Как найти радиус призмы формула

Призма, вписанная в сферу

Призма, вписанная в сферу. Свойства призмы, вписанной в сферу

Определение 1. Призмой, вписанной в сферу, называют такую призму, все вершины которой лежат на сфере (рис. 1).

Определение 2. Если призма вписана в сферу, то сферу называют описанной около призмы.

Теорема. Около призмы можно описать сферу тогда и только тогда, когда выполнены следующие два условия:

  1. Призма является прямой призмой;
  2. Около оснований призмы можно описать окружности.

Доказательство. Докажем сначала, что если n – угольная призма A1A2 . AnA’1A’2 . A’n вписана в сферу, то оба условия теоремы выполнены.

Для этого заметим, что плоскость каждого из оснований призмы пересекает сферу по окружности, на которой лежат вершины этого основания. Таким образом, многоугольники, являющиеся основаниями призмы, оказываются вписанными в окружности (рис. 1), то есть второе условие теоремы выполнено.

Каждая из боковых граней призмы также вписана в окружность (рис. 2).

Рассмотрим какое-нибудь боковое ребро призмы, например, A2A’2. Поскольку это ребро перпендикулярно к ребрам основания A1A2 и A2A3 , то в силу признака перпендикулярности прямой и плоскости заключаем, что боковое ребро A2A’2 перпендикулярно к плоскости основания призмы, то есть призма является прямой призмой.

Таким образом, мы доказали, что, если призма вписана в сферу, то оба условия теоремы выполнены.

Для этого обозначим символом O1 центр окружности радиуса r , описанной около нижнего основания призмы, а символом O’1 обозначим центр окружности, описанной около верхнего основания призмы (рис. 3).

Поскольку многоугольники, лежащие в основаниях призмы равны, то и радиусы описанных около них окружностей будут равны.

Согласно утверждению 1 из раздела «Призмы, вписанные в цилиндры» отрезок O1O’1, соединяющий центры окружностей, описанных около нижнего и верхнего оснований призмы, параллелен и равен боковому ребру призмы. Так как рассматриваемая призма прямая, то ее боковые ребра перпендикулярны плоскости основания и равны высоте призмы h. Значит, и отрезок O1O’1 перпендикулярен плоскости основания призмы и равен h.

Обозначим буквой O середину отрезка O1O’1 и докажем, что все вершины призмы будут находиться на одном и том же расстояниии от точки O (рис. 4).

(1)

от всех вершин призмы. Отсюда следует, что точка O является центром сферы радиуса R , описанной около призмы.

Следствие 1. Около любой прямой треугольной призмы можно вписать сферу.

Следствие 2. Около любого прямоугольного параллелепипеда (в частности, около куба прямоугольного параллелепипеда (в частности, около куба ) можно описать сферу.

Следствие 3. Около любой правильной призмы можно описать сферу.

Для доказательства следствия 3 достаточно заметить, что правильная n – угольная призма – это прямая призма, основания которой являются правильными n – угольниками, а около любого правильного n – угольника можно описать окружность.

Радиус сферы, описанной около правильной n – угольной призмы

то из формулы (1) получаем выражение для радиуса описанной сферы

(2)

Ответ.

Следствие 6. Радиус сферы, описанной около около правильной шестиугольной призмы с высотой h и ребром основания a равен

Отношение объема правильной n – угольной призмы к объему шара, ограниченного описанной около призмы сферой

Задача 2. Около правильной n – угольной призмы с высотой h и ребром основания a описана сфера. Найти отношение объемов призмы и шара, ограниченного сферой, описанной около данной призмы.

Воспользовавшись формулой (2), выразим объем шара, ограниченного описанной около призмы сферой, через высоту и ребро основания призмы:

Ответ.

Следствие 7. Отношение объема правильной треугольной призмы с высотой h и ребром основания a к объему шара, ограниченного сферой, описанной около данной призмы, равно

Следствие 8. Отношение объема правильной четырехугольной призмы правильной четырехугольной призмы с высотой h и ребром основания a к объему шара, ограниченного сферой, описанной около данной призмы, равно

Следствие 9. Отношение объема правильной шестиугольной призмы с высотой h и ребром основания a к объему шара, ограниченного сферой, описанной около данной призмы, равно

Как найти радиус окружности

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

Возможно тебе интересно узнать – как найти длину окружности?

