Как найти радиус окружности зная касательные

Отрезки и прямые, связанные с окружностью. Теорема о бабочке

Отрезки и прямые, связанные с окружностью

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки – центра окружности

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках

Фигура Рисунок Определение и свойства
Окружность
Круг
Радиус
Хорда
Диаметр
Касательная
Секущая
Окружность

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки – центра окружности

Круг

Конечная часть плоскости, ограниченная окружностью

Радиус

Отрезок, соединяющий центр окружности с любой точкой окружности

Хорда

Отрезок, соединяющий две любые точки окружности

Диаметр

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Касательная

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Секущая

Прямая, пересекающая окружность в двух точках

Свойства хорд и дуг окружности

Фигура Рисунок Свойство
Диаметр, перпендикулярный к хорде Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хорды Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Равные хорды Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Хорды, равноудалённые от центра окружности Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Две хорды разной длины Большая из двух хорд расположена ближе к центру окружности.
Равные дуги У равных дуг равны и хорды.
Параллельные хорды Дуги, заключённые между параллельными хордами, равны.
Диаметр, перпендикулярный к хорде

Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хорды

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Равные хорды

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Хорды, равноудалённые от центра окружности

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Две хорды разной длины

Большая из двух хорд расположена ближе к центру окружности.

Равные дуги

У равных дуг равны и хорды.

Параллельные хорды

Дуги, заключённые между параллельными хордами, равны.

Теоремы о длинах хорд, касательных и секущих

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Фигура Рисунок Теорема
Пересекающиеся хорды
Касательные, проведённые к окружности из одной точки
Касательная и секущая, проведённые к окружности из одной точки
Секущие, проведённые из одной точки вне круга

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Пересекающиеся хорды
Касательные, проведённые к окружности из одной точки
Касательная и секущая, проведённые к окружности из одной точки
Секущие, проведённые из одной точки вне круга
Пересекающиеся хорды

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Касательные, проведённые к окружности из одной точки

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Касательная и секущая, проведённые к окружности из одной точки

Секущие, проведённые из одной точки вне круга

Доказательства теорем о длинах хорд, касательных и секущих

Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).

Тогда справедливо равенство

Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство

откуда и вытекает требуемое утверждение.

Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).

Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство

Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство

откуда и вытекает требуемое утверждение.

Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).

Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство

Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).

Точка B – точка касания. В силу теоремы 2 справедливы равенства

откуда и вытекает требуемое утверждение.

Теорема о бабочке

Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.

Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:

Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим

Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим

Воспользовавшись теоремой 1, получим

Воспользовавшись равенствами (1) и (2), получим

Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство

откуда вытекает равенство

что и завершает доказательство теоремы о бабочке.

Касательная к окружности

О чем эта статья:

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° – ∠САО – ∠АСО = 180° – 90° – 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° – ∠МКN) : 2 = (180° – 50°) : 2 = 65°

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ – ВС = 16 – 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у – R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° – ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° – ∠КОМ) : 2 = (180° – 168°) : 2 = 6°

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

[spoiler title=”источники:”]

http://skysmart.ru/articles/mathematic/kasatelnaya-k-okruzhnosti

[/spoiler]

К окружности с центром в точке О проведены касательная AB и секущая AO. Найдите радиус окружности, если AB = 12 см, AO = 13 см.

Ира люблю длинные ответы на БВ

Достраиваем ещё один радиус: на моём рисунке он обозначен красным отрезком. Ка известно из геометрии: Радиус между касательной АВ и секущей AO, образует катет прямоугольного треугольника ОВА. Находим этот катет по теореме Пифагора: Катет равен корню квадратному из разности квадрата гипотенузы и квадрату второго катета.

Решение:

Ира люблю длинные ответы на БВ

Мой ответ: 5

автор вопроса выбрал этот ответ лучшим

Валер­ий Альбе­ртови­ч
[7K]

3 года назад 

Касательная AB и секущая AO образуют прямоугольный треугольник AOB (для этого соединим точки O и B). Прямая OB и будет радиусом окружности, который там нужно найти.

Так как треугольник прямоугольный (угол B = 90 градусов), можем найти сторону OB по теореме Пифагора:

OB^2 = AO^2-AB^2 = 13^2-12^2 = 169-144 = 25 => OB = 5, а т.к. OB – радиус окружности, следовательно это и есть наш ответ.

