Радиус описанной окружности шестиугольника, формула
Для расчета радиуса описанной окружности шестиугольника используем формулу радиуса описанной окружности правильного многоугольника
[R = frac{a}{2 sin(frac{360°}{12})} = frac{a}{2 sin(30°)} = a]
(a – сторонa правильного шестиугольника; R – радиус описанной окружности правильного шестиугольника)
Также можно пойти другим путем. Если соединить все вершины правильного шестиугольника через центр, станет видно, что правильный шестиугольник состоит из 6-ти правильных треугольников, т.е.
[R = frac{a}{2 sin(π/6)} = a]
Вычислить, найти радиус описанной окружности шестиугольника по формуле (2)
Радиус описанной окружности шестиугольника |
стр. 253 |
---|
Шестиугольник является правильным многоугольником, так как у него все стороны и углы равны. А значит, около любого шестиугольника можно описать окружность.
Точка O –центр правильного многоугольника, также является центром описанной вокруг него окружности.
Центр правильного многоугольника равноудален от его вершин. Отрезок, соединяющий центр с вершинами называется радиусом правильного многоугольника и также является радиусом описанной около него окружности.
Формула радиуса описанной окружности около шестиугольника
Существует классическая формула для нахождения радиуса описанной окружности около правильного многоугольника
Для правильного шестиугольника n=6, тогда угол будет равен
По тригонометрической таблице sin(30°)=
Тогда формула радиуса описанной окружности около шестиугольника имеет следующий вид
Радиус описанной окружности около шестиугольника равен его стороне
Пример расчета радиуса окружности описанной около шестиугольника
Найдите радиус окружности описанной около правильного шестиугольника, если радиус вписанной окружности в него равен
Радиус описанной окружности около шестиугольника имеет вид R = a
Применив формулу радиуса вписанной окружности в шестиугольник, получаем:
Выразим сторону шестиугольника:
Выразим радиус описанной окружности через радиус вписанной:
Радиус описанной окружности правильного шестиугольника
a – сторона шестиугольника
d – диагональ шестиугольника
Радиус описанной окружности правильного шестиугольника (R):
- Подробности
-
Автор: Administrator
-
Опубликовано: 09 сентября 2011
-
Обновлено: 20 мая 2017
Радиус описанной окружности шестиугольника
Если у шестиугольника как углы, так и стороны равны, соответственно, это — правильный многоугольник, вокруг которого можно описать лишь одну окружность. Все вершины шестиугольника лежат на описанной вокруг него окружности. У правильного шестиугольника центр расположен на равном расстоянии от его вершин. Центр шестиугольника и центр описанной окружности совпадают. Линия, которая соединяет центр с вершинами, считается радиусом как многоугольника, так и описанной окружности. В правильном шестиугольнике сторона и радиус равны. Отсюда, R описанной окружности равняется его стороне или диагонали, поделенной пополам:
В данном выражении:
а — величина стороны шестиугольника;
R — величина радиуса;
d — диагональ.
Онлайн калькулятор поможет быстро и правильно найти величину радиуса, для этого вам нужно лишь занести исходные данные.
Правильный шестиугольник: свойства, формулы, площадь
Знаете ли вы, как выглядит правильный шестиугольник?
Этот вопрос задан не случайно. Большинство учащихся 11 класса не знают на него ответа.
Правильный шестиугольник — такой, у которого все стороны равны и все углы тоже равны.
Железная гайка. Снежинка. Ячейка сот, в которых живут пчелы. Молекула бензола. Что общего у этих объектов? — То, что все они имеют правильную шестиугольную форму.
Многие школьники теряются, видя задачи на правильный шестиугольник, и считают, что для их решения нужны какие-то особые формулы. Так ли это?
Проведем диагонали правильного шестиугольника. Мы получили шесть равносторонних треугольников.
Мы знаем, что площадь правильного треугольника: .
Тогда площадь правильного шестиугольника — в шесть раз больше.
, где — сторона правильного шестиугольника.
