В данной публикации представлены формулы, с помощью которых можно найти радиус сферы (шара), описанной около правильной пирамиды: треугольной, четырехугольной, шестиугольной и тетраэдра.
-
Формулы расчета радиуса сферы (шара)
- Правильная треугольная пирамида
- Правильная четырехугольная пирамида
-
Правильная шестиугольная пирамида
Формулы расчета радиуса сферы (шара)
Приведенная ниже информация применима только к правильным пирамидам. Формула для нахождения радиуса зависит от вида фигуры, рассмотрим самые распространенные варианты.
Правильная треугольная пирамида
На этом рисунке и чертежах далее:
- a – ребро основания пирамиды;
- h – высота фигуры.
Если эти величины даны, вычислить радиус (R) описанной вокруг пирамиды сферы/шара можно по формуле ниже:
Правильный тетраэдр является разновидностью правильной треугольной пирамиды. Формула для него:
Правильная четырехугольная пирамида
Радиус (R) описанной сферы/шара вычисляется следующим образом:
Правильная шестиугольная пирамида
Формула для нахождения радиус (R) сферы/шара выглядит так:
3.4. Вписанные и описанные многогранники
Среди множества выпуклых многогранников выделим два важных семейства: вписанные и описанные многогранники.
Определение 22
Выпуклый многогранник называют вписанным, если все его вершины лежат на сфере. Эта сфера называется описанной для рассматриваемого многогранника.
Определение 23
Выпуклый многогранник называют описанным, если все его грани касаются сферы. Эта сфера называется вписанной для рассматриваемого многогранника.
Очевидно сходство введённых понятий с известными из курса планиметрии понятиями вписанных и описанных многоугольников, описанных и вписанных окружностей.
Не любой многогранник является вписанным или описанным, однако верны следующие две теоремы, аналогичные соответствующим теоремам про треугольник.
Теорема 3.4 (об описанной сфере треугольной пирамиды)
Треугольная пирамида имеет единственную описанную сферу.
Рис. 73
Доказательство. Рассмотрим треугольную пирамиду ABCD (рис. 73). Построим плоскости, перпендикулярные соответственно рёбрам AB, AC и AD и проходящие через их середины. (Геометрическим местом точек пространства, равноудалённых от концов некоторого отрезка, является плоскость, перпендикулярная этому отрезку и проходящая через его середину. Докажите это самостоятельно.) Обозначим через O точку пересечения этих плоскостей. (Такая точка существует, и она единственна. Докажем это. Возьмём первые две плоскости. Они пересекаются, поскольку перпендикулярны непараллельным прямым. Обозначим прямую, по которой пересекаются первые две плоскости, через l. Эта прямая l перпендикулярна плоскости ABC. Плоскость, перпендикулярная AD, не параллельна l и не содержит её, поскольку в противном случае прямая AD перпендикулярна l, т. е. лежит в плоскости ABC.) Точка O равноудалена от точек A и B, A и C, A и D, значит, она равноудалена ото всех вершин пирамиды ABCD, т. е. сфера с центром в O соответствующего радиуса является описанной сферой для пирамиды ABCD.
Итак, мы доказали существование для пирамиды ABCD описанной сферы. Осталось доказать её единственность. Центр любой сферы, проходящей через вершины пирамиды, равноудалён от этих вершин, значит, он принадлежит плоскостям, которые перпендикулярны рёбрам пирамиды и проходят через середины этих рёбер. Следовательно, центр такой сферы совпадает с точкой O.
Теорема доказана. ▼
Отметим, что при этом мы доказали, что все серединные перпендикуляры к рёбрам пирамиды пересекаются в одной точке.
Теорема 3.5 (о вписанной сфере треугольной пирамиды)
У любой треугольной пирамиды существует единственная вписанная сфера.
Рис. 74
Доказательство. Рассмотрим треугольную пирамиду ABCD (рис. 74). Проведём биссекторные плоскости её двугранных углов с рёбрами AB, AC и BC. Эти плоскости имеют единственную общую точку (подумайте почему). Обозначим её через Q. Точка Q равноудалена от всех граней пирамиды. (Она равноудалена от ABC и ABD, ABC и ADC, ABC и CBD.) Значит, сфера соответствующего радиуса с центром в точке Q является вписанной в пирамиду ABCD. Единственность этой сферы доказывается так же, как и в предыдущей теореме. ▼
Как и в предыдущем случае, мы доказали, что все шесть биссекторных плоскостей треугольной пирамиды пересекаются в одной точке.
Замечание. Понятия вписанной и описанной сферы могут относиться также к конусу и цилиндру. Любой конус имеет описанную и вписанную сферы. Если провести осевое сечение конуса, то эта плоскость пересечёт описанную и вписанную сферы по большим окружностям этих сфер, причём получившиеся окружности будут соответственно описаны или вписаны в осевое сечение конуса. Цилиндр, как и конус, всегда имеет описанную сферу. Но в отличие от конуса вписать сферу можно не во всякий цилиндр, а лишь в цилиндр с квадратным осевым сечением.
