Как найти радиус окружности не зная ничего

Как найти радиус окружности

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

Возможно тебе интересно узнать – как найти длину окружности?

Формула радиуса окружности

Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.

Если известна площадь круга

R = √ S : π, где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Если известна длина

R = P : 2 * π, где P — длина (периметр круга).

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Если известен диаметр окружности

R = D : 2, где D — диаметр.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

Если известна диагональ вписанного прямоугольника

R = d : 2, где d — диагональ.

Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:

d = √ a 2 + b 2 , где a, b — стороны вписанного прямоугольника.

Если известна сторона описанного квадрата

R = a : 2, где a — сторона.

Сторона описанного квадрата равна диаметру окружности.

Если известны стороны и площадь вписанного треугольника

R = (a * b * c) : (4 * S), где a, b, с — стороны, S — площадь треугольника.

Если известна площадь и полупериметр описанного треугольника

R = S : p, где S — площадь треугольника, p — полупериметр треугольника.

Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.

Если известна площадь сектора и его центральный угол

R = √ (360° * S) : (π * α), где S — площадь сектора круга, α — центральный угол.

Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.

Если известна сторона вписанного правильного многоугольника

R = a : (2 * sin (180 : N)), где a — сторона правильного многоугольника, N — количество сторон.

В правильном многоугольнике все стороны равны.

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Как посчитать радиус окружности

Онлайн калькулятор

Как посчитать радиус зная длину окружности

Чему равен радиус если длина окружности ?

Чему равен радиус (r) если длина окружности C?

Формула

r = C / , где π ≈ 3.14

Пример

Если длина круга равна 3 см, то его радиус примерно равен 0.477 см.

Как посчитать радиус окружности зная её площадь

Чему равен радиус окружности если

Чему равен радиус окружности (r) если её площадь S?

Формула

Пример

Если площадь круга равна 5 см 2 , то его радиус примерно равен 1.26 см.

Как посчитать радиус окружности зная диаметр

Чему равен радиус окружности если

Чему равен радиус окружности (r) если её диаметр d?

Формула

Пример

Если диаметр круга равен 3 см, то его радиус = 1.5 см.

Нахождение радиуса круга: формула и примеры

В данной публикации мы рассмотрим, как можно вычислить радиус круга (окружности) и разберем примеры решения задач для закрепления материала.

Формулы вычисления радиуса круга

1. Через длину окружности/периметр круга

Радиус круга/окружности рассчитывается по формуле:

C – это длина окружности/периметр круга; равняется удвоенному произведению числа π на его радиус:

C = 2 π R

π – число, приближенное значение которого равно 3,14.

2. Через площадь круга

Радиус круга/окружности вычисляется таким образом:

S – это площадь круга; равна числу π , умноженному на квадрат его радиуса:

S = π R 2

Примеры задач

Задание 1
Длина окружности равняется 87,92 см. Найдите ее радиус.

Решение:
Используем первую формулу (через периметр):

Задание 2
Найдите радиус круга, если его площадь составляет 254,34 см 2 .

Решение:
Воспользуемся формулой, выраженной через площадь фигуры:

[spoiler title=”источники:”]

http://poschitat.online/radius-okruzhnosti

[/spoiler]

Как найти радиус окружности

Лайфхакер собрал девять способов, которые помогут справиться с геометрическими задачами.

Выбирайте формулу в зависимости от известных величин.

Через площадь круга

  1. Разделите площадь круга на число пи.
  2. Найдите корень из результата.
Иллюстрация: Лайфхакер
  • R — искомый радиус окружности.
  • S — площадь круга. Напомним, кругом называют плоскость внутри окружности.
  • π (пи) — константа, равная 3,14.

Через длину окружности

  1. Умножьте число пи на два.
  2. Разделите длину окружности на результат.
Иллюстрация: Лайфхакер
  • R — искомый радиус окружности.
  • P — длина окружности (периметр круга).
  • π (пи) — константа, равная 3,14.

Через диаметр окружности

Если вы вдруг забыли, радиус равняется половине диаметра. Поэтому, если диаметр известен, просто разделите его на два.

Иллюстрация: Лайфхакер
  • R — искомый радиус окружности.
  • D — диаметр.

