Как найти радиус окружности описанный четырехугольник

Разберем ещё одну очень сложную задачу из открытого банка заданий ФИПИ. Чем она «очень сложная»? Наверное, тем, что в ней для быстрого решения необходимо выполнить дополнительное построение. А это всегда не просто – вариантов всегда очень много, а найти нужно «единственный рабочий».

Задание №25, геометрия, снова окружность. Поехали?

Задача

Рис. 1
Рис. 1

Рассуждение

  • Четырёхугольник вписан. А любой можно вписать?
  • Угол между диагоналями известен, возможно площадь через диагонали и угол между ними.
  • Может свойство пересекающихся хорд окружности (диагонали).
  • Радиус описанной окружности, возможно через теорему синусов.

Решение

Построим вписанный в окружность четырёхугольник, с пересекающимися в точке K диагоналями.

Рис. 2. ABCD - вписанный четырёхугольник; AC и BD - диагонали
Рис. 2. ABCD – вписанный четырёхугольник; AC и BD – диагонали

Достроим хорду параллельную любой из диагоналей четырёхугольника.

Рис. 3. AE||BD; ∠BKA = ∠KAE - накрестлежащие при секущей AK
Рис. 3. AE||BD; ∠BKA = ∠KAE – накрестлежащие при секущей AK

Четырёхугольник ABDE – трапеция или прямоугольник (квадрат отнесём к прямоугольникам) т.к. противолежащие стороны AE и BD параллельны, а накрестлежащие углы при секущей BD равны, то и дуги (и хорды) равны. Получается, в любом случае AB = DE.

Рис. 4. AB = DE - как хорды отсекающие равные дуги
Рис. 4. AB = DE – как хорды отсекающие равные дуги

Теперь рассмотрим четырёхугольник ACDE.

Рис. 5. Четырёхугольник ACDE - вписан в окружность
Рис. 5. Четырёхугольник ACDE – вписан в окружность

Это вписанный в окружность четырёхугольник (все вершины принадлежат окружности).

Рис. 6. Противолежащие углы в сумме 180°
Рис. 6. Противолежащие углы в сумме 180°

В отличии от треугольников (можно вписать всегда), четырёхугольник получится вписать в окружность только если выполнено условие: сумма противолежащих углов в сумме равна 180°.

Рис. 7
Рис. 7

Можно найти угол ∠CDE = 120°.

Рассмотрим ∆CDE.

Рис. 8
Рис. 8

В этом треугольнике нам известно две стороны (CD и DE) и угол между ними (∠CDE) – теорема косинусов.

Рис. 9. Теорема косинусов для  ∆CDE
Рис. 9. Теорема косинусов для ∆CDE

По теореме косинусов находим сторону CE (CD = 10; DE = 40; cos∠CDE = -0,5):

CE = 10√21.

И уже по теореме синусов найдём радиус описанной окружности для ∆CDE.

Рис. 10. Теорема синусов для ∆CDE
Рис. 10. Теорема синусов для ∆CDE

Не забываем, что sin120° = sin60° (формулы приведения).

Ответ: 10√7

Заключение

Что пригодилось:

  • Интуиция для удачного построения;
  • Свойство углов четырёхугольника вписанного в окружность;
  • Теорема косинусов;
  • Теорема синусов.

Применение

Подобные задания можно найти на сайте ФИПИ или перейти по этой ссылке. Пробуйте, решайте, рассказывайте о своих способах решения. Удачи!

радиус описанной окружности треугольника

a , b , c blue    –  стороны треугольника

s12 black  – полупериметр

s (abc)2

O black  – центр окружности

Формула радиуса описанной окружности треугольника ( R  ) :

Формула радиуса описанной окружности треугольника

радиус описанной окружности равностороннего треугольника

сторона – сторона треугольника

высота – высота

радиус – радиус описанной окружности

Формула радиуса описанной окружности равностороннего треугольника через его сторону:

Формула радиуса описанной окружности равностороннего треугольника через сторону

Формула радиуса описанной окружности равностороннего треугольника через высоту:

Формула радиуса описанной окружности равностороннего треугольника через высоту

Зная стороны равнобедренного треугольника, можно по формуле, найти, радиус описанной окружности около этого треугольника.

радиус описанной окружности равнобедренного треугольника

a, b – стороны треугольника

Формула радиуса описанной окружности равнобедренного треугольника(R):

Формула радиуса описанной окружности равнобедренного треугольника

Радиус описанной окружности прямоугольного треугольника равен половине его гипотенузы.

радиус описанной окружности прямоугольного треугольника

a, b – катеты прямоугольного треугольника

c – гипотенуза

Формула радиуса описанной окружности прямоугольного треугольника (R):

Формула радиуса описанной окружности прямоугольного треугольника

Радиус описанной окружности трапеции

a – боковые стороны трапеции

c – нижнее основание

b – верхнее основание

d – диагональ

p – полупериметр треугольника DBC

p = (a+d+c)/2

Формула радиуса описанной окружности равнобокой трапеции, (R)

Формула радиуса описанной окружности равнобокой трапеции

Радиус описанной окружности квадрата равен половине его диагонали

радиус описанной окружности около квадрата

a – сторона квадрата

d – диагональ

Формула радиуса описанной окружности квадрата (R):

Формула радиуса описанной окружности квадрата

Радиус описанной окружности прямоугольника равен половине его диагонали

Радиус описанной окружности прямоугольника

a, b – стороны прямоугольника

d – диагональ

Формула радиуса описанной окружности прямоугольника (R):

Формула радиуса описанной окружности прямоугольника

Радиус описанной окружности правильного многоугольника

a – сторона многоугольника

N – количество сторон многоугольника

Формула радиуса описанной окружности правильного многоугольника, (R):

Формула радиуса описанной окружности правильного многоугольника

a – сторона шестиугольника

d – диагональ шестиугольника

Радиус описанной окружности правильного шестиугольника (R):

Четырехугольник, вписанный в окружность – основные свойства, признаки и формулы

Общие сведения

Фигура является вписанной в окружность, когда все ее вершины лежат на ней. Произвести вписание в окружность четырехугольника можно только в том случае, когда он выпуклый. Все его точки находятся по одну сторону от произвольной прямой, которая проходит через соседние вершины фигуры. Нужно отметить, что в этом случае окружность является описанной вокруг фигуры. Если в параллелограмм вписана окружность, то ее центр совпадает с центром окружности, которая описана вокруг него.

Четырехугольники бывают самопересекающимися. Они также могут быть вписанными, однако это встречается крайне редко. Не каждую фигуру можно вписать в круг, поскольку существуют определенные законы. Например, вокруг ромба нельзя описать круг — исключение составляет случай, когда ромб является квадратом.