Формула радиуса окружности

Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.

Если известна площадь круга

R = √ S : π, где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Если известна длина

R = P : 2 * π, где P — длина (периметр круга).

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Если известен диаметр окружности

R = D : 2, где D — диаметр.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

Если известна диагональ вписанного прямоугольника

R = d : 2, где d — диагональ.

Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:

d = √ a 2 + b 2 , где a, b — стороны вписанного прямоугольника.

Если известна сторона описанного квадрата

R = a : 2, где a — сторона.

Сторона описанного квадрата равна диаметру окружности.

Если известны стороны и площадь вписанного треугольника

R = (a * b * c) : (4 * S), где a, b, с — стороны, S — площадь треугольника.

Если известна площадь и полупериметр описанного треугольника

R = S : p, где S — площадь треугольника, p — полупериметр треугольника.

Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.

Если известна площадь сектора и его центральный угол

R = √ (360° * S) : (π * α), где S — площадь сектора круга, α — центральный угол.

Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.

Если известна сторона вписанного правильного многоугольника

R = a : (2 * sin (180 : N)), где a — сторона правильного многоугольника, N — количество сторон.

В правильном многоугольнике все стороны равны.

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Радиус описанной сферы и ребро “A” треугольной призмы

Свойства

Зная радиус сферы, описанной вокруг правильной треугольной призмы с равносторонним треугольником в основании, можно найти сторону этого основания и затем посчитать высоту основания, радиусы вписанной и описанной окружностей около него, а также площадь. a=√(6/5) R_1 h=a/√2=√(3/5) R_1 r=a/(2√3)=2√(2/5) R_1 R=a/√3=√(2/5) R_1 S=(√3 a^2)/4=(3√3 〖R_1〗^2)/10

Боковое ребро треугольной призмы в совокупности с радиусом описанной сферы позволяет вычислить диагональ боковой стороны, периметр призмы и площадь боковой, а затем и полной поверхности призмы. d=√(a^2+b^2 )=√(6/5 〖R_1〗^2+b^2 ) P=3(2a+b)=3(2√(6/5) R_1+b) S_(б.п.)=3ab=3b√(6/5) R_1 S_(п.п.)=3b√(6/5) R_1+(3√3 〖R_1〗^2)/5

Чтобы найти объем треугольной призмы через радиус описанной сферы и боковое ребро, нужно подставить в формулу объема необходимое выражение вместо площади основания и умножить его на боковое ребро. V=S_(осн.) b=(3√3 〖R_1〗^2)/10 b

[spoiler title=”источники:”]

http://skysmart.ru/articles/mathematic/radius-okruzhnosti

http://geleot.ru/education/math/geometry/calc/prism/radius_sphere_and_edge_a

[/spoiler]

Призма. Формулы и свойства призмы

Определение.

Призма — это многогранная объемная фигура, которая состоит из двух одинаковых плоских многоугольников (основ), находящихся в двух параллельных плоскостях, а другие грани (боковые грани) – параллелограммы, что имеют общие стороны с этими многоугольниками.

Определение. Основы призмы – две грани, которые являются равными параллельными плоскими многоугольниками (ABCEF, GMNJK).

Определение. Боковые грани призмы – все остальные грани за исключением основ.

Определение. Боковая поверхность призмы – совокупность всех боковых граней призмы.

Определение. Поверхность призмы – это совокупность поверхностей двух оснований и боковой поверхности.

Определение. Боковое ребро призмы – общая сторона двух боковых граней.

Определение. Высота – это перпендикуляр, который соединяет две основы призмы под прямым углом.

Определение. Диагональ основания призмы – это отрезок, соединяющий две не соседние вершины, принадлежащие этой же основе.

Определение. Диагональ боковой грани призмы – это отрезок, соединяющий две противоположные вершины, лежащие на одной боковой грани однако принадлежат различным основам.

Определение. Диагональ призмы (AN) – это отрезок, соединяющий две вершины, лежащие на разных основаниях, но не лежат на одной боковой стороне.