Задачи, задания, вопросы |
1(в). Найдите радиусы описанного и вписанного шаров для правильного тетраэдра с ребром a. |
2(в). Найдите ребро куба, вписанного в сферу радиуса R. |
3(в). Докажите, что если около параллелепипеда можно описать сферу, то этот параллелепипед — прямоугольный. |
4(в). Имеется правильная пирамида со стороной основания a и боковым ребром b. Найдите радиус: а) описанной сферы; б) вписанного шара; в) сферы, касающейся всех рёбер пирамиды; г) сферы, касающейся рёбер основания и продолжений боковых рёбер; д) радиус сферы, которая касается основания и боковых рёбер. Каждый пункт решите для пирамиды следующего вида: 1) четырёхугольной; 2) треугольной; 3) шестиугольной. |
5(в). Найдите радиус описанного и вписанного шаров для конуса с радиусом основания r и высотой h. |
6.Около шара описаны цилиндр и конус, осевым сечением которого является прямоугольный треугольник. Найдите отношение образующих цилиндра и конуса. |
7(в). Найдите радиус сферы, описанной около правильной n-угольной призмы с высотой h и стороной основания a. |
8(в). В основании правильной треугольной призмы лежит треугольник со стороной 1. Найдите боковое ребро призмы, если известно, что в неё можно вписать шар. |
9(т). Известно, что в заданную призму можно вписать шар. Найдите площадь её боковой поверхности, если площадь основания равна S. |
10(т). Плоскость проходит на расстоянии a от центра единичной сферы. Найдите ребро куба, одна грань которого лежит в этой плоскости, а вершины противоположной грани находятся на сфере. |
11(в). Около призмы можно описать сферу. Докажите, что основание призмы — многоугольник, около которого можно описать окружность. Найдите радиус этой окружности, если высота призмы h, а радиус описанной около неё сферы равен R. |
12(в). Основанием пирамиды служит многоугольник, около которого можно описать окружность. Докажите, что существует сфера, описанная около этой пирамиды. Найдите радиус этой сферы, если радиус окружности, описанной около основания пирамиды, равен r, её высота h, а основание высоты совпадает с вершиной основания пирамиды. |
13.В треугольной пирамиде ABCD ребро AB равно a, а углы ACB и ADB — прямые. Найдите радиус описанной около этой пирамиды сферы. |
14.Найдите ребро куба, одна грань которого принадлежит основанию конуса, а остальные вершины расположены на его боковой поверхности. Радиус основания конуса равен r, его высота h. |
15.Через центр сферы радиуса R проведены три попарно перпендикулярные плоскости. Найдите радиус сферы, касающейся всех этих плоскостей и данной сферы. |
16.Осевым сечением конуса является правильный треугольник со стороной a. Через ось конуса проведены две перпендикулярные плоскости, которые делят конус на четыре части. Найдите радиус шара, вписанного в одну из этих частей. |
17.Внутри единичного куба находятся восемь равных шаров. Каждый шар вписан в один из трёхгранных углов куба и касается трёх шаров, соответствующих соседним вершинам. Найдите радиусы этих шаров. |
18(в). Четыре сферы радиуса R попарно касаются друг друга. Найдите радиус сферы, касающейся всех четырёх сфер. |
19.Два шара касаются друг друга и граней трёхгранного угла, все плоские углы которого прямые. Найдите отношение радиусов этих шаров. |
20(п). Докажите, что если в данный четырёхгранный угол можно вписать шар, то суммы противоположных плоских углов этого четырёхгранного угла равны. Докажите справедливость обратного утверждения: если суммы противоположных плоских углов четырёхгранного угла равны, то в него можно вписать шар. |
21(п). Дан трёхгранный угол OABC, в котором ∠BOC = a, ∠COA = b, ∠ AOB = g. Пусть вписанный в него шар касается грани BOC в точке K. Найдите ∠KOB. |
22(т). Треугольник ABC вписан в основание конуса, S — вершина конуса. В трёхгранном угле SABC двугранные углы с рёбрами SA, SB и SC равны соответственно x, y и z. Найдите угол между плоскостями SAB и SAO, где SO — высота данного конуса. |
23(т). Четырёхгранный угол OABCD (OA, OB, OC, OD — его рёбра) разделён плоскостью OAC на два трёхгранных угла. В каждый из полученных углов вписан шар. Эти шары касаются плоскости OAC в точках K и M. Найдите угол KOM, если ∠BOA = a, ∠DOA = b, ∠BOC = ∠COD. |
24(п). Докажите, что радиус шара, проходящего через точки пересечения медиан граней произвольного тетраэдра, в три раза меньше радиуса описанного около рассматриваемого тетраэдра шара. Используя этот факт, докажите, что в произвольном тетраэдре выполняется неравенство R ⩾ 3r, где R и r — соответственно радиусы описанного и вписанного шаров. |
25(т). Боковое ребро правильной четырёхугольной пирамиды равно l, а плоский угол при вершине равен a. Найдите радиус описанной около этой пирамиды сферы. |
05
Мар 2014
Категория: 13 (С2) Стереометр. задачиСтереометрия
С2 (№ 16). И снова сфера+пирамида
2014-03-05
2015-09-04
В новом формате ЕГЭ по математике задание значится как «Задание №14»
Задача С2 из Т/Р №66 А. Ларина.