Основные правила

Выпуклый четырехугольник можно вписать в окружность. Однако для этого существуют некоторые правила (критерии) или признаки. Некоторые задачи сформулированы таким образом, что нужно знать основные критерии, а также уметь доказывать возможность вписывать или описывать окружность. Около четырехугольника можно описать окружность, если выполняются следующие условия:

  • Сумма углов, которые являются противоположными, соответствует 180 градусам.
  • Соблюдается равенство смежного и противоположного углов.
  • Угол между стороной и диагональю равен углу между противоположной стороной и диагональю.
  • Произведение двух диагоналей соответствует размерности суммы произведений противоположных сторон.
  • Четыре точки лежат на окружности, когда две прямые АС и BD, образующие диагонали, пересекаются в некоторой точке P, а также выполняется следующее равенство: AP * PC = BP * PD.
  • Произведения тангенсов половины двух противоположных углов равны 1. Кроме того, значения произведений эквивалентны друг другу (tg (A/2) * tg (C/2) = tg (B/2) * tg (D/2) = 1).

Четвертое утверждение является теоремой Птолемея. Все эти правила являются следствиями, полученными при доказательстве различных гипотез. Правила можно применять в зависимости от условия поставленной задачи. Любой параллелограмм можно вписать в окружность, когда он является прямоугольником или квадратом.

Свойства и утверждения

При решении можно воспользоваться некоторыми свойствами, которые были доказаны. Это нужно для того, чтобы не тратить время на выведение какой-либо формулы. Применяется методика для оптимизации вычислений. К ним можно отнести следующие:

  • Если вокруг четырехугольника описана окружность, то центры окружностей, которые вписанных в треугольники, образованные диагоналями фигуры, являются вершинами прямоугольника.
  • Не бывает четырехугольников, вписанных в окружность, с рациональной площадью и сторонами, которые образуют арифметический или геометрический тип прогрессии.
  • При продолжении сторон до точек пересечения Y и Z, внутренние биссектрисы углов Y и Z являются перпендикулярными.

Данные утверждения применяются не всегда. В некоторых случаях можно ограничиться формулами и основными соотношениями — они позволяют легко и быстро искать нужные величины.

Формулы и соотношения

Очень часто необходимо перерыть горы информации для поиска нужной формулы. Это сказывается на оптимизации решения. Кроме того, некоторые соотношения могут содержать ошибки, поскольку материал излагается неквалифицированными специалистами.

Педагоги утверждают, что обучение какой-либо дисциплине с физико-математическим уклоном должно быть основано на алгоритмах. Кроме того, рекомендуется прочитать условие задачи несколько раз до полного его понимания. В основном необходимо находить площадь, диагонали и углы четырехугольника.

Периметр и полупериметр

Периметром выпуклого четырехугольника со сторонами a, b, c и d называется сумма длин всех его сторон. Величина обозначается литерой «Р», и вычисляется по следующей формуле: P = a + b + c +d. Кроме того, в некоторых формулах встречается величина, которая называется полупериметром. Обозначается она литерой «р». Для ее нахождения применяется такое соотношение: p = P / 2 = (a + b + c +d) / 2. Единицей измерения полупериметра являются метрические величины: мм, см, дм, м и т. д.

Для квадрата формула периметра имеет вид: P = 4 * a. Равенство легко доказывается для фигуры со стороной а. Из определения периметра получается соотношение: P = a + a + a + a. Если привести подобные слагаемые, то результирующая формула имеет вид: P = 4 * a. У прямоугольника противоположные стороны равны. Чтобы найти его периметр, нужно воспользоваться равенством: P = a + b + a + b = 2 * (a + b). Необходимо отметить, что квадрат является правильным четырехугольником, поскольку его стороны равны между собой.

Понятие площади

Площадь двумерных фигур — понятие геометрии, которое показывает ее численную характеристику или размер. Очень часто она обозначается литерой S. Измеряется величина в квадратных единицах (см 2 , м 2 и т. д. ). Фигура, имеющая характеристику S, называется квадратируемой.

Для нахождения S применяется интегральный метод, но существуют частные случаи, при которых интегрировать необязательно. Очень часто возникает необходимость перевода одной единицы в другую. Для этого существует простой алгоритм, позволяющий корректно выполнить данную операцию. Например, нужно перевести м 2 в см 2 . Необязательно заучивать единицы площади и их эквивалентность другим. Достаточно выполнить следующие действия:

  • Определить базовую единицу: м и см.
  • Выполнить перевод одной метрической величины в другую: 1 м = 100 см.
  • Возвести обе части выражения во втором пункте в квадрат: 1 м 2 = 100 2 см 2 = 10000 см 2 .

Однако бывают и другие единицы, которые применяются для измерения размерности земельных участков: 1 ар (сокращенно а) = 1 сотке = 100 м 2 и 1 гектар (га) = 10000 м 2 .

Когда известны все стороны четырехугольника (a, b, c и d), который вписан в окружность, можно найти его S. Для этого нужно знать еще одну величину. Она называется полупериметром. Расчет выполняется по формуле: S = [(p — a) * (p — b) * (p — c) * (p — d)]^(½). Соотношение называется формулой Брахмагупты.

Необходимо отметить, что вписанный четырехугольник обладает максимальным значением S среди остальных эквивалентных фигур. Если известны четыре стороны, которые являются последовательными (a, b, c и d), а также угол В между a и b, то можно воспользоваться более упрощенной формулой: S = [(a * b + c * d) * sin (B)] / 2. В случае, когда известны все стороны и любой угол (Y) между диагоналями, соотношение можно записать таким образом: S = [(a * с + и * d) * sin (Y)] / 2.

Площадь можно выразить и другим соотношением, когда известны все стороны и угол А, который не является прямым: S = [(a 2 — b 2 — c 2 + d 2 ) * tg (A)] / 4. При известном радиусе описанной окружности и углах (A, B и Y) можно воспользоваться такой формулой: S = 2 * R^(2) * sin (A) * sin (B) * sin (Y). Следствием из последнего соотношения является S 2 . Если четырехугольник является квадратом, то неравенство преобразуется в равенство, т. е. S = 2 * R 2 .

Диагонали и углы

Для вписанного четырехугольника ABCD существуют определенные соотношения, по которым можно найти его диагонали. Для фигуры со сторонами a = AB, b = BC, c = CD и d = DA диагонали (s = АС и t = DA) находятся таким образом: s = [((a * c + b * d) * (a * d + b * c)) / (a * b + c * d)]^(½) и t = [((a * c + b * d) * (a * b + d * c)) / (a * d + c * b)]^(½). Если умножить диагональ s на t и привести подобные слагаемые, то в результате получится формула Птолемея: s * t = a * c + b * d.