Определение. Диагональное сечение – это пересечение призмы плоскостью, проходящей через диагональ основания призмы и боковое ребро. Треугольная призма (в основе призмы треугольники) не имеет диагональных сечений.

Определение. Перпендикулярное сечение – это пересечение призмы плоскостью, пересекающей боковые ребра призмы под прямым углом.

Определение. Прямая призма – это призма, в которой все боковые грани перпендикулярны к основанию. Высота равна длине бокового ребра.

Определение. Наклонная призма – это призма, в которой боковые грани не перпендикулярны к основанию.

Определение. Правильная призма – это призма, в которой основы являются правильными многоугольниками. Правильная призма может быть, как прямой, так и наклонной.

Определение. Усечённая призма – это призма, в которой две основы не параллельны (рис. 2). Усечённая призма может быть, как прямой, так наклонной.

Объём призмы

Формула. Объём призмы через площадь основания и высоту:

V = SоснH

Формула. Объём наклонной призмы через площадь перпендикулярного сечения и длину бокового ребра:

V = SпL

Формула.
Объём правильной прямой призмы через высоту (h), длину стороны (a) и количество сторон (n):

Площадь поверхности призмы

Формула. Площадь боковой поверхности призмы через периметр основания и высоту:

Sb = P·h

Формула. Площадь поверхности призмы через площадь основания, периметр основания и высоту:

S = 2Soсн + P·h

Формула.
Площадь поверхности правильной призмы через высоту (h), длину стороны (a) и количество сторон (n):

S =  n a2ctg π  + nah
2 n

Основные свойства призмы

Основы призмы – равные многоугольники.

Боковые грани призмы – параллелограммы.

Боковые ребра призмы параллельны и равны между собой.

Перпендикулярное сечение перпендикулярно всем боковым ребрам и боковым граням.

Высота прямой призмы равна длине бокового ребра.

Высота наклонной призмы всегда меньше длины ребра.

В прямой призме гранями могут быть прямоугольниками или квадратами.

Зная радиус сферы, описанной вокруг правильной треугольной призмы с равносторонним треугольником в основании, можно найти сторону этого основания и затем посчитать высоту основания, радиусы вписанной и описанной окружностей около него, а также площадь.
a=√(6/5) R_1
h=a/√2=√(3/5) R_1
r=a/(2√3)=2√(2/5) R_1
R=a/√3=√(2/5) R_1
S=(√3 a^2)/4=(3√3 〖R_1〗^2)/10

Боковое ребро треугольной призмы в совокупности с радиусом описанной сферы позволяет вычислить диагональ боковой стороны, периметр призмы и площадь боковой, а затем и полной поверхности призмы.
d=√(a^2+b^2 )=√(6/5 〖R_1〗^2+b^2 )
P=3(2a+b)=3(2√(6/5) R_1+b)
S_(б.п.)=3ab=3b√(6/5) R_1
S_(п.п.)=3b√(6/5) R_1+(3√3 〖R_1〗^2)/5

Чтобы найти объем треугольной призмы через радиус описанной сферы и боковое ребро, нужно подставить в формулу объема необходимое выражение вместо площади основания и умножить его на боковое ребро.
V=S_(осн.) b=(3√3 〖R_1〗^2)/10 b

Содержание:

Ранее вы уже знакомились с призмой, т. е. многогранником, две грани которого — равные Призма в геометрии - определение, формулы и примеры

Что такое призма

Равные грани-многоугольники призмы лежат в параллельных плоскостях и называются основаниями призмы, а остальные грани-параллелограммы — боковыми гранями. Ребра боковых граней, не принадлежащие основаниям, называют боковыми ребрами. Отрезок, соединяющий две вершины, не принадлежащие одной грани, называют диагональю призмы (рис. 1). Плоскость, проходящая через два боковых ребра призмы, не принадлежащих одной грани, называется диагональной плоскостью, а сечение призмы диагональной плоскостью — диагональным сечением. На рисунке 2 показаны два диагональных сечения призмы.