Через диагональ вписанного прямоугольника

Диагональ прямоугольника является диаметром окружности, в которую он вписан. А диаметр, как мы уже вспомнили, в два раза больше радиуса. Поэтому достаточно разделить диагональ на два.

Иллюстрация: Лайфхакер
  • R — искомый радиус окружности.
  • d — диагональ вписанного прямоугольника. Напомним, она делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Поэтому, если диагональ неизвестна, её можно найти через соседние стороны прямоугольника с помощью теоремы Пифагора.
  • a, b — стороны вписанного прямоугольника.

Через сторону описанного квадрата

Сторона описанного квадрата равна диаметру окружности. А диаметр — повторимся — равен двум радиусам. Поэтому разделите сторону квадрата на два.

Иллюстрация: Лайфхакер
  • r — искомый радиус окружности.
  • a — сторона описанного квадрата.

Через стороны и площадь вписанного треугольника

  1. Перемножьте три стороны треугольника.
  2. Разделите результат на четыре площади треугольника.
Иллюстрация: Лайфхакер
  • R — искомый радиус окружности.
  • a, b, с — стороны вписанного треугольника.
  • S — площадь треугольника.

Через площадь и полупериметр описанного треугольника

Разделите площадь описанного треугольника на его полупериметр.

Иллюстрация: Лайфхакер
  • r — искомый радиус окружности.
  • S — площадь треугольника.
  • p — полупериметр треугольника (равен половине от суммы всех сторон).

Через площадь сектора и его центральный угол

  1. Умножьте площадь сектора на 360 градусов.
  2. Разделите результат на произведение пи и центрального угла.
  3. Найдите корень из полученного числа.
Иллюстрация: Лайфхакер
  • R — искомый радиус окружности.
  • S — площадь сектора круга.
  • α — центральный угол.
  • π (пи) — константа, равная 3,14.

Через сторону вписанного правильного многоугольника

  1. Разделите 180 градусов на количество сторон многоугольника.
  2. Найдите синус полученного числа.
  3. Умножьте результат на два.
  4. Разделите сторону многоугольника на результат всех предыдущих действий.
Иллюстрация: Лайфхакер
  • R — искомый радиус окружности.
  • a — сторона правильного многоугольника. Напомним, в правильном многоугольнике все стороны равны.
  • N — количество сторон многоугольника. К примеру, если в задаче фигурирует пятиугольник, как на изображении выше, N будет равняться 5.

Читайте также 📐✂️📌

  • Как найти периметр прямоугольника
  • Как научить ребёнка считать играючи
  • Как перевести обычную дробь в десятичную
  • 6 способов посчитать проценты от суммы с калькулятором и без
  • 9 логических задач, которые по зубам только настоящим интеллектуалам

Взять линейку и померять. От центра до окружности.

Или вас интересует аналитический способ?

Обычно, окружность задают так: “задана окружность радиусом R”, так вот “R” это и есть радиус.

Если вместо “R” говорится “D”, то это диаметр – удвоенный радиус.

автор вопроса выбрал этот ответ лучшим

Матве­й628
[90.1K]

9 лет назад 

Найти радиус окружности обычно требуется тогда, когда известна длина окружности. В этом случае, чтобы найти радиус окружности, нужно просто разделить длину окружности на 6,28. Это и будет радиус.

Не так просто найти радиус, когда есть окружность, но нет ничего, кроме линейки. Понятно, что радиус равен половине диаметра, а вот как провести диаметр, если нет центра?

Очень просто. Выбираем три точки на окружности, рисуем вписанный треугольник. Далее проводим три перпендикуляра из центров сторон треугольника. Их точка пересечения и будет центром окружности. Далее измеряем расстояние от центра окружности до самой окружности. Это и будет радиус окружности.

текст при наведении

Ксарф­акс
[156K]

6 лет назад 

Радиус – отрезок, соединяющий центр окружности и любую точку, которая на ней отмечена.

Существует довольно много способов нахождения радиуса окружности. Это зависит от условий задачи, от того, какие исходные данные у вас имеются.

Например:

1) R = 0,5D. Здесь D – это диаметр окружности.

2) С помощью линейки можно измерить диаметр, а затем поделить получившееся число на 2.