При отношении двух диагоналей получается вторая теорема Птолемея: s / t = (a * d + b * c) / (a * b + d * c). Сумма диагоналей — есть неравенство такого вида: s + t >= 2 * [a * c + b * d]^(½). Неравенство преобразуется в равенство, когда диагонали равны. Однако в этом случае можно воспользоваться следующим выражением: [s + t]^(½) >= [a * c]^(2) + [b * d]^(2).

Необходимо отметить, что в произвольном выпуклом четырехугольнике диагонали делят его на 4 треугольника, которые являются между собой подобными по парам. Кроме того, при пересечении двух диагоналей AC и BD в некоторой точке М, справедливо следующее соотношение: AM / CM = (AB * AD) / (CB * CD).

Можно находить и некоторые углы фигуры. Для этого существуют определенные соотношения. Во вписанном четырехугольнике со сторонами, которые соответствуют значениям a, b, c и d, углом A между сторонами a и d, а также полупериметром p, функции тригонометрического типа для А вычисляются таким образом:

  1. cos (A) = (a 2 + d 2 — b 2 — c 2 ) / (2 * (a * d + b + c)).
  2. sin (A) = [(p — a) * (p — b) * (p — c) * (p — d)]^(½) / (a * d + b + c).
  3. tg (A/2) = [((p — a) * (p — d)) / ((p — b) * (p — c))]^(½).

В некоторых случаях нужно вычислить значение тангенса для угла Y, который находится между диагоналями, по формуле: tg (Y/2) = [((p — b) * (p — d)) / ((p — a) * (p — c))]^(½).

В геометрии существует вписанный четырехугольник, стороны которого являются целыми числами. Кроме того, целочисленными являются также его диагонали и площадь. Он называется четырехугольником Брахмагупты. Однако для преобразования любого четырехугольника в данную фигуру необходимо выполнить некоторые математические операции. Пусть он имеет следующие целочисленные параметры:

  1. Стороны: a, b, c и d.
  2. Диагонали: s и t.
  3. Площадь: S.
  4. Радиус описанной окружности: R.

В некоторых случаях возникает необходимость избавиться от рациональных значений в знаменателе. При значениях дробных параметров k, l и m нужно использовать такие соотношения:

  1. a = [k * (l + m) + (1 — (l * m))] * [l + m — k * (1 — (l * m))].
  2. b = (1 — l 2 ) * (m — k) * (1 + k * m).
  3. c = k * (1 + l 2 ) * (1 + m 2 ).
  4. d = (1 + m 2 ) * (l — k) * (1 + k * l).
  5. s = l * (1 + k 2 ) * (1 + m 2 ).
  6. t = m * (1 + k 2 ) * (1 + l 2 ).
  7. S = l * m * [2 * k * (1 — l * m) — (l + m) * (1 — k 2 )] * [2 * k (l + m) + (1 — l * m) * (1 — k 2 )].
  8. 4 * R = (1 + l 2 ) * (1 + m 2 ) * (1 + k 2 ).

Существуют также соотношения для описанной вокруг четырехугольника окружности. Математики утверждают, что при комбинации двух и более геометрических фигур время поиска некоторых параметров увеличивается.

Параметры для окружности

Радиус окружности R для четырехугольника c полупериметром р и со сторонами a, b, c, d находится по формуле Парамешвары: R = (¼) * [((a * b + c * d) * (a * c + b * d) * (a * d + b * c)) / ((p — a) * (p — b) * (p — c) * (p — d))]^(½). Соотношение было выведено в XV веке математиком из Индии Ватассери Парамешварой.

При комбинации данной формулы с соотношением Брахмагупты можно получить следующее соотношение: 4 * S * R = [(a * b + c * d) * (a * c + b * d) * (a * d + b *c)]^(½). Следует отметить, что величина S является площадью вписанного четырехугольника. Для ортогонального четырехугольника с перпендикулярными диагоналями, которые делятся на отрезки s1, s2, t1 и t2, существует некоторое соотношение, позволяющее найти диаметр окружности (D): D 2 = (s1)^2 + (s2)^2 + (t1)^2 + (t2)^2 = a 2 + c 2 = b 2 + d 2 .

Радиус в этом случае находится таким образом: R = D / 2 = [(s1)^2 + (s2)^2 + (t1)^2 + (t2)^2] / 2 = [a 2 + c 2 ] / 2 = [b 2 + d 2 ] / 2. Если выполнить сложение квадратов сторон, то получится такое равенство: 8 * R = a 2 + b 2 + c 2 + d 2 . По формуле Эйлера R можно также выразить через диагонали (s и t) и расстояние v между их серединами: R = [(s 2 + t 2 + 4 * v 2 ) / 8]^(½).

Таким образом, специалисты рекомендуют на начальных этапах обучения использовать уже готовые формулы для вычисления основных параметров выпуклого четырехугольника, вписанного в окружность.

Описанные и вписанные окружности – формулы, свойства и определение с примерами решения

Содержание:

Окружность, которая касается стороны треугольника и продолжений двух других его сторон, называется вневписанной окружностью треугольника. На рисунке 146 изображен треугольник АВС и три его вневписанные окружности с центрами

Вневписанные окружности обладают рядом интересных свойств:

1. Центры вписанной и вневписанной окружностей лежат на биссектрисе соответствующего внутреннего угла треугольника.

2. где — радиус вписанной окружности треугольника,

3. где R — радиус описанной окружности
Попробуйте доказать некоторые из этих свойств.

Найдем радиус вневписанной окружности треугольника АВС со сторонами а, b и с (рис. 147). Для этого проведем радиусы По свойству касательной Из подо­бия прямоугольных треугольников АОЕ и (по острому углу) следуетТак как то откуда

Пример:

Вычислим, используя данную формулу, радиус вневписанной окружности прямоугольного треугольника с катетами 3 и 4, которая касается гипотенузы:

Описанная и вписанная окружности треугольника

Определение. Окружность называется описанной около треугольника, если она проходит через все его вершины.

На рисунке 90 изображена окружность с ради­усом R и центром описанная около треугольни ка АВС.

Так как ОА = ОВ = ОС = R, то центр описанной окружности равноудален от вершин треугольника.

Вместо слов «окружность, описанная около треугольника АВС», также говорят «окружность, описанная вокруг треугольника АВС», или «описанная окружность треугольника АВС».