Призмы разделяют на треугольные, четырехугольные, пятиугольные и т. д. в зависимости от количества сторон их оснований. Призма, изображенная на рисунке 1, — шестиугольная, а на рисунке 2, — девятиугольная.

Отличают прямые и наклонные призмы в зависимости от того, перпендикулярны или не перпендикулярны боковые ребра призмы ее основаниям. Обычно при изображении прямой призмы ее боковые ребра проводят вертикально.

Призма в геометрии - определение, формулы и примеры

Призма в геометрии - определение, формулы и примеры

Прямая призма, основаниями которой являются правильные многоугольники, называется правильной призмой. В прямой призме все боковые грани — прямоугольники, а в правильной — равные прямоугольники.

Перпендикуляр, проведенный из какой-либо точки одного основания призмы к плоскости другого основания, называется высотой призмы. На рисунке 3 показаны две высоты Призма в геометрии - определение, формулы и примеры и Призма в геометрии - определение, формулы и примеры призмы Призма в геометрии - определение, формулы и примеры. У прямой призмы ее высота равна боковому ребру.

Боковые грани составляют боковую поверхность призмы, а боковые грани вместе с основаниями — полную поверхность призмы.

Теорема 1.

Площадь боковой поверхности призмы равна произведению периметра ее перпендикулярного сечения и длины бокового ребра:

Призма в геометрии - определение, формулы и примеры

Доказательство:

Пусть имеется Призма в геометрии - определение, формулы и примеры-угольная призма Призма в геометрии - определение, формулы и примеры. Пересечем ее плоскостью Призма в геометрии - определение, формулы и примеры, перпендикулярной боковому ребру. Получим перпендикулярное сечение Призма в геометрии - определение, формулы и примеры, стороны которого перпендикулярны сторонам параллелограммов, составляющим боковую поверхность призмы. Поэтому для боковой поверхности Призма в геометрии - определение, формулы и примеры получим:

Призма в геометрии - определение, формулы и примеры

При переходе (1) мы учли, что все боковые ребра призмы равны друг другу, при переходе (2) — то, что сумма Призма в геометрии - определение, формулы и примеры выражает периметр Призма в геометрии - определение, формулы и примеры перпендикулярного сечения призмы, а множитель Призма в геометрии - определение, формулы и примеры — длину Призма в геометрии - определение, формулы и примеры бокового ребра.

Следствие 1.

Площадь боковой поверхности прямой призмы равна произведению периметра ее основания и высоты.

Действительно, перпендикулярное сечение прямой призмы равно ее основанию, а боковое ребро является высотой.

Частным видом призмы является параллелепипед, т. е. призма, основанием которой является параллелограмм. Параллелепипед, как и призма, может быть прямым или наклонным. Прямой параллелепипед, основаниями которого являются прямоугольники, называется прямоугольным параллелепипедом. Прямоугольный параллелепипед, у которого три ребра, выходящие из одной вершины, равны друг другу, называется кубом.

У параллелепипеда все грани — параллелограммы, из которых у прямого параллелепипеда прямоугольниками являются боковые грани, а у прямоугольного параллелепипеда — все грани.

12 ребер параллелепипеда разделяются на три четверки равных ребер (рис. 5), его 6 граней — на три пары равных граней (рис. 6), а 4 диагонали пересекаются в одной точке, являющейся центром симметрии параллелепипеда (рис. 7).

Призма в геометрии - определение, формулы и примеры

Призма в геометрии - определение, формулы и примеры

Прямой параллелепипед еще имеет ось симметрии (рис. 8) и плоскость симметрии (рис. 9). Прямоугольный параллелепипед имеет три оси симметрии (рис. 10) и три плоскости симметрии (рис. 11).

Ребра прямоугольного параллелепипеда, выходящие из одной вершины, называют измерениями прямоугольного параллелепипеда. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (рис. 12), и все его диагонали равны друг другу.

Важной характеристикой плоской фигуры является ее площадь. Подобной характеристикой тела является его объем. Будем считать, что изучаемые нами тела имеют объем.

За единицу объема принимают объем куба с ребром 1. На практике пользуются разными единицами объема: как метрическими — кубический миллиметр, кубический сантиметр, кубический дециметр, кубический метр, кубический километр, так и неметрическими — галлон, барель, бушель, кварта.

