|