Теорема (об окружности, описанной около треугольника).
Около любого треугольника можно описать окружность, причем только одну, ее центр находится в точке пересечения серединных перпендикуляров к сторонам треугольника.

Рассмотрим произвольный треугольник АВС (рис. 91). Пусть О — точка пересечения серединных перпендикуляров к его сторонам. Проведем отрезки ОА, ОВ и ОС. По свойству серединного перпендикуляра ОА = ОС, ОС = ОВ. Так как точка О равноудалена от всех вершин треугольника АВС, то окружность с центром в точке О и радиусом ОА проходит через все вершины треугольника АВС, т. е. является его описанной окружностью. Единственность описанной окружности докажите самостоятельно.

Замечание. Так как все три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке, то для нахождения центра описанной окружности достаточно построить точку пересечения любых двух из них.

Определение. Окружность называется вписанной в треугольник, если она касается всех его сторон.

На рисунке 92 изображена окружность с цент­ром О и радиусом вписанная в треугольник АВС; К, М и N — точки ее касания со сторонами треугольника АВС.
Так как и по свойству касательной к окружности то центр вписанной окружности равно­удален от сторон треугольника.

Вместо слов «окружность, вписанная в треугольник АВС», также говорят «вписанная окружность треугольника АВС».

Теорема (об окружности, вписанной в треугольник).
В любой треугольник можно вписать окружность, причем только одну, ее центр находится в точке пересечения биссектрис треугольника.

Рассмотрим произвольный треугольник АВС (рис. 93). Пусть О — точка пересечения его биссектрис. Проведем из точки О перпендикуляры ОК, ОМ и ON соответственно к сторонам АВ, ВС и АС. По свойству биссектрисы угла ОК = ON, ON = ОМ. Окружность с центром в точке О и радиусом ОК будет проходить через точки К, М и N и касаться сторон АВ, ВС и АС в указанных точках по признаку касательной.

Следовательно, эта окружность является вписанной в треугольник АВС. Единственность вписанной окружности докажите самостоятельно.

Замечание. Так как все три биссектрисы треугольника пересекаются в одной точке, то для нахождения центра вписанной окружности достаточно построить точ­ку пересечения любых двух из них.

Теорема. Площадь треугольника можно найти по формуле где — полупериметр треугольника, — радиус окружности, вписанной в этот треугольник.

Пусть дан треугольник АВС со сторонами — центр его вписанной окружности (рис. 94). Соединим отрезками точ­ку О с вершинами А, В и С. Треугольник АВС разобьется на три треугольника: Радиусы проведенные в точки касания, будут высотами этих тре­угольников. Площадь треугольника АВС равна сумме площадей указанных треугольников:

Следствие:

Радиус окружности, вписанной в треугольник, можно найти по формуле

Одной из важнейших задач данной темы является задача нахождения радиуса описанной и радиуса вписанной окружностей данного треугольника.

Пример:

Найти радиус окружности, описанной около равнобедренного треугольника АВС, у которого АВ = ВС = 26 см, высота ВК = 24 см
(рис. 95).

Решение:

Способ 1 (метод подобия). Центр описанной окружности лежит на пересечении серединных перпендикуляров к сторонам треугольника. Проведем серединные перпендикуляры к сторонам АС и ВС, которые пересекутся в точке О — центре описанной окружности. Так как в равнобедренном треугольнике высота, проведенная к основанию, является медианой, то ВК — серединный перпендикуляр к стороне АС. Пусть МО — серединный перпендикуляр к стороне ВС. Тогда ВМ = 13 см, ВО = R -— иско­мый радиус. Поскольку (как прямо­угольные с общим острым углом СВК), то ,
откуда
Способ 2 (тригонометрический метод). Из (см. рис. 95) из откуда Дальнейшее решение совпадает с приведенным в способе 1.

Способ 3* (среднее пропорциональное). Продлим высоту ВК до пересечения с описанной окружностью в точке D (рис. 96). Так как центр описанной окружности равнобедренного треугольника лежит на прямой ВК (см. способ 1), то BD = 2R — диаметр данной окружности. В прямоугольном треугольнике BCD как вписанный, опирающийся на диаметр) катет ВС есть среднее пропорциональное меж­ду гипотенузой BD и проекцией ВК катета ВС на гипотенузу. Поэтому откуда
Ответ: см.
Замечание. Из решения ключевой задачи 1 следует свойство: «Центр окружно­сти, описанной около равнобедренного треугольника, лежит на его высоте, про­веденной к основанию, или на ее продолжении».

Верно и обратное утверждение: «Если центр окружности, описанной около треугольника, лежит на высоте треугольника или на ее продолжении, то этот треугольник равнобедренный».
Обратное утверждение докажите самостоятельно.

Полезно запомнить!
Если в ключевой задаче 1 боковую сторону обозначить а высоту, проведенную к основанию, — то получится пропорция .
Отсюда следует удобная формула для нахождения радиуса окруж­ности, описанной около равнобедренного треугольника:

Пример:

Найти радиус окружности, вписанной в равнобедренный тре­угольник АВС, у которого АВ = ВС = 10 см, АС = 12 см.

Решение:

Способ 1 (метод подобия). Центр вписанной окружности находится в точке пересечения биссектрис треугольника. Проведем в треугольнике АВС биссектрисы из вершин В и С, которые пересекутся в точке О — центре вписанной окружности (рис. 97). Биссектриса ВМ, проведенная к основанию равнобедренного треугольника АВС, будет его высотой и медианой, луч СО — биссектриса угла С, — искомый радиус вписанной окружности. Так как AM = МС = 6 см, то из по теореме Пифагора (см), откуда (см). Проведем радиус ОК в точку касания окружности со стороной . Из подобия прямоугольных треугольников ВКО и ВМС ( — общий) следует:. Тогда (см).
Способ 2 (тригонометрический метод). Из (см. рис. 97) , из откуда . Дальнейшее решение совпадает с приведенным в способе 1.

Способ 3 (свойство биссектрисы треугольника). СО — биссектриса . Известно, что биссектриса треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам. Поэтому ‘ откуда = 3 (см).

Способ 4 (формула ).

Из формулы площади треугольника следует:
Ответ: 3 см.

Замечание. Из решения ключевой задачи 2 следует свойство: «Центр окружности, вписанной в равнобедренный треугольник, лежит на его высоте, проведенной к основанию».

Верно и обратное утверждение: «Если центр окружности, вписанной в тре­угольник, лежит на высоте треугольника, то этот треугольник равнобедренный».

Обратное утверждение докажите самостоятельно.

Пример:

Дан равносторонний треугольник со стороной а. Найти радиус R его описанной окружности и радиус его вписанной окружности.