Для объема тела выполняются его основные свойства:

  • равные тела имеют равные объемы;
  • если тело разделено на части, то его объем равен сумме объемов этих частей.

При этом равными фигурами называют фигуры, которые преобразуются друг в друга определенным движением. Например, равными являются две шестиугольные правильные призмы, у которых соответственно равны стороны оснований и высоты (рис. 13), или два цилиндра с соответственно равными радиусами оснований и образующими (рис. 14). Тело, изображенное на рисунке 15, можно разделить на цилиндр и конус, и его объем равен сумме объемов этих цилиндра и конуса.

Два тела с равными объемами называют равновеликими телами. Равные тела являются равновеликими, но не наоборот.

Вы знаете, что объем Призма в геометрии - определение, формулы и примеры прямоугольного параллелепипеда равен произведению трех его измерений Призма в геометрии - определение, формулы и примеры, Призма в геометрии - определение, формулы и примеры, Призма в геометрии - определение, формулы и примеры (рис. 16): Призма в геометрии - определение, формулы и примеры.

Учитывая, что в формуле Призма в геометрии - определение, формулы и примеры произведение Призма в геометрии - определение, формулы и примеры выражает площадь Призма в геометрии - определение, формулы и примеры основания прямоугольного параллелепипеда, а число Призма в геометрии - определение, формулы и примеры — его высоту Призма в геометрии - определение, формулы и примеры, получим, что объем Призма в геометрии - определение, формулы и примеры прямоугольного параллелепипеда равен произведению площади его основания и высоты: Призма в геометрии - определение, формулы и примеры.

Призма в геометрии - определение, формулы и примеры

Теорема 2.

Объем произвольного параллелепипеда равен произведению площади его основания и высоты:

Призма в геометрии - определение, формулы и примеры

Доказательство:

Пусть имеется произвольный параллелепипед Призма в геометрии - определение, формулы и примеры (рис. 17). Через ребро Призма в геометрии - определение, формулы и примеры проведем плоскость, перпендикулярную ребру Призма в геометрии - определение, формулы и примеры, она отсечет от параллелепипеда треугольную призму Призма в геометрии - определение, формулы и примеры (рис. 18). После параллельного сдвига этой призмы в направлении отрезка Призма в геометрии - определение, формулы и примеры получим призму Призма в геометрии - определение, формулы и примеры. Параллелепипед Призма в геометрии - определение, формулы и примеры равновелик с данным параллелепипедом Призма в геометрии - определение, формулы и примеры. Выполненное преобразование параллелепипеда также сохраняет объем параллелепипеда, площадь его основания и высоту.

У параллелепипеда Призма в геометрии - определение, формулы и примеры его боковые грани Призма в геометрии - определение, формулы и примеры и Призма в геометрии - определение, формулы и примеры перпендикулярны плоскости основания. К граням Призма в геометрии - определение, формулы и примеры и Призма в геометрии - определение, формулы и примеры, которые не перпендикулярны плоскости основания, применим такое же преобразование, в результате которого получим прямой параллелепипед Призма в геометрии - определение, формулы и примеры (рис. 19), в котором сохраняются объем, площадь основания и высота.

Наконец, применив еще раз такое преобразование к граням Призма в геометрии - определение, формулы и примеры и Призма в геометрии - определение, формулы и примеры прямого параллелепипеда Призма в геометрии - определение, формулы и примеры, получим прямоугольный параллелепипед Призма в геометрии - определение, формулы и примеры (рис. 20), сохранив объем параллелепипеда, площадь его основания и высоту.

Призма в геометрии - определение, формулы и примеры

Значит,

Призма в геометрии - определение, формулы и примеры

Множитель Призма в геометрии - определение, формулы и примеры есть площадь основания параллелепипеда Призма в геометрии - определение, формулы и примеры, а множительПризма в геометрии - определение, формулы и примеры выражает его высоту, так как Призма в геометрии - определение, формулы и примеры есть перпендикуляр, возведенный из точки Призма в геометрии - определение, формулы и примеры основания Призма в геометрии - определение, формулы и примеры к другому основанию Призма в геометрии - определение, формулы и примеры. Значит, объем произвольного параллелепипеда равен произведению площади его основания и высоты.

