Как найти радиус окружности
Лайфхакер собрал девять способов, которые помогут справиться с геометрическими задачами.
Выбирайте формулу в зависимости от известных величин.
Через площадь круга
- Разделите площадь круга на число пи.
- Найдите корень из результата.
- R — искомый радиус окружности.
- S — площадь круга. Напомним, кругом называют плоскость внутри окружности.
- π (пи) — константа, равная 3,14.
Через длину окружности
- Умножьте число пи на два.
- Разделите длину окружности на результат.
- R — искомый радиус окружности.
- P — длина окружности (периметр круга).
- π (пи) — константа, равная 3,14.
Через диаметр окружности
Если вы вдруг забыли, радиус равняется половине диаметра. Поэтому, если диаметр известен, просто разделите его на два.
- R — искомый радиус окружности.
- D — диаметр.
Через диагональ вписанного прямоугольника
Диагональ прямоугольника является диаметром окружности, в которую он вписан. А диаметр, как мы уже вспомнили, в два раза больше радиуса. Поэтому достаточно разделить диагональ на два.
- R — искомый радиус окружности.
- d — диагональ вписанного прямоугольника. Напомним, она делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Поэтому, если диагональ неизвестна, её можно найти через соседние стороны прямоугольника с помощью теоремы Пифагора.
- a, b — стороны вписанного прямоугольника.
Через сторону описанного квадрата
Сторона описанного квадрата равна диаметру окружности. А диаметр — повторимся — равен двум радиусам. Поэтому разделите сторону квадрата на два.
- r — искомый радиус окружности.
- a — сторона описанного квадрата.
Через стороны и площадь вписанного треугольника
- Перемножьте три стороны треугольника.
- Разделите результат на четыре площади треугольника.
- R — искомый радиус окружности.
- a, b, с — стороны вписанного треугольника.
- S — площадь треугольника.
Через площадь и полупериметр описанного треугольника
Разделите площадь описанного треугольника на его полупериметр.
- r — искомый радиус окружности.
- S — площадь треугольника.
- p — полупериметр треугольника (равен половине от суммы всех сторон).
Через площадь сектора и его центральный угол
- Умножьте площадь сектора на 360 градусов.
- Разделите результат на произведение пи и центрального угла.
- Найдите корень из полученного числа.
- R — искомый радиус окружности.
- S — площадь сектора круга.
- α — центральный угол.
- π (пи) — константа, равная 3,14.
Через сторону вписанного правильного многоугольника
- Разделите 180 градусов на количество сторон многоугольника.
- Найдите синус полученного числа.
- Умножьте результат на два.
- Разделите сторону многоугольника на результат всех предыдущих действий.
- R — искомый радиус окружности.
- a — сторона правильного многоугольника. Напомним, в правильном многоугольнике все стороны равны.
- N — количество сторон многоугольника. К примеру, если в задаче фигурирует пятиугольник, как на изображении выше, N будет равняться 5.
Читайте также 📐✂️📌
- Как найти периметр прямоугольника
- Как научить ребёнка считать играючи
- Как перевести обычную дробь в десятичную
- 6 способов посчитать проценты от суммы с калькулятором и без
- 9 логических задач, которые по зубам только настоящим интеллектуалам
В данной публикации мы рассмотрим, как можно вычислить радиус круга (окружности) и разберем примеры решения задач для закрепления материала.
-
Формулы вычисления радиуса круга
- 1. Через длину окружности/периметр круга
-
2. Через площадь круга
- Примеры задач
Формулы вычисления радиуса круга
1. Через длину окружности/периметр круга
Радиус круга/окружности рассчитывается по формуле:
C – это длина окружности/периметр круга; равняется удвоенному произведению числа π на его радиус:
C = 2πR
π – число, приближенное значение которого равно 3,14.
2. Через площадь круга
Радиус круга/окружности вычисляется таким образом:
S – это площадь круга; равна числу π, умноженному на квадрат его радиуса:
S = πR2
Примеры задач
Задание 1
Длина окружности равняется 87,92 см. Найдите ее радиус.
Решение:
Используем первую формулу (через периметр):
Задание 2
Найдите радиус круга, если его площадь составляет 254,34 см2.
Решение:
Воспользуемся формулой, выраженной через площадь фигуры:
При помощи нашего калькулятора вы легко сможете узнать радиус круга или окружности.
Для того что бы вычислить радиус круга необходимо знать его длину или площадь. Если нам известа одна из указаннх величин, для нас не составит труда вычислить радиус круга.
Радиус круга рассчитывается по следующим формулам:
- Если нам известна длина:
Формула для расчета радиуса круга через его длину:
R=P/(2π) - Если нам известна площадь:
Формула для расчета радиус круга через площадь:
R=√
S/π
- Если нам известен диаметр:
Формула для расчета радиус круга через диаметр:
R=D/2
Где R – радиус круга, S – площадь круга, P – длина круга, D – диаметр, π – число Пи которое всегда примерно равно 3,14.
Загрузить PDF
Загрузить PDF
Радиус круга – это расстояние от центра круга до любой точки, которая лежит на внешней окружности круга.[1]
Простейший способ найти радиус – разделить диаметр пополам. Если диаметр не известен, но даны значения других величин, таких как длина окружности () или площадь круга (), радиус можно вычислить по специальным формулам, изолировав переменную . Наконец, если дан центральный угол и площадь сектора круга, можно воспользоваться формулой , чтобы найти радиус. Обратите внимание, что в данной статье площадь обозначена как , но в российских учебниках принято обозначение .
-
1
-
2
В формуле изолируйте радиус. Для этого разделите обе части формулы на . Вы получите формулу для вычисления радиуса.