Решение:

Способ 1 (тригонометрический метод).Так как в равностороннем треугольнике биссектрисы являются и высотами, и медианами, то его биссектрисы лежат на серединных перпендикулярах к сторонам треугольника. Поэтому в равностороннем треугольнике центры описанной и вписанной окружностей совпадают.

Рассмотрим равносторонний треугольник АВС со стороной а, у которого высоты AM и ВК пересекаются в точке О — центре описанной и вписанной окружностей (рис. 98). Тогда ОА = OB = R — радиусы описанной, — радиусы вписанной окружности. Так как AM — бис­сектриса и Поскольку ВК — высота и медиана, то Из , откуда .
В катет ОК лежит против угла в 30°, поэтому ,

Способ 2 (свойство медиан). Поскольку AM и ВК — медианы треугольника АВС (см. рис. 98), то по свойству медиан Высоту равностороннего треугольника можно найти по формуле . Откуда

Ответ:

Полезно запомнить!

Поскольку радиус описанной окружности равностороннего треугольника то Значит, сторона равностороннего
треугольника в раз больше радиуса его описанной окружности.
Чтобы найти радиус R описанной окружности равностороннего треугольника, нужно сторону разделить на , а чтобы найти его сторону а, нужно радиус R умножить на . Радиус вписанной окружности равностороннего треугольника

Прямоугольный треугольник и его описанная и вписанная окружности

Теорема. Центр окружности, описанной около прямоугольного тре­угольника, лежит на середине гипотенузы, а ее радиус равен половине гипотенузы, т. е. где с — гипотенуза.

Проведем в прямоугольном треугольнике АВС медиану СО к гипотенузе АВ (рис. 111). Так как медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы, то ОС = ОА = ОВ.
Тогда середина гипотенузы — точка О — равноудалена от точек А, В и С и поэтому является центром описанной окружности треугольника АВС. Радиус этой окружности где с — гипотенуза.
Теорема доказана.

Замечание. Также можно доказать, что серединные перпендикуляры к катетам прямоугольного треугольника пересекаются на середине гипотенузы.

Отметим, что у остроугольного треугольника центр описанной окружности лежит внутри треугольника (рис. 112, а), у тупоугольного — вне треугольника (рис. 112, б), у прямоугольного — на середине гипотенузы (рис. 112, в). Обоснуйте первые два утверждения самостоятельно.

Теорема. Радиус окружности, вписанной в прямоугольный треугольник, можно найти по формуле , где — искомый радиус, и — катеты, — гипотенуза треугольника.

Рассмотрим прямоугольный треуголь­ник АВС с катетами и гипотенузой . Пусть вписанная в треугольник окружность с центром О и радиусом касается сторон треугольника в точках М, N и К (рис. 113).
Проведем радиусы в точки касания и получим: Четырехугольник CMON — квадрат, так как у него все углы прямые и . Тогда Так как отрезки касательных, проведенных из одной точки к окружности, равны между собой, то Но , т. е. , откуда

Следствие: где р — полупериметр треугольника.

Преобразуем формулу радиуса вписанной окружности:

Формула в сочетании с формулами и дает возможность решать многие задачи, связанные с прямоугольным треугольником, алгебраическим методом.

Пример. Дан прямоугольный треугольник, Найти .

Решение:

Так как то
Из формулы следует . По теореме Виета (обратной) — посторонний корень.
Ответ: = 2.

Пример:

Найти радиус окружности, описанной около прямоугольного треугольника, у которого один из катетов равен 6, а радиус вписанной окружности равен 2.

Решение:

Способ 1 (геометрический). Пусть в треугольнике АВС, где — радиус вписанной окружности (рис. 114). Проведем из центра О вписанной окружности перпендикуляры ОК, ОМ и ON к сторонам треугольника, которые будут радиусами вписанной окружности. Так как — квадрат, то
По свойству касательных
Тогда По теореме Пифагора

Следовательно,
Радиус описанной окружности
Способ 2 (алгебраический). Подставив в формулу значения получим По теореме Пифагора , т. е. Тогда
Ответ: 5.

Пример:

Гипотенуза прямоугольного треугольника радиус вписанной в него окружности Найти площадь треугольника.

Решение:

Способ 1 (геометрический). Пусть в гипотенуза АВ – = с = 18,0 — центр вписанной окружности, ОК, ОМ, ON — ее радиусы, проведенные в точки касания (рис. 115). Так как

, то CMON — квадрат co стороной, равной радиусу вписанной окружности, — высота . Поскольку отрезки касательных, проведенных из одной точки к окруж­ности, равны между собой, то АК = AM, ВК = BN.
Отсюда по катету и гипотенузе.
Площадь равна сумме удвоенной площади и площади квадрата CMON, т. е.

Способ 2 (алгебраический). Из формулы следует Возведем части равенства в квадрат: Так как и

Способ 3 (алгебраический). Из формулы следует, что Из формулы следует, что
Ответ: 40.

Реальная геометрия:

Есть два листа ДСП (древесно-стружечной плиты). Один из них имеет форму равностороннего треугольника со сторо­ной 1 м, другой — форму прямоугольного равнобедренного треугольника с катетами, равными 1 м (рис. 120). Из каждого листа необходимо вырезать по одному кругу наибольшего диаметра. Определите, из какого листа будет вырезан круг большего диаметра и каким в этом случае будет процент отходов, если известно, что площадь круга можно найти по формуле

Вписанные и описанные четырехугольники

Определение. Окружность называется описанной около многоуголь­ника, если она проходит через все его вершины. При этом многоугольник называется вписанным в окружность.

Окружность называется вписанной в многоугольник, если она касается всех его сторон. При этом много угольник называется описанным около окружности.
Пятиугольник ABCDE (рис. 121, а) является вписанным в окружность а четырехугольник MNPK (рис. 121, б) — описанным около окружности.

Центр описанной окружности многоугольника находится в точке пересечения серединных перпендикуляров к его сторонам, а центр вписанной — в точке пересечения биссектрис его углов.
Обоснуйте эти утверждения самостоятельно.

Теорема (свойство вписанного четырехугольника).
Сумма противоположных углов четырехугольника, вписанного в окружность, равна 180°.

Пусть ABCD — четырехугольник, вписанный в окружность (рис. 122). Его углы А, В, С и D являются вписанными в окружность. Так как вписанный угол равен половине дуги, на которую он опирается, то Дуги BCD и BAD дополняют друг друга до окружности, и поэтому сумма их градусных мер равна 360°. Отсюда

Аналогично доказывается, что 180°. Теорема доказана.