Теорема 3.

Объем призмы равен произведению площади ее основания и высоты:

Призма в геометрии - определение, формулы и примеры

Доказательство:

Рассмотрим сначала треугольную призму Призма в геометрии - определение, формулы и примеры (рис. 21). Дополним ее до параллелепипеда Призма в геометрии - определение, формулы и примеры (рис. 22). Точка Призма в геометрии - определение, формулы и примеры пересечения диагоналей диагонального сечения Призма в геометрии - определение, формулы и примеры этого параллелепипеда является его центром симметрии. Это означает, что достроенная призма Призма в геометрии - определение, формулы и примеры симметрична данной призме Призма в геометрии - определение, формулы и примеры относительно центра Призма в геометрии - определение, формулы и примеры, а потому эти призмы равны друг другу. Значит, объем параллелепипеда Призма в геометрии - определение, формулы и примеры равен удвоенному объему данной призмы.

Объем параллелепипеда Призма в геометрии - определение, формулы и примеры равен произведению площади его основания Призма в геометрии - определение, формулы и примеры и высоты. Но площадь его основания Призма в геометрии - определение, формулы и примеры равна удвоенной площади основания Призма в геометрии - определение, формулы и примеры данной призмы, а высота параллелепипеда равна высоте призмы.

Призма в геометрии - определение, формулы и примеры

Отсюда следует, что объем призмы Призма в геометрии - определение, формулы и примеры равен площади ее основания Призма в геометрии - определение, формулы и примеры и высоты. Теперь рассмотрим произвольную призму Призма в геометрии - определение, формулы и примеры (рис. 23).

Призма в геометрии - определение, формулы и примеры

Диагональными сечениями, проходящими через вершину Призма в геометрии - определение, формулы и примеры, разобьем ее на треугольные призмы-части Призма в геометрии - определение, формулы и примеры, Призма в геометрии - определение, формулы и примеры, …, Призма в геометрии - определение, формулы и примеры, Призма в геометрии - определение, формулы и примеры, которые все имеют одну и ту же высоту, равную высоте Призма в геометрии - определение, формулы и примеры данной призмы. Объем данной призмы равен сумме объемов призм-частей. По уже доказанному для объема Призма в геометрии - определение, формулы и примеры данной призмы получим:

Призма в геометрии - определение, формулы и примеры

Учитывая, что сумма в скобках выражает площадь S основания данной призмы, получим:

Призма в геометрии - определение, формулы и примеры

Следствие 2.

Объем прямой призмы равен произведению площади ее основания и бокового ребра.

Призма и её сечения

С призмой вы уже знакомы. Несмотря на это, мы напомним определение призмы и её свойства.

Призма -это многогранник, две грани которого равные n-угольники (основания), лежащие в параллельных плоскостях, а остальные n граней – параллелограммы (рис. 22).

Призма в геометрии - определение, формулы и примеры

В зависимости от того перпендикулярны ли боковые грани призмы его основаниям или нет, призмы делят на прямые или наклонные. На рисунке 23.а изображена прямая призма, а на рисунке 23.b – наклонная. Очевидно, что боковые грани прямой призмы – прямоугольники.

Призма в геометрии - определение, формулы и примеры

Если основания прямой призмы являются правильными многоугольниками, то её называют правильной (рис. 24). Боковые грани правильной призмы это равные между собой прямоугольники.

Перпендикуляр, опущенный из некоторой точки одного основания к другому, называют его перпендикуляром (рис. 23.b).

Сечение призмы, проходящее через соответствующие диагонали его оснований, называют диагональным сечением (рис. 24.а) и их число равно числу диагоналей одного из оснований.

Перпендикулярным сечением призмы называют сечение перпендикулярное всем его боковым рёбрам (рис. 25). так как Призма в геометрии - определение, формулы и примеры число диагоналси выпуклого n-угольника, то число диагональных сeчeний n-угольной призмы также равно Призма в геометрии - определение, формулы и примеры .