-
3
В формулу подставьте значение длины окружности. Оно должно быть дано в задаче. Значение длины окружности подставляется вместо переменной .
- Например, если длина окружности равна 15 см, формула запишется так: .
-
4
Округлите результат. Рассчитайте величину радиуса, используя клавишу на калькуляторе и округлите ответ. Если у вас нет калькулятора или на нем нет такой клавиши, рассчитайте вручную, приняв равным 3,14.
Реклама
-
1
Запишите формулу для вычисления площади круга. Формула: , где – площадь круга, – радиус круга.[3]
-
2
В формуле изолируйте радиус.
-
3
В формулу подставьте значение площади. Оно должно быть дано в задаче. Значение площади подставляется вместо переменной .
- Например, если площадь круга равна 21 см2, то формула запишется так: .
-
4
Разделите площадь на . Чтобы получить точное значение, воспользуйтесь калькулятором. Если калькулятора нет, округлите до 3,14.
-
5
Извлеките квадратный корень. Для этого понадобится калькулятор, потому что в результате получится десятичная дробь. Так вы вычислите радиус круга.
- Например, . Таким образом, радиус круга, площадь которого равна 21 см2, приблизительно равен 2,59 см.
Реклама
-
1
Найдите диаметр круга. Как правило, диаметр дан в задаче; в противном случае просто измерьте его. Диаметр – это отрезок, который соединяет две точки, лежащие на окружности, и проходит через центр окружности (круга).[4]
Диаметр делит круг на две равные части.- Например, дан круг диаметром 4 см.
-
2
Разделите диаметр на 2. Радиус круга равен половине его диаметра.[5]
- Например, если диаметр равен 4 см, то: . Таким образом, радиус круга равен 2 см.
Реклама
-
1
Запишите формулу для вычисления площади сектора. Формула: , где – площадь сектора, – центральный угол, – радиус круга.[6]
-
2
-
3
Разделите центральный угол на 360. Так вы определите, какую часть круга занимает сектор.
-
4
Изолируйте . Для этого разделите обе части формулы на обыкновенную дробь или десятичную дробь, равную части, которую занимает сектор на круге. Если вы не пользуетесь калькулятором, делите на обыкновенную дробь. С помощью калькулятора можно разделить на десятичную дробь, но помните, что чем меньше цифр после десятичной запятой, тем менее точный результат вы получите.
- Например:
- Например:
-
5
Разделите обе части формулы на . Так вы изолируете переменную . Чтобы получить более точный результат, воспользуйтесь калькулятором. Число округлите до 3,14159 или до 3,14.
- Например:
- Например:
-
6
Извлеките квадратный корень из обеих частей формулы. Так вы найдете радиус круга.
- Например:
Таким образом, радиус круга приблизительно равен 6,91 см.
Реклама
- Например:
Об этой статье
Эту страницу просматривали 681 528 раз.
Была ли эта статья полезной?
В жизни достаточно часто приходится пользоваться школьными знаниями геометрии. Эти знания могут пригодиться в строительстве и дизайне, в частности, ландшафтном. В определенных ситуациях необходимо знать радиус круга. Как его найти? Есть несколько способов.
Круг и окружность
В геометрии есть 2 фигуры, которые, вроде бы очень похожи, но при этом отличаются. И отличия заключаются не только во внешнем виде, но и в формулах вычисления отдельных элементов данных фигур.
Окружность
По своей сути окружность — это всего лишь линия, а точнее, кривая линия, начало и конец которой совпадают (замкнутая линия).
Все точки этой кривой удалены на равное расстояние от центра. Этот центр находится в той же плоскости, что и кривая. Внутри окружности ничего нет. То есть имеется центр и имеется линия, проведенная вокруг этого центра на определенном расстоянии.
Круг
Круг — это практически та же самая окружность, проведенная на определенном расстоянии от центра, но область между линией и центром заполнена множеством точек, которые находятся на расстоянии от центра, не большем, чем радиус этого круга.
Вычисление радиуса
Радиус можно посчитать разными способами.
Если известен диаметр
Этот способ самый простой. Диаметр равен двум радиусам. Поэтому радиус будет высчитываться по формуле r=d/2.
Если известна длина окружности круга
Также несложно будет узнать радиус, если известна длина окружности круга. Формула для расчета длины окружности C=2πr, в которой C является длиной окружности, π=3,14, а r — это как раз искомый радиус.
Преобразовав данную формулу, получим: r=C/2π. Вообще, число «Пи» в формуле — это постоянное значение, округленное до 3,14. На самом деле «Пи» выглядит так:
Означает данное значение отношение длины окружности к диаметру той же окружности.
Если известна площадь круга
Формула площади круга выглядит так: A= π(r²). Эту формулу можно преобразовать в формулу радиуса:
В ней A — это площадь круга, число «Пи» мы уже знаем, оно равно округленно 3,14, а r — это и есть искомое значение радиуса.
Как найти радиус круга, все школьники учат на геометрии. Взрослые, конечно, со временем забывают эти формулы. Но, прочитав данную статью, радиус круга может найти каждый: и взрослый, и ребенок.
Радиус круга онлайн
Если всё же возникли сложности и высчитать радиус круга по формулам не получается, то можно воспользоваться онлайн-калькуляторами и узнать нужное значение с помощью них.
Для вычисления радиуса нужно только ввести известное значение длины окружности или площади круга в пустую ячейку и нажать кнопку «вычислить».
Вот так легко и просто можно решить поставленную задачку.
Видео по теме
Подпишитесь на наши интересные статьи в соцетях!
Или подпишитесь на рассылку