3) Если известна длина окружности C, то значение R = C/2π.

4) Если известна площадь круга A, то значение R = Корень(Aπ).

5) Если окружность вписана квадрат, то можно найти радиус данной окружности по значению площади квадрата и длине его стороны.

Разделите диаметр окружности на 2

Это и будет радиус !!!

Maris­ya
[10.4K]

10 лет назад 

Если известна длина окружности, то радиус окружности можно найти разделив ее длину на два пи. Формула: С = 2*пи*R, откуда R = C/(2*пи). C – длина окружности, R – радиус окружности……………………..

Смотря какие есть исходные данные. Если известен диаметр, то просто разделить на 2, если есть длина окружности, то разделить ее на число Пи умноженное на 2. Если есть площаль окуружности, то следует разделить ее на число Пи и из полученного числа извлечь корень квадратный, это и будет радиус. Ну, или измерьте линейкой, если есть сама окружность.

Roxri­te
[79.1K]

9 лет назад 

Существует несколько способов найти радиус окружности:

1. Если окружность построена на обычном листе, то измерьте её радиус с помощью линейки.

2. Если известен диаметр окружности, то необходимо разделить диаметр пополам.

3. Если известна площадь окружности, то по формуле S=πR², отсюда R=√(S/π).

Если это надо сделать экспериментальным путём и без помощи всяческих формул, то легче лёгкого взять линейку и померить всё же диаметр этой окружности, ну а потом, соответственно, разделить его на два, вот и получится радиус. Почему лучше мерить диаметр? Да чтоб центр окружности не искать)))

Самый простой способ найти радиус окружности – это диаметр этой окружности, если, конечно, он известен, разделить на 2. Вот формула R = D/2.

Если известна длина окружности, то тогда можно использовать следующую формулу: R = L/2П (длина окружности – это L, П – это “пи”, равное 3,14.

Nikol­ai Sosiu­ra
[152K]

9 лет назад 

Радиус окружности найти можно.

Если мы знаем диаметр окружность, то можно поделить на два. Получится радиус окружности.

Неплохо в этом расчете помогает формула R = L/2π.

R – радиус. L – длинна круга (если известна или можно определить). – 2*3,14.

CooLW­arK
[27.3K]

9 лет назад 

Радиус окружности можно найти следующими способами:

  1. Если измерить расстояние от центра окружности до одной из её крайних точек.
  2. Если известен диаметр окружности, то R = D/2.
  3. Если известна длина окружности, то R = C/2*3,14.

Алекс Клима­нов
[2.9K]

9 лет назад 

Это расстояние от центра окружности до одной из её крайних точек. То есть проще всего линейкой. Легче и точнее померить диаметр – делим пополам. Если дана длина окружности С, то r = С/2*П.

Знаете ответ?


Download Article


Download Article

The radius of a circle is the distance from the center of the circle to any point on its circumference.[1]
The easiest way to find the radius is by dividing the diameter in half. If you don’t know the diameter but you know other measurements, such as the circle’s circumference ({displaystyle C=2pi r}) or area ({displaystyle A=pi r^{2}}), you can still find the radius by using the formulas and isolating the r variable.

  1. Image titled Calculate the Radius of a Circle Step 4

    1

    Write down the circumference formula. The formula is

    C=2pi r

    , where C equals the circle’s circumference, and r equals its radii[2]

  2. Image titled Calculate the Radius of a Circle Step 5

    2

    Solve for r. Use algebra to change the circumference formula until r (radius) is alone on one side of the equation:

    Example
    C=2pi r
    {frac  {C}{2pi }}={frac  {2pi r}{2pi }}
    {frac  {C}{2pi }}=r
    r={frac  {C}{2pi }}

    Advertisement

  3. Image titled Calculate the Radius of a Circle Step 6

    3

    Plug the circumference into the formula. Whenever a math problem tells you the circumference C of a circle, you can use this equation to find the radius r. Replace C in the equation with the circumference of the circle in your problem:

    Example
    If the circumference is 15 centimeters, your formula will look like this: r={frac  {15}{2pi }} centimeters

  4. Image titled Calculate the Radius of a Circle Step 8

    4

    Round to a decimal answer. Enter your result in a calculator with the pi button and round the result. If you don’t have a calculator, calculate it by hand, using 3.14 as a close estimate for pi .