Обратите внимание, что в правильном шестиугольнике расстояние от его центра до любой из вершин одинаково и равно стороне правильного шестиугольник.
Значит, радиус окружности, описанной вокруг правильного шестиугольника, равен его стороне.
Радиус окружности, вписанной в правильный шестиугольник, нетрудно найти.
Он равен .
Теперь вы легко решите любые задачи ЕГЭ, в которых фигурирует правильный шестиугольник.
Ты нашел то, что искал? Поделись с друзьями!
. Найдите радиус окружности, вписанной в правильный шестиугольник со стороной .
Радиус такой окружности равен .
. Чему равна сторона правильного шестиугольника, вписанного в окружность, радиус которой равен 6?
Мы знаем, что сторона правильного шестиугольника равна радиусу описанной вокруг него окружности.
Правильный шестиугольник и его свойства
Определение
Выпуклый многоугольник называется правильным, если все его стороны равны и все его углы равны.
Замечание
Т.к. сумма всех углов (n) –угольника равна (180^circ(n-2)) , то каждый угол правильного (n) –угольника равен [alpha_n=dfracn cdot 180^circ]
Пример
Каждый угол правильного четырехугольника (т.е. квадрата) равен (dfrac <4-2>4cdot 180^circ=90^circ) ;
каждый угол правильного шестиугольника равен (dfrac<6-2>6cdot 180^circ=120^circ) .
Теоремы
1. Около любого правильного многоугольника можно описать окружность, и притом только одну.
2. В любой правильный многоугольник можно вписать окружность, и притом только одну.
Следствия
1. Окружность, вписанная в правильный многоугольник, касается всех его сторон в серединах.
2. Центры вписанной и описанной окружности у правильного многоугольника совпадают.
Теорема
Если (a) – сторона правильного (n) –угольника, (R) и (r) – радиусы описанной и вписанной окружностей соответственно, то верны следующие формулы: [begin S&=dfrac n2ar\ a&=2Rcdot sindfrac<180^circ>n\ r&=Rcdot cosdfrac<180^circ>n end]
Свойства правильного шестиугольника
1. Сторона равна радиусу описанной окружности: (a=R) .
2. Радиус описанной окружности является биссектрисой угла правильного шестиугольника.
3. Все углы правильного шестиугольника равны (120^circ) .
4. Площадь правильного шестиугольника со стороной (a) равна (dfrac<3sqrt<3>><2>a^2) .
5. Диагонали пересекаются в одной точке и делят его на 6 равносторонних треугольников, у которых высота равна радиусу (r) вписанной в правильный шестиугольник окружности.
6. Инвариантен относительно поворота плоскости на угол, кратный (60^circ) относительно центра описанной окружности (слово “инвариантный” означает, что при таких поворотах правильный шестиугольник перейдёт в себя, то есть такие повороты являются его симметриями).
Замечание
В общем случае правильный (n) -угольник инвариантен относительно поворота на угол (dfrac<360^circ>) .
[spoiler title=”источники:”]
http://ege-study.ru/ru/ege/materialy/matematika/pravilnyj-shestiugolnik-i-ego-ploshhad/
http://shkolkovo.net/theory/77
[/spoiler]
Радиус описанной окружности шестиугольника
Радиус описанной окружности
Если у шестиугольника как углы, так и стороны равны, соответственно, это — правильный многоугольник, вокруг которого можно описать лишь одну окружность. Все вершины шестиугольника лежат на описанной вокруг него окружности. У правильного шестиугольника центр расположен на равном расстоянии от его вершин. Центр шестиугольника и центр описанной окружности совпадают. Линия, которая соединяет центр с вершинами, считается радиусом как многоугольника, так и описанной окружности. В правильном шестиугольнике сторона и радиус равны. Отсюда, R описанной окружности равняется его стороне или диагонали, поделенной пополам:
В данном выражении:
а — величина стороны шестиугольника;
R — величина радиуса;
d — диагональ.
Онлайн калькулятор поможет быстро и правильно найти величину радиуса, для этого вам нужно лишь занести исходные данные.