В каждом диагональном сечении призмы можно провести две диагонали. Следовательно, n-угольная призма имеет Призма в геометрии - определение, формулы и примеры диагоналей.

Пример:

В наклонной треугольной призме расстояния между боковыми ребрами соответственно равны 7 см, 15 см и 20 см. Найдите расстояние между большей боковой гранью и противолежащим боковым ребром.

Решение:

Известно, что расстояние между параллельными прямыми равно длине перпендикуляра, опущенного из произвольной точки одной прямой на другую. Тогда длины сторон перпендикулярного сечения ABC (рис. 26). Наибольшая грань призмы проходит через наибольшую сторону АС= 20 см этого сечения. Расстояние от рёбра призмы В2В1 до плоскости грани Призма в геометрии - определение, формулы и примеры равно высоте BD треугольника ABC.

Призма в геометрии - определение, формулы и примеры

Тогда по формуле Герона получаем:

Призма в геометрии - определение, формулы и примеры

Призма в геометрии - определение, формулы и примеры,

Призма в геометрии - определение, формулы и примеры.

С другой стороны, Призма в геометрии - определение, формулы и примеры.

Отсюда Призма в геометрии - определение, формулы и примерыили Призма в геометрии - определение, формулы и примерысм.

Ответ: 4,2 см.

Параллелепипед и куб

Призма, основаниями которой являются параллелограммы, называют параллелепипедом (рис. 27). Параллелепипеды также как и призмы могут быть прямыми (рис. 27.а) и наклонными (рис. 27.b). Призма в геометрии - определение, формулы и примеры

Грани параллелепипеда, не имеющие общую вершину, называют противоположными гранями.

У параллелепипеда:

  • —12 рёбер, каждые четыре из которых равны (рис. 28.а),
  • —6 граней, которые попарно параллельны и равны (рис. 28.b),
  • —4 диагонали, которые пересекаются и точкой пересечения делятся пополам (рис. 28.с),
  • —точка пересечения диагоналей – центр его симметрии (рис. 28.с). Прямой параллелепипед имеет ось симметрии (рис. 28.d) и плоскость симметрии (рис. 28.e).

Призма в геометрии - определение, формулы и примеры

Прямой параллелепипед, основания которого являются прямоугольники, называют прямоугольным параллелепипедом (рис. 29). Очевидно, что все грани прямоугольного параллелепипеда являются прямоугольниками.

Призма в геометрии - определение, формулы и примеры

Прямоугольный параллелепипед имеет три оси симметрии (рис. 30) и три плоскости симметрии (рис. 31).

Длины трех рёбер, исходящих из одной вершины прямоугольного параллелепипеда называют его измерениями.

Свойство: В прямоугольном параллелепипеде квадрат любой диагонали d равен сумме квадратов его измерений: а, b и с (рис.32):

Призма в геометрии - определение, формулы и примеры.

Прямоугольный параллелепипед, все измерения которого равны, называют кубом. Очевидно, что все грани куба являются равными квадратами. Куб имеет один центр симметрии, 9 осей симметрии и 9 плоскостей симметрии.

Выше были перечислены свойства призмы. Некоторые из них были показаны в 10 классе. Доказательства остальных свойств проще, поэтому их доказательства вы можете провести самостоятельно.

Площади боковой и полной поверхности призмы

На рисунке 33 проведены высоты НН1 DD1 призмы

АВСDЕА1В1С1D1Е1. Очевидно, что высоты правильной призмы будут равны её боковому рёбру. Призма в геометрии - определение, формулы и примеры

Боковая поверхность призмы (точнее, площадь боковой поверхности)равна сумме боковых поверхностей ее граней, а полная поверхнасть равна сумме боковой поверхности и площадей двух ее оснований. Призма в геометрии - определение, формулы и примеры

Теорема. Боковая поверхность прямой призмы равна произведению периметра ее основания на высоту: Призма в геометрии - определение, формулы и примеры

Доказательство. Пусть высота данной прямой призмы равна Призма в геометрии - определение, формулы и примеры, а периметр основания Призма в геометрии - определение, формулы и примеры(рис. 34). Известно, что каждая грань прямой призмы является прямоугольником. Основания прямоугольников равны соответствующим сторонам основания призмы, а высоты равны высоте призмы.