    Example
    r={frac  {15}{2pi }}= about {frac  {7.5}{2*3.14}}= approximately 2.39 centimeters

  5. Advertisement

  1. Image titled Calculate the Radius of a Circle Step 9

    1

    Set up the formula for the area of a circle. The formula is

    A=pi r^{{2}}

    , where A equals the area of the circle, and r equals the radius.[3]

  2. Image titled Calculate the Radius of a Circle Step 10

    2

    Solve for the radius. Use algebra to get the radius r alone on one side of the equation:

    Example
    Divide both sides by pi :
    A=pi r^{{2}}
    {frac  {A}{pi }}=r^{{2}}
    Take the square root of both sides:
    {sqrt  {{frac  {A}{pi }}}}=r
    r={sqrt  {{frac  {A}{pi }}}}

  3. Image titled Calculate the Radius of a Circle Step 11

    3

    Plug the area into the formula. Use this formula to find the radius when the problem tells you the area of the circle. Substitute the area of the circle for the variable A.

    Example
    If the area of the circle is 21 square centimeters, the formula will look like this: r={sqrt  {{frac  {21}{pi }}}}

  4. Image titled Calculate the Radius of a Circle Step 12

    4

    Divide the area by pi . Begin solving the problem by simplifying the portion under the square root ({frac  {A}{pi }}). Use a calculator with a pi key if possible. If you don’t have a calculator, use 3.14 as an estimate for pi .

    Example
    If using 3.14 for pi , you would calculate:
    r={sqrt  {{frac  {21}{3.14}}}}
    r={sqrt  {6.69}}
    If your calculator allows you to enter the whole formula on one line, that will give you a more accurate answer.

  5. Image titled Calculate the Radius of a Circle Step 13

    5

    Take the square root.

    You will likely need a calculator to do this

    , because the number will be a decimal. This value will give you the radius of the circle.

    Example
    r={sqrt  {6.69}}=2.59. So, the radius of a circle with an area of 21 square centimeters is about 2.59 centimeters.
    Areas always use square units (like square centimeters), but the radius always uses units of length (like centimeters). If you keep track of units in this problem, you’ll notice that {sqrt  {cm^{{2}}}}=cm.

  6. Advertisement

  1. Image titled Calculate the Radius of a Circle Step 1

    1

    Check the problem for a diameter. If the problem tells you the diameter of the circle, it’s easy to find the radius. If you are working with an actual circle,

    measure the diameter by placing a ruler so its edge passes straight through the circle’s center

    , touching the circle on both sides.[4]

    • If you’re not sure where the circle center is, put the ruler down across your best guess. Hold the zero mark of the ruler steady against the circle, and slowly move the other end back and forth around the circle’s edge. The highest measurement you can find is the diameter.
    • For example, you might have a circle with a diameter of 4 centimeters.
  2. Image titled Calculate the Radius of a Circle Step 3

    2

    Divide the diameter by two. A circle’s

    radius is always half the length of its diameter.

    [5]

    • For example, if the diameter is 4 cm, the radius equals 4 cm ÷ 2 = 2 cm.
    • In math formulas, the radius is r and the diameter is d. You might see this step in your textbook as r={frac  {d}{2}}.
  3. Advertisement

  1. Image titled Calculate the Radius of a Circle Step 14

    1

    Set up the formula for the area of a sector. The formula is

    A_{{sector}}={frac  {theta }{360}}(pi )(r^{{2}})

    , where A_{{sector}} equals the area of the sector, theta equals the central angle of the sector in degrees, and r equals the radius of the circle.[6]

  2. Image titled Calculate the Radius of a Circle Step 15

    2

    Plug the sector’s area and central angle into the formula. This information should be given to you.

    Make sure you have the area of the sector, not the area for the circle.

    Substitute the area for the variable A_{{sector}} and the angle for the variable theta .

    Example
    If the area of the sector is 50 square centimeters, and the central angle is 120 degrees, you would set up the formula like this:
    50={frac  {120}{360}}(pi )(r^{{2}}).