Ответ: 5

Евген­ий трохо­в
[56.3K]

3 года назад 

Радиус ОВ перпендикулярен касательной АВ.Треугольник АОВ прямоугольный.АО-гипотенуза.АВ-один катет.ОВ-радиус и другой катет одновременно.

AO^2=AB^2+OB^2

OB^2=AO^2-AB^2=13^2-12^2=169-144=25

OB=5.

Ответ: радиус =5

Знаете ответ?

Задание 25 ОГЭ. Найти радиус окружности. Разбор сложных геометрических задач.
Задание 25 ОГЭ. Найти радиус окружности. Разбор сложных геометрических задач.

Из рисунка видно, что АВ является касательной, а АС – секущей. Вспоминаем теорему о касательной и секущей (кстати, в учебнике Атанасяна эта теорема дается в задачах. Ищите номер 670). На экзамене можно ссылаться на эту теорему, как ранее доказанную по школьной программе.

Если из одной точки к окружности проведены секущая и касательная, то произведение всей секущей на ее внешнюю часть равно квадрату отрезка касательной

Задание 25 ОГЭ. Найти радиус окружности. Разбор сложных геометрических задач.

Т.е. по этой теореме, с учетом AN=32 и АМ=9, получаем:

Задание 25 ОГЭ. Найти радиус окружности. Разбор сложных геометрических задач.

Выполнив дополнительное построение (КМ)

Задание 25 ОГЭ. Найти радиус окружности. Разбор сложных геометрических задач.

видно, что необходимо найти радиус окружности описанной около треугольника KMN. Это можно сделать, узнав все стороны этого треугольника.

Теперь, если рассматривать треугольник АКN, то в этом треугольнике известны две стороны (АК и AN) и косинус угла между ними. Так что по теореме косинусов можно найти сторону KN:

Задание 25 ОГЭ. Найти радиус окружности. Разбор сложных геометрических задач.

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Задание 25 ОГЭ. Найти радиус окружности. Разбор сложных геометрических задач.

Подставляем числовые значения и считаем:

Задание 25 ОГЭ. Найти радиус окружности. Разбор сложных геометрических задач.

Аналогично находим сторону КМ, рассматривая треугольник АКМ:

Задание 25 ОГЭ. Найти радиус окружности. Разбор сложных геометрических задач.
Задание 25 ОГЭ. Найти радиус окружности. Разбор сложных геометрических задач.

Теперь знаем три стороны вписанного треугольника. Как найти радиус описанной окружности? Воспользоваться одной из формул:

Задание 25 ОГЭ. Найти радиус окружности. Разбор сложных геометрических задач.

Т.к. из решения получили АК=KN, то треугольник AKN – равнобедренный. Значит ∠ВАС=∠KNA или cos∠BAC=cos∠KNA. Сделаем переход от косинуса к синусу через основное тригонометрическое тождество:

Задание 25 ОГЭ. Найти радиус окружности. Разбор сложных геометрических задач.

Подставив значение косинуса находим синус

Задание 25 ОГЭ. Найти радиус окружности. Разбор сложных геометрических задач.

Тогда

Задание 25 ОГЭ. Найти радиус окружности. Разбор сложных геометрических задач.
Задание 25 ОГЭ. Найти радиус окружности. Разбор сложных геометрических задач.
Задание 25 ОГЭ. Найти радиус окружности. Разбор сложных геометрических задач.

ОТВЕТ: 13,5

Если вы знаете того, кто готовится к ОГЭ не забудьте поделиться с ним этой информацией. Всегда пригодится.

Продолжение следует…

Не забудь нажать на пальчик вверх после прочтения и подписаться. За это отдельная благодарность

(✿◠‿◠)

Задание 25 ОГЭ. Найти радиус окружности. Разбор сложных геометрических задач.

Как найти радиус окружности, если известна касательная и секущая, проведенные к окружности из одной точки?

forever alone



Ученик

(216),
на голосовании



10 лет назад

Голосование за лучший ответ

Пупсер Давидов

Мастер

(2300)


10 лет назад

а секущая проходит через центр окружности? если да то у вас прямоугольный треугольник с прямым углом между радиусом и касательной, а секущая – гипотенуза, по теореме Пифагора все найдете

Задание 1909

Ра­ди­ус OB окруж­но­сти с цен­тром в точке O пе­ре­се­ка­ет хорду AC в точке D и пер­пен­ди­ку­ля­рен ей. Най­ди­те длину хорды AC, если BD = 1 см, а ра­ди­ус окруж­но­сти равен 5 см.