Теорема (признак вписанного четырехугольника).
Если сумма противоположных углов четырехугольника равна то около него можно описать окружность.

Рассмотрим четырехугольник ABCD, у которого (рис. 123). Через вершины А, В и D проведем окружность (около любого треугольника можно описать окружность). Если бы вершина С не лежала на данной окружности, а находилась вне ее в положении или внутри нее в положении то в первом случае угол С был бы меньше, а во втором — больше поло­вины градусной меры дуги BAD (по свойству угла между секущими и угла между пересекающимися хордами).
Тогда сумма не была бы равна 180°. Следовательно, вершина С лежит на данной окружности. Теорема доказана.

Замечание. Так как сумма углов четырехугольника равна 360°, то для того что­бы около четырехугольника можно было описать окружность, достаточно, чтобы сумма любой пары его противоположных углов была равна 180°.

Следствия.

1. Около параллелограмма можно описать окружность, только если этот параллелограмм — прямоугольник (рис. 124, а). Центр этой окружности лежит в точке пересечения диагоналей прямоугольника.

2. Около ромба можно описать окружность, только если этот ромб — квадрат (рис. 124, б).

3. Около трапеции можно описать окружность, только если она равнобедренная (рис. 124, в).

Докажите эти следствия самостоятельно.

Теорема (свойство описанного четырехугольника ).
Суммы противоположных сторон описанного четырехугольника равны между собой.

Пусть ABCD — описанный четырех­угольник, М, N, Р и К — точки касания его сторон с окружностью (рис. 125). Так как отрезки касательных, проведенных к окружности из одной точки, равны меж­ду собой, то AM = АК = а, ВМ = BN = b, СР = CN = с, DP = DK = d. Тогда

откуда AD + ВС = AB + CD.
Теорема доказана.

Следствие:

Периметр описанного четырехугольника равен удвоенной сумме длин любой пары его противоположных сторон:

Теорема (признак описанного четырехугольника).
Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

Пусть для выпуклого четырехугольника ABCD справедливо, что

(1)
Проведем окружность, которая касается прямых AD, АВ и ВС (рис. 126). Такая окружность существует, ее центр находится в точке пересечения биссектрис углов А и В. Если окружность не касается стороны CD, то либо прямая CD не имеет с окружностью общих точек, либо является секущей. Рассмотрим первый случай. Проведем отрезок который касается окружности. По свойству описанного четырехугольника

(2)

Отняв почленно от равенства (1) равенство (2), получим что противоречит неравенству треугольника.
Рассмотрев случай, когда прямая DC — секущая, также придем к противоре­чию (сделайте это самостоятельно). Следовательно, данная окружность касается стороны CD и в четырехугольник ABCD можно вписать окружность. Теорема доказана.

Следствия.

1. В параллелограмм можно вписать окружность, только если этот параллелограмм — ромб. Центр этой окружности лежит в точке пересечения диагоналей ромба, а ее диаметр равен высоте ромба (рис. 127, а).

2. В прямоугольник можно вписать окружность, только если этот прямоугольник — квадрат (рис. 127, б).

3. Диаметр окружности, вписанной в трапецию, равен ее высоте (рис. 127, в).
Докажите эти следствия самостоятельно.

Для описанного многоугольника справедлива формула , где S — его площадь, р — полупериметр, — радиус вписанной окружности.

Доказательство аналогично приведенному в § 8 для треугольника. Выполните его самостоятельно, используя рисунок 128.

Пример:

Найти радиус окружности, вписанной в ромб с периметром 24 см и острым углом, равным 45°.

Решение:

Способ 1 (решение прямоугольного треугольника). Пусть ABCD — ромб (рис. 129), О — центр вписанной в ромб окружности. Известно, что высота ВК ромба равна диаметру EF вписанной окружности, т. е. Так как у ромба все стороны равны , то (см).
Из прямоугольного треугольника АВК находим. что откуда Искомый радиус вписанной окружности (см).
Способ 2 (метод площадей). Ромб — параллелограмм. По формуле площади параллелограмма найдем площадь данного ромба: С другой стороны , площадь ромба можно найти по формуле площади описанного многоугольника Поскольку (см), то Отсюда (см).

Ответ: см.

Пример:

Окружность, вписанная в прямоугольную трапецию ABCD, где делит точкой касания большую боковую сторону CD на отрезки СК = 1, KD = 4. Найти площадь трапеции (рис. 130).

Решение:

Способ 1. Площадь трапеции находится по формуле Необходимо найти сумму оснований и высоту трапеции. Проведем высоту трапеции, проходящую через центр О вписанной окружности. По свойству касательных, проведенных из одной точки к окружности, CF = СК = 1, DH = DK = 4. Проведем вы­соту СМ. Так как HFCM — прямоугольник (все углы прямые), то НМ = FC = 1, MD = 3. В прямо­угольном треугольнике CMD по теореме Пифагора Тогда По свойству описанного четырехугольника Отсюда

Способ 2*. Центр О вписанной окружности лежит на пересечении биссектрис углов и Так как как внутренние односторонние углы при и секущей CD, то (рис. 131). Тогда — прямоугольный, радиус является его высотой, проведенной к гипотенузе CD. Высота прямоугольного треугольника, проведенная к гипотенузе, — есть среднее пропорциональное между проекциями катетов на гипотенузу. Поэто­му или Высота описанной трапеции равна диаметру вписанной окружности, откуда Так как по свой­ству описанного четырехугольника то
Ответ: 18.
Замечание. Полезно запомнить свойство: «Боковая сторона описанной трапеции видна из центра вписанной окружности под углом 90°».

Пример:

Внутри острого угла А взята точка М, из которой опущены перпендикуляры МВ и МС на стороны угла А, Найти величину угла ВАС (рис. 132, а).

Решение:

Так как в четырехугольнике АВМС сумма углов В и С равна 180°, то около него можно описать окружность. Проведем в ней хорду AM (рис. 132, б). Поскольку как вписанные углы, опирающиеся на одну и ту же дугу МС, то и прямоугольный треугольник АМС является равнобедренным, В прямоугольном треугольнике ABM откуда

Окружность, вписанная в треугольник

Пример:

Окружность вписана в треугольник АВС со сторонами ВС = а, АС = Ь, АВ = с. Вывести формулу для нахождения длин отрезков, на которые точки касания окружности со сторонами делят каждую сторону треугольника.