Хорошая задачка. Решаем!
В пирамиде даны ребра , , . Сфера радиуса касается плоскости основания и боковых ребер пирамиды. Точки касания делят эти ребра в равных отношениях, считая от вершины . Найти объем пирамиды.
Решение: + показать
Ответ:
Смотрите также С3, С4 Тренировочной работы №66.
Автор: egeMax |
комментария 2
Рассмотрим свойства пирамид, в которых все боковые ребра равны, с соответствующими чертежами.
Если все боковые ребра пирамиды равны между собой, то вершина пирамиды проецируется в центр описанной около основания окружности.
Прямоугольные треугольники, образованные высотой пирамиды, боковыми ребрами и их проекциями (равными радиусу описанной окружности), равны. Поэтому также
— все боковые ребра пирамиды образуют с плоскостью основания равные углы;
— все углы, которые боковые ребра образуют с высотой пирамиды, равны.
Решение задач на пирамиду, в которой все боковые ребра равны (либо все боковые ребра образуют равные углы с основанием пирамиды или с высотой пирамиды) начинается с чертежа.
Если основание пирамиды — треугольник.
Центр окружности, описанной около остроугольного треугольника, лежит внутри треугольника.
OA=OB=OC=R
Центр окружности, описанной около тупоугольного треугольника, лежит вне треугольника.
OA=OB=OC=R.
На рисунке тупой угол — это угол B.
Радиус окружности, описанной около произвольного остроугольного либо тупоугольного треугольника ABC, можно найти по следствию из теоремы синусов:
либо по формуле
Центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы.
Радиус описанной около основания окружности в этом случае равен
где c — гипотенуза.
Отсюда для данного треугольника ABC с прямым углом B
Если основание пирамиды — параллелограмм
Из всех параллелограммов описать окружность можем только около прямоугольника (квадрат — его частный случай). Поэтому, если в задаче сказано, что пирамиде все боковые ребра равны, либо все боковые ребра одинаково наклонены к плоскости основания, либо все боковые ребра образуют с высотой пирамиды равные углы, а в основании — параллелограмм, то это может быть только прямоугольник (квадрат).
Центр описанной около прямоугольника окружности — точка пересечения его диагоналей. Соответственно, радиус R равен половине диагонали прямоугольника.
Если основание пирамиды -трапеция
Из всех трапеций описать окружность можно только около равнобочной трапеции.
Радиус описанной окружности ищем как радиус окружности, описанной около одного из треугольников ABC или ACD по одной из формул, приведенных выше.
Если диагональ трапеции перпендикулярна боковой стороне
боковые ребра пирамиды равны
В этом случае центр описанной около трапеции окружности лежит на середине большего основания, а высота пирамиды лежит в боковой грани, содержащей это большее основание.
Радиус R в этом случае — половина гипотенузы прямоугольного треугольника ACD.
Если основание пирамиды — произвольный четырехугольник
Радиус описанной около основания окружности находим как радиус окружности, описанной около одного из треугольников основания: ABC, BCD, ACD или ABD.
Поскольку описать около четырехугольника окружность можно только тогда, когда сумма его противолежащих углов равна 180 градусов, то
Тип C10 № 20
i
Боковые ребра треугольной пирамиды взаимно перпендикулярны и равны 6, 4 и 4. Найдите радиус описанной около этой пирамиды сферы.
Спрятать решение
Решение.
Пусть исходная пирамида изображена на рисунке (см. рис) таким образом, что ADC — основание пирамиды. По теореме Пифагора в треугольнике ADC гипотенуза AC равна
Центр O1 описанной окружности треугольника ADC является серединой его гипотенузы, он равноудалён от точек A, D и C. Центр O описанной вокруг пирамиды сферы также равноудалён от этих точек и от точки B, поэтому лежит на прямой, перпендикулярной AC. Поскольку центр O равноудалён от точек B и D, он лежит на MO — высоте к стороне BD треугольника DBO. Значит, радиус описанной сферы равен отрезку DO. Так как MOO1D — прямоугольник (углы MDO и MDO1), то:
По теореме Пифагора в треугольнике DOO1:
Ответ: