Радиус описанной окружности равностороннего треугольника
– сторона треугольника
– высота
– радиус описанной окружности
Формула радиуса описанной окружности равностороннего треугольника через его сторону:
Калькулятор – вычислить, найти радиус описанной окружности равностороннего треугольника по стороне
Формула радиуса описанной окружности равностороннего треугольника через высоту:
Калькулятор – вычислить, найти радиус описанной окружности равностороннего треугольника по стороне
- Подробности
-
Автор: Administrator
-
Опубликовано: 09 сентября 2011
-
Обновлено: 13 августа 2021
В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.
-
Формулы вычисления радиуса описанной окружности
-
Произвольный треугольник
- Прямоугольный треугольник
- Равносторонний треугольник
-
Произвольный треугольник
- Примеры задач
Формулы вычисления радиуса описанной окружности
Произвольный треугольник
Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:
где a, b, c – стороны треугольника, S – его площадь.
Прямоугольный треугольник
Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.
Равносторонний треугольник
Радиус описанной около правильного треугольника окружности вычисляется по формуле:
где a – сторона треугольника.
Примеры задач
Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.
Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:
Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:
Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.
Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:
Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.
Свойства равностороннего треугольника
Свойство 1. В равностороннем треугольнике все углы равны между собой и равны ({{60}^{o }})
Естественно, не правда ли? Три одинаковых угла, в сумме ({{180}^{o }}), значит, каждый по ({{60}^{o }})
Свойство 2. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и серединных перпендикуляров совпадают – оказываются одной и той же точкой. И эта точка называется центром треугольника (равностороннего!).
Почему так? А посмотрим-ка на равносторонний треугольник.
Он является равнобедренным, какую бы его сторону ни принять за основание – так сказать, со всех сторон равнобедренный.
Значит, любая высота в равностороннем треугольнике является также и биссектрисой, и медианой, и серединным перпендикуляром!
В равностороннем треугольнике оказалось не (12) особенных линий, как во всяком обычном треугольнике, а всего три!
Итак, ещё раз:
Центр равностороннего треугольника является центром вписанной и описанной окружности, а также точкой пересечения высот и медиан.
Свойство 3. В равностороннем треугольнике радиус описанной окружности в два раза больше, чем радиус вписанной. (R=2cdot r)
Уже должно быть очевидно, отчего так.
Посмотри на рисунок: точка( O) – центр треугольника.
Значит, (OB) – радиус описанной окружности (обозначили его (R)), а (OK) – радиус вписанной окружности (обозначим (r)).
Но ведь точка (O) – ещё и точка пересечения медиан! Вспоминаем, что медианы точкой пересечения делятся в отношении (2:1), считая от вершины.
Поэтому (OB=2cdot OK), то есть (R=2cdot r).
Свойство 4. В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны.
Давай удостоверимся в этом.
Равносторонний треугольник – это треугольник, у которого все стороны равны.
Другие виды треугольников:
- прямоугольные треугольники;
- равнобедренные треугольники.
Любой равносторонний треугольник характеризуется стороной a (см. рисунок). При решении задач могут понадобиться высота h, радиусы вписанной (r) и описанной (R) окружности. Именно эти характеристики используются в формулах равностороннего треугольника при вычислении площади, периметра, а также радиусов вписанной и описанной окружностей.
Формула радиуса вписанной окружности для равностороннего треугольника
Радиус вписанной окружности r можно вычислить, зная сторону равностороннего треугольника:
r = a/(2√3)
Формула радиуса описанной окружности для равностороннего треугольника
Радиус описанной окружности R можно вычислить, зная сторону равностороннего треугольника:
R = a/(√3)
Формула периметра равностороннего треугольника
Периметр P равностороннего треугольника можно получить, зная его сторону:
P = 3a
Формулы площади равностороннего треугольника
p>При вычислении площади равностороннего треугольника можно использовать формулы, которые применяются для вычисления площади произвольного треугольника, так как равносторонний треугольник является частным случаем произвольного треугольника.
Площадь равностороннего треугольника S можно вычислить, зная его сторону a:
S = (√3 ⋅ a2)/4
Площадь равностороннего треугольника S также можно вычислить, зная его высоту h:
S = h2/√3
Если в задаче присутствует окружность, вписанная в треугольник, площадь равностороннего треугольника можно вычислить через радиус окружности r:
S = 3√3 ⋅ r2
Если в задаче присутствует окружность, описанная вокруг треугольника, площадь равностороннего треугольника можно вычислить через радиус окружности R:
S = (3√3 ⋅ R2)/4
Правильный (равносторонний, или равноугольный) треугольник — это правильный многоугольник с тремя сторонами, простейший из правильных многоугольников. Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.
Содержание
- 1 Свойства
- 2 Правильный сферический треугольник
- 3 Теоремы о равностороннем треугольнике или содержащие его
- 4 См. также
- 5 Примечания
Свойства[править | править код]
Правильный тетраэдр состоит из четырёх правильных треугольников.
Пусть a — сторона правильного треугольника, R — радиус описанной окружности, r — радиус вписанной окружности.
- Радиус вписанной окружности правильного треугольника, выраженный через его сторону:
- Радиус описанной окружности правильного треугольника, выраженный через его сторону:
- Периметр правильного треугольника:
- Высоты, медианы и биссектрисы правильного треугольника:
- Площадь правильного треугольника рассчитывается по формулам:
- Радиус описанной окружности равен двойному радиусу вписанной окружности:
- Правильными треугольниками можно замостить плоскость.
- В правильном треугольнике окружность девяти точек совпадает с вписанной окружностью.
Правильный сферический треугольник[править | править код]
Для любого значения в интервале от 60 до 180 градусов существует правильный сферический треугольник с равными этому значению углами.
Теоремы о равностороннем треугольнике или содержащие его[править | править код]
- Задача Наполеона
- Прямая Симсона одно из свойств
- Теорема Вивиани
- Теорема Морли
- Теорема Наполеона
- Теорема Помпею
- Теоремы Тебо 2 и 3
- Точки Аполлония
- Точки Торричелли
См. также[править | править код]
- Замечательные прямые треугольника
- Замечательные точки треугольника
- Равнобедренный треугольник
- Теорема Чевы
- Треугольник
- Треугольник Рёло
Примечания[править | править код]
Символ Шлефли |
|
---|---|
Многоугольники |
|
Звёздчатые многоугольники |
|
Паркеты на плоскости |
|
Правильные многогранники и сферические паркеты |
|
Многогранники Кеплера — Пуансо |
|
Соты |
{4,3,4} |
Четырёхмерные многогранники |
|