Решение:

Пусть К, М и N — точки касания вписанной окружности соответственно со сторонами АС, АВ и ВС треугольника АВС (рис. 140). Известно, что отрезки касательных, проведенных из одной точки к окружности, равны между собой.
Тогда, если то Так как АВ = AM + МВ, то откуда т. е. . После преобразований получим: Аналогично:
Ответ:

Замечание. Если (рис. 141), то (см. c. 69). Формула радиуса окружности, вписанной в прямоугольный треугольник, — частный случай результата задачи 1.

Описанная трапеция

Пример:

Найти площадь описанной равнобедренной трапеции с основа­ниями а и Ь.

Решение:

Площадь трапеции можно найти по формуле Пусть в трапеции ABCD основания — боковые стороны, — высота (рис. 142). По свойству описанного четырехугольника АВ + CD = AD + ВС, откуда . Известно, что в равнобедренной трапеции (можно опустить высоту СК и убедиться в этом). Из прямоугольного треугольника АНВ получаем: Отсюда Ответ:
Замечание. Площадь описанной равнобедренной трапеции равна произведению среднего арифметического и среднего геометрического ее оснований.

Полезно запомнить!

Для описанной равнобедренной трапеции с основаниями боковой стороной с, высотой h, средней линией и радиусом вписанной окружности (см. рис. 142) справедливы равенства:

Дополнительные свойства и признаки вписанного четырехугольника

Теорема.
Около четырехугольника можно описать окружность тогда и только тогда, когда угол между его стороной и диагональю равен углу между противоположной стороной и другой диагональю.
Рис. 143

1. Если четырехугольник ABCD вписан в окружность (рис. 143), то как вписанные углы, опирающиеся на одну и ту же дугу.

2. Докажем, что если в некотором четырехугольнике ABCD то около него можно описать окружность.
Опишем около треугольника ABD окружность.
В 8-м классе (В. В. Казаков. «Геометрия, 8», с. 186) было доказано свойство:

«Геометрическим местом точек плоскости, из которых данный отрезок AD виден под углом а, является объединение двух дуг окружностей: дуги ABD и ей симметричной относительно прямой AD, исключая точки » . Данное свойство гарантирует, что вершины всех углов, равных углу ABD и лежащих по одну сторону от прямой AD, расположены на дуге ABD окружности. Поэтому окружность, описанная около треугольника ABD, пройдет и через вершину С. Теорема доказана.

Обобщенная теорема Пифагора

В прямоугольном треугольнике проведена высота СН, которая делит его на треугольники АСН и СВН, подобные между собой и подобные треугольнику (рис. 148). Тогда теорема Пифагора может звучать так: сумма квадратов гипотенуз треугольников СВН и АСН равна квадрату гипотенузы треугольника АВС. И вообще, если – соответствующие линейные элемен­ты то можно сформулировать обобщенную теорему Пифагора:

Действительно, из подобия указанных треугольников откуда

Пример:

Пусть (см. рис. 148). Найдем По обобщенной теореме Пифагора отсюда
Ответ: = 39.

Формула Эйлера для окружностей

Для вписанной и описанной окружностей треугольника с радиусами и расстоянием d между их центрами (рис. 149) справедлива формула Эйлера

Проверим справедливость этой формулы на примере равнобедренного треугольника АВС, у которого АВ = ВС = 10, АС = 12 (рис. 150).

Вначале найдем расстояние между центрами указанных окружностей традиционным способом.

Проведем высоту ВН, длина которой будет равна 8 (пифагорова тройка 6, 8, 10). Центры описанной и вписанной окружностей — соответственно точки , и — лежат на прямой ВН (свойство равнобедренного треугольника). Тогда— расстояние между указанными центрами. Для нахождения радиуса описанной окружности воспользуемся формулой где b — боковая сторона, — высота, проведенная к основанию равнобедренного треугольника. Получим Радиус вписанной окружности Так как то Искомое расстояние
А теперь найдем d по формуле Эйлера:

откуда Как видим, формула Эйлера достаточно эффективна.

Запомнить:

  1. Центр описанной окружности треугольника (многоугольника) лежит в точке пересечения серединных перпендикуляров к его сторонам.
  2. Центр вписанной окружности треугольника (многоугольника) лежит в точке пересечения биссектрис его углов.
  3. Центр описанной окружности прямоугольного треугольника лежит на середине гипотенузы, а ее радиус равен половине гипотенузы:
  4. Радиус вписанной окружности прямоугольного треугольника находится по формуле
  5. Если четырехугольник вписан в окружность, то суммы его противополож­ных углов равны 180°. И обратно.
  6. Если четырехугольник описан около окружности, то суммы его противопо­ложных сторон равны между собой. И обратно.
  7. Площадь треугольника и описанного многоугольника можно найти по формуле где — полупериметр, — радиус вписанной окружности.

Справочная информация по описанной и вписанной окружности треугольника

Определение. Окружность называют описанной около треугольника, если она проходит через все вершины этого треугольника.

На рисунке 298 изображена окружность, описанная около треугольника. В этом случае также говорят, что треугольник вписан в окружность. Очевидно, что центр описанной окружности треугольника равноудален от всех его вершин. На рисунке 298 точка — центр окружности, описанной около треугольника , поэтому .

Теорема 21.1. Вокруг любого треугольника можно описать окружность.

Доказательство: Для доказательства достаточно показать, что для любого треугольника существует точка , равноудаленная от всех его вершин. Тогда точка будет центром описанной окружности, а отрезки , и — ее радиусами.

На рисунке 299 изображен произвольный треугольник . Проведем серединные перпендикуляры и сторон и соответственно. Пусть точка — точка пересечения этих прямых. Поскольку точка принадлежит серединному перпендикуляру , то . Так как точка принадлежит серединному перпендикуляру , то . Значит, , т. е. точка равноудалена от всех вершин треугольника.

Заметим, что вокруг треугольника можно описать только одну окружность. Это следует из того, что серединные перпендикуляры и (рис. 299) имеют только одну точку пересечения. Следовательно, существует только одна точка, равноудаленная от всех вершин треугольника.

Следствие 1. Три серединных перпендикуляра сторон треугольника пересекаются в одной точке.

Следствие 2. Центр описанной окружности треугольника — это точка пересечения серединных перпендикуляров его сторон.

Определение. Окружность называют вписанной в треугольник, если она касается всех его сторон.

На рисунке 300 изображена окружность, вписанная в треугольник. В этом случае также говорят, что треугольник описан около окружности.

Точка (рис. 300) — центр вписанной окружности треугольника , отрезки , , — радиусы, проведенные в точки касания, . Понятно, что центр вписанной окружности треугольника равноудален от всех его сторон.

Теорема 21.2. В любой треугольник можно вписать окружность.