Ответ: 6

Скрыть

   1) $$OD=AB-BD=4$$

   2) Треугольник OAD – прямоугольный, тогда по теореме Пифагора: $$AD=sqrt{5^{2}-4^{2}}=3$$

   3) OA=AC, OD – общая, тогда прямоугольные треугольники AOD и ODC равны, следовательно, AD=DC=3, и AC=6

Задание 1910

Най­ди­те ве­ли­чи­ну (в гра­ду­сах) впи­сан­но­го угла α, опи­ра­ю­ще­го­ся на хорду  AB, рав­ную ра­ди­у­су окруж­но­сти.

Ответ: 30

Скрыть

   1) Треугольник OAB – равносторонний, тогда $$angle AOB = 60^{circ}=smile AB$$

   2) $$angle ADB=angle alpha=frac{1}{2}smile AB=30^{circ}$$ (по свойству вписанного угла)

Задание 1911

К окруж­но­сти с цен­тром в точке О про­ве­де­ны ка­са­тель­ная AB и се­ку­щая AO. Най­ди­те ра­ди­ус окруж­но­сти, если AB = 12 см, AO = 13 см.

Ответ: 5

Скрыть

   1) По свойству радиуса и касательной $$OBperp AB$$, тогда треугольник OAB – прямоугольный

   2) По теореме Пифагора $$OB=sqrt{13^{2}-12^{2}}=5$$

Задание 1912

В тре­уголь­ни­ке ABC угол C равен 90°, AC = 30 , $$BC=5sqrt{13}$$. Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около этого тре­уголь­ни­ка.

Ответ: 17,5

Скрыть

    1) По теореме Пифагора $$AB=sqrt{30^{2}+(5sqrt{13})^{2}}=35$$

    2) По свойству прямоугольного треугольника, радиус описанной окружности равен половине гипотенузы, то есть $$R=frac{35}{2}=17,5$$

Задание 1913

Длина хорды окруж­но­сти равна 72, а рас­сто­я­ние от цен­тра окруж­но­сти до этой хорды равно 27. Най­ди­те диа­метр окруж­но­сти.

Ответ: 90

Скрыть

   1)OA=OC (радиусы), AB – перпендикуляр (так как расстояние), тогда треугольники AOB и OBC прямоугольные и равные по катету и гипотенузе

   2)AB=BC=0,5AC=36, тогда по теореме Пифагора из треугольника AOB: $$AO=sqrt{36^{2}+27^{2}}=45$$, следовательно, диаметр составит $$2*45=90$$

Задание 1914

Вер­ши­ны тре­уголь­ни­ка делят опи­сан­ную около него окруж­ность на три дуги, длины ко­то­рых от­но­сят­ся как 3:4:11. Най­ди­те ра­ди­ус окруж­но­сти, если мень­шая из сто­рон равна 14.

Ответ: 14

Скрыть

Пусть меньший угол K, тогда по свойству треугольника меньшая сторона AM. Углы треугольника для окружности являются вписанными, следовательно, равны половинам дуг, на которые опираются, а значит и относятся так же , как и дуги.

Пусть угол К равен 3х, тогда M=4x и A=11x. По свойству углов треугольника: $$3x+4x+11x=180Leftrightarrow$$$$x=10$$, тогда угол К составляет 30 градусов, а меньшая дуга MA составляет 60 градусов. 

Угол MOA является центральным, следовательно $$angle MOA=smile MA=60^{circ}$$, тогда треугольник MOA не только равнобедренный (OM=OA – радиусы), но и равносторонний, следовательно, MA=14

Задание 1915

Пря­мая ка­са­ет­ся окруж­но­сти в точке K. Точка O — центр окруж­но­сти. Хорда KM об­ра­зу­ет с ка­са­тель­ной угол, рав­ный 83°. Най­ди­те ве­ли­чи­ну угла OMK. Ответ дайте в гра­ду­сах.