  3. Image titled Calculate the Radius of a Circle Step 16

    3

    Divide the central angle by 360. This will tell you what fraction of the entire circle the sector represents.

    Example
    {frac  {120}{360}}={frac  {1}{3}}. This means that the sector is {frac  {1}{3}} of the circle.
    Your equation should now look like this: 50={frac  {1}{3}}(pi )(r^{{2}})

  4. Image titled Calculate the Radius of a Circle Step 17

    4

    Isolate (pi )(r^{{2}}). To do this, divide both sides of the equation by the fraction or decimal you just calculated.

    Example
    50={frac  {1}{3}}(pi )(r^{{2}})
    {frac  {50}{{frac  {1}{3}}}}={frac  {{frac  {1}{3}}(pi )(r^{{2}})}{{frac  {1}{3}}}}
    150=(pi )(r^{{2}})

  5. Image titled Calculate the Radius of a Circle Step 18

    5

    Divide both sides of the equation by pi . This will isolate the r variable. For a more precise result, use a calculator. You can also round pi to 3.14.

    Example
    150=(pi )(r^{{2}})
    {frac  {150}{pi }}={frac  {(pi )(r^{{2}})}{pi }}
    47.7=r^{{2}}

  6. Image titled Calculate the Radius of a Circle Step 19

    6

    Take the square root of both sides. This will give you the radius of the circle.

    Example
    47.7=r^{{2}}
    {sqrt  {47.7}}={sqrt  {r^{{2}}}}
    6.91=r
    So, the radius of the circle is about 6.91 centimeters.

  7. Advertisement

Practice Problems and Answers

Add New Question

  • Question

    How do I find the radius of a circle when I know the chord length?

    Community Answer

    It is possible to have quite a few circles, all with different radii, in which one could draw a chord of a given, fixed length. Hence, the chord length by itself cannot determine the radius of the circle.

  • Question

    How do I find the radius of a circle when I know the arc length and the central angle?

    Donagan

    Divide the central angle into 360°. Multiply the resulting number by the arc length. That gives you the circumference of the circle. Divide the circumference by pi. That’s the diameter. Half of the diameter is the radius of the circle.

  • Question

    How do I calculate the radius of a circle when no other values are known?

    Community Answer

    Technically you can’t “calculate” the radius in such a situation. However, it is possible, by construction, to locate the center of such a circle, and then, simply by physically measuring, determine the radius. To do the construction, draw any two chords and construct their perpendicular bisectors; their point of intersection is the center of the circle. Then draw in any radius and measure it with a ruler. Not technically a “calculation.”

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

About This Article

Article SummaryX

To calculate the radius of a circle by using the circumference, take the circumference of the circle and divide it by 2 times π. For a circle with a circumference of 15, you would divide 15 by 2 times 3.14 and round the decimal point to your answer of approximately 2.39. Be sure to include the units in your answer. To learn more, such as how to calculate the radius with the area or diameter, keep reading the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 3,347,614 times.

Did this article help you?

В данной публикации мы рассмотрим, как можно вычислить радиус круга (окружности) и разберем примеры решения задач для закрепления материала.

  • Формулы вычисления радиуса круга

    • 1. Через длину окружности/периметр круга

    • 2. Через площадь круга

  • Примеры задач

Формулы вычисления радиуса круга

Радиус круга

1. Через длину окружности/периметр круга

Радиус круга/окружности рассчитывается по формуле:

Формула радиуса круга через его периметр

C – это длина окружности/периметр круга; равняется удвоенному произведению числа π на его радиус:

C = 2πR

π – число, приближенное значение которого равно 3,14.

2. Через площадь круга

Радиус круга/окружности вычисляется таким образом:

Формула радиуса круга через его площадь

S – это площадь круга; равна числу π, умноженному на квадрат его радиуса:

S = πR2

Примеры задач

Задание 1
Длина окружности равняется 87,92 см. Найдите ее радиус.

Решение:
Используем первую формулу (через периметр):
Вычисление радиуса круга через его периметр

Задание 2
Найдите радиус круга, если его площадь составляет 254,34 см2.

Решение:
Воспользуемся формулой, выраженной через площадь фигуры:
Вычисление радиуса круга через его площадь

Добавить комментарий