Доказательство: Для доказательства достаточно показать, что для любого треугольника существует точка , удаленная от каждой его стороны на некоторое расстояние г. Тогда в силу следствия из теоремы 20.4 точка будет центром окружности радиуса г, которая касается сторон .

На рисунке 301 изображен произвольный треугольник . Проведем биссектрисы углов и , — точка их пересечения. Так как точка принадлежит биссектрисе угла , то она равноудалена от сторон и (теорема 19.2). Аналогично, так как точка принадлежит биссектрисе угла , то она равноудалена от сторон и . Следовательно, точка равноудалена от всех сторон треугольника.

Заметим, что в треугольник можно вписать только одну окружность. Это следует из того, что биссектрисы углов и (рис. 301) пересекаются только в одной точке. Следовательно, существует только одна точка, равноудаленная от сторон треугольника.

Следствие 1. Биссектрисы углов треугольника пересекаются в одной точке.

Следствие 2. Центр вписанной окружности треугольника — это точка пересечения его биссектрис.

Докажите, что радиус окружности, вписанной в прямоугольный треугольник, определяется по формуле , где — радиус вписанной окружности, и — катеты, — гипотенуза.

Решение:

В треугольнике (рис. 302) , , , , точка — центр вписанной окружности, , и — точки касания вписанной окружности со сторонами , и соответственно.

Отрезок — радиус окружности, проведенный в точку касания. Тогда .

Так как точка — центр вписанной окружности, то — биссектриса угла и . Тогда — равнобедренный прямоугольный, . Используя свойство отрезков касательных, проведенных к окружности из одной точки, получаем:

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Плоские и пространственные фигуры
  • Взаимное расположение точек и прямых
  • Сравнение и измерение отрезков и углов
  • Первый признак равенства треугольников
  • Треугольники и окружность
  • Площадь треугольника
  • Соотношения между сторонами и углами произвольного треугольника
  • Окружность и круг

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Все формулы для радиуса вписанной окружности

Радиус вписанной окружности в треугольник

a , b , c – стороны треугольника

p – полупериметр, p=( a + b + c )/2

Формула радиуса вписанной окружности в треугольник ( r ):

Радиус вписанной окружности в равносторонний треугольник

a – сторона треугольника

r – радиус вписанной окружности

Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):

Радиус вписанной окружности равнобедренный треугольник

1. Формулы радиуса вписанной окружности если известны: стороны и угол

a – равные стороны равнобедренного треугольника

b – сторона ( основание)

α – угол при основании

О – центр вписанной окружности

r – радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :

2. Формулы радиуса вписанной окружности если известны: сторона и высота

a – равные стороны равнобедренного треугольника

b – сторона ( основание)

h – высота

О – центр вписанной окружности

r – радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :

[spoiler title=”источники:”]

http://www.evkova.org/opisannyie-i-vpisannyie-okruzhnosti

http://www-formula.ru/2011-09-24-00-40-48

[/spoiler]

Удобно, когда все формулы, по которым можно найти радиус описанной окружности для треугольника, квадрата, многоугольника размещены на одной странице.

Радиус описанной окружности для произвольного треугольника

Формулы для нахождения радиуса описанной окружности треугольника (верны для треугольника любого вида):

radius opisannoy okruzhnosti

    [R = frac{{abc}}{{4S}}]

    [R = frac{a}{{2sin alpha }} = frac{b}{{2sin beta }} = frac{c}{{2sin gamma }},]

где a, b, c — длины сторон треугольника, α, β, γ — противолежащие этим сторонам углы, S — площадь треугольника.

Центр описанной окружности лежит:

radius opisannoy okruzhnosti tupougolnogo treugolnika

у остроугольного треугольника — внутри треугольника;

у прямоугольного — на середине гипотенузы;

у тупоугольного — вне треугольника, напротив тупого угла.

Радиус описанной окружности для прямоугольного треугольника

radius opisannoy okruzhnosti pryamougolnogo treugolnika

Радиус описанной около прямоугольного треугольника окружности равен половине гипотенузы:

    [R = frac{c}{2}]

Окружность, описанная около многоугольника

radius opisannoy okruzhnosti mnogougolnika

Если около многоугольника можно описать окружность, ее центр является точкой пересечения серединных перпендикуляров к сторонам многоугольника.

Радиус описанной около многоугольника окружности  находят как радиус окружности, описанной около треугольника. Для этого берут любые три вершины многоугольника.

Например, для пятиугольника ABCDE можно взять любой из треугольников ABC, ABD, ABE, BCD, BCE, CDE, ACD, ACE, ADE, BDE.

Радиус окружности, описанной около правильного многоугольника

Формула радиуса описанной окружности для правильного многоугольника

    [R = frac{a}{{2sin frac{{{{180}^o}}}{n}}}]

где a — длина стороны многоугольника, n — количество его сторон.

Частные случаи — правильный треугольник, правильный четырехугольник (то есть квадрат), правильный шестиугольник.

Радиус описанной окружности правильного треугольника

radius opisannoy okruzhnosti ravnostoronnego treugolnikaФормула радиуса описанной окружности для правильного треугольника

    [R = frac{a}{{sqrt 3 }}]

Если без иррациональности в знаменателе —

    [R = frac{{asqrt 3 }}{3}.]

У правильного треугольника радиус описанной окружности в два раза больше радиуса вписанной окружности:

    [R = 2r]

Радиус описанной окружности квадрата

radius opisannoy okruzhnosti kvadrata

Формула радиуса описанной окружности для квадрата

    [R = frac{a}{{sqrt 2 }}]

Если без иррациональности в знаменателе —

    [R = frac{{asqrt 2 }}{2}.]

Радиус описанной окружности правильного шестиугольника

radius opisannoy okruzhnosti pravilnogo shestiugolnika

Формула радиуса описанной окружности для правильного шестиугольника

    [R = a]

Для начала уясним, что не каждому четырехугольнику можно описать окружность! Посмотрите на картинку (теорема 3). Запомните эту теорему:

Вы можете описать окружность около квадрата или прямоугольника, тогда центр окружности сможете найти с помощью диагоналей (точка их пересечения и есть центр окружности) Если четырехугольник представляет собой произвольную фигуру, у которой нет названия, используйте теорему, которая написана на картинку ниже:

Когда Вы найдете центр окружности, поставьте на него острую иглу циркуля, а рисующую сторону поставьте на одну из вершин четырехугольника. Проведите окружность. Поздравляю Вас, Вы справились! Если одна из вершин не лежит на окружности, то около Вашего четырехугольника провести окружность нельзя.

Для закрепления предлагаю Вам легкое задание: Около какого из данных четырехугольников описана окружность? (см. картинку)

Добавить комментарий