Ответ: 7

Скрыть

Треугольник OMK – равнобедренный (OM=OK – радиусы), тогда $$angle OMK=angle OKM$$

По свойству касательной и радиуса OK и касательная – перпендикулярны, тогда $$angle OKM=90-83=7^{circ}$$, тогда и угол OMK те же 7 градусов

Задание 1917

От­рез­ки AB и CD яв­ля­ют­ся хор­да­ми окруж­но­сти. Най­ди­те рас­сто­я­ние от цен­тра окруж­но­сти до хорды CD, если AB = 18, CD = 24, а рас­сто­я­ние от цен­тра окруж­но­сти до хорды AB равно 12.

Ответ: 9

Скрыть

OE перпендикулряно AB, следовательно, треугольники AOE и OEB равны (так как OA=OB-радиусы) по катету и гипотенузе. Тогда AE=EB=0,5AB=9.

По теореме Пифагора из треугольника OEB: $$OB=sqrt{12^{2}+9^{2}}=15$$, следовательно, OD=15

Из треугольника OFD по теореме Пифагора: $$OF=sqrt{OD^{2}-FD^{2}}$$, FD=0,5CD=12. Тогда: $$OF=sqrt{15^{2}-12^{2}}=9$$

Задание 1918

На окруж­но­сти с цен­тром O от­ме­че­ны точки A и B так, что ∠AOB = 66°. Длина мень­шей дуги AB равна 99. Най­ди­те длину боль­шей дуги.

Ответ: 441

Скрыть

Если острый угол AOB составляет 66 градуов, то развернутый составляет $$360-66=294^{circ}$$

Пусть длина большей дуги равна х, тогда:

$$66^{circ}- 99$$

$$294^{circ}- x$$

$$x=frac{294*99}{66}=441$$

Задание 2481

Радиус окружности с центром в точке O равен 85, длина хорды AB равна 80 (см. рисунок). Найдите расстояние от хорды AB до параллельной ей касательной k.   

Ответ: 160

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$OA=OM=85$$ $$AB=80$$ $$Rightarrow AL=BL=40$$ $$OL=sqrt{OA^{2}-AC^{2}}=sqrt{85^{2}-40^{2}}=75$$ $$ML=MO+OL=85+75=160$$  

Задание 2662

Прямая касается окружности в точке K. Точка O — центр окружности. Хорда KM образует с касательной угол, равный 18°. Найдите величину угла OMK. Ответ дайте в градусах.

Ответ: $$72^{circ}$$

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

1) ОМ – радиус $$Rightarrow$$ МК – диаметр $$Rightarrow$$ $$smile LM=180^{circ}$$

2) $$angle DKM=18^{circ}$$ $$Rightarrow$$ $$smile KM=18cdot 2=36^{circ}$$

3) $$smile LK=smile LM-smile KM=180^{circ}-36^{circ}=144^{circ}$$

4) $$angle OMK=frac{smile LM}{2}=72^{circ}$$

Задание 2886

Длина хорды окружности равна 130, а расстояние от центра окружности до этой хорды равно 72. Найдите диаметр окружности.

Ответ: 194

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

Введем следующие обозначения:

AH=HB=0.5AB=65 (так как AOB – равнобедренный и OH – высота)

$$OB=sqrt{OH^2+HB^2}=97$$

OB – радиус, значит диаметр будет 97*2=194

Задание 3010

Длина хорды окружности равна 24, а расстояние от центра окружности до этой хорды равно 5. Найдите диаметр окружности.

Ответ: 26

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$r=sqrt{12^{2}+5^{2}}=13$$ $$d=2r=2cdot13=26$$

Задание 3058

Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 6.

Ответ: 3

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

Проведем радиусы в точки касания и получим два равных прямоугольных треугольника. Значит ОА – биссектриса угла А. Значит она делит угол пополам, и получаем в треугольнике угол в 30 градусов. А катет (в нашем случае это радиус окружности), лежащий напротив угла в 30 градусов, равен половине гипотенузы, то есть половине ОА или 3

Задание 3181

Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 50. Найдите величину угла MOK. Ответ дайте в градусах.

Ответ: 100

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

Радиус, проведенный в точку касания, перпендикулярен касательной, значит ∠OKM = 90 – 50 = 40. Треугольник OMK равнобедренный ( так как OK ; OM – радиусы ). Значит ∠OMK = ∠OKM = 40 ∠MOK = 180 – ∠OMK – ∠OKM = 180 – 80 = 100

Добавить комментарий