Тогда Призма в геометрии - определение, формулы и примеры

Призма в геометрии - определение, формулы и примеры

Теорема. Боковая поверхность произвольной призмы равна произведению периметра перпендикулярного сечения призмы на ее боковое ребро:Призма в геометрии - определение, формулы и примеры

Доказательство. Пусть периметр перпендикулярного сечения призмы равен Р (рис. 35). Сечение делит призму на две части (рис. 36.а). Совершим параллельный перенос одной из этих частей так, чтобы основания нашей призмы совпали. В результате мы получим новую прямую призму (рис. 36.b). Очевидно, что, боковая поверхность этой призмы равна боковой поверхности данной. Её основанием является перпендикулярное сечение, а боковое ребро равно Призма в геометрии - определение, формулы и примеры.

Тогда по доказанной выше теореме:Призма в геометрии - определение, формулы и примеры

Призма в геометрии - определение, формулы и примеры

Объем призмы

Одним из свойств, характеризующих геометрические тела в пространстве, является понятие объема. Каждый предмет (тело) занимает некоторую часть пространства. Например, кирпич по сравнению со спичечным коробком занимает большую часть пространства. Для сравнения этих частей между собой вводится понятие объёма.

Объём – это величина, численное значение которой обладает следующими свойствами:

  1. Любое тело имеет определённый объём, выраженный положительным числом.
  2. Равные тела имеют равные объёмы.
  3. Если тело разбито на несколько частей, то его объём равен сумме объёмов этих частей.
  4. Объём куба, ребро которого равно единице, равен единице.

Объём – также как длина и площадь, является величиной. В зависимости от выбора единицы длины, объём единого куба измеряют в кубических единицах:

1 см3, 1 дм3, 1 м3 и т. д.

Объёмы тел измеряют различными способами или вычисляют. Например, объёмы маленьких предметов можно измерить с помощью сосудов (мензурки) с мелкими делениями (шкалами) (рис. 46). А объём ведра можно измерить с помощью сосуда, имеющего единичный объём, наполнив его водой (рис. 47). Но таким способом мы не можем измерить объёмы всех тел. В таких случаях объём вычисляют различными способами. Ниже рассмотрим их без доказательств. Призма в геометрии - определение, формулы и примеры

Объём параллелепипеда

Теорема. Объём прямоугольного параллелепипеда равен произведению трех его измерeний (рис.48): Призма в геометрии - определение, формулы и примеры.

Следствие. Объём прямоугольного параллелепипеда равен произведению площади его основания на высоту (рис. 49): Призма в геометрии - определение, формулы и примеры.

Теорема. Объём произвольного параллелепипеда равен произведению площади его основания на высоту (рис. 50): Призма в геометрии - определение, формулы и примеры.

Это свойство вытекает из вышеупомянутого следствия. На рисунке 50 показано как данный параллелепипед преобразовать в прямоугольный параллелепипед. Воспользовавшись этим самостоятельно обоснуйте свойство. Призма в геометрии - определение, формулы и примеры

Нахождение объёма призмы

Теорема. Объём прямой призмы равен произведению площади его основания на высоту (рис. 51): Призма в геометрии - определение, формулы и примеры.

Доказательство. 1 случай. Пусть основанием призмы будет прямоугольный треугольник (рис 51.а). Эту призму можно дополнить равной ей призмой до прямоугольного параллелепипеда (рис. 51 .b).

Если объём данной призмы, площадь её основания и высота V, S и h, то объём полученного прямоугольного параллелепипеда, площадь его основания и высота будут соответственно равны 2V, 2S и h.

Призма в геометрии - определение, формулы и примеры

Следовательно Призма в геометрии - определение, формулы и примеры или Призма в геометрии - определение, формулы и примеры

2 случай. Пусть Sплощадь произвольной n – угольной прямой призмы и h – её высота. Основание призмы – n-угольник делится диагоналями на треугольники, каждый из которых можно разделить на прямоугольные треугольники (рис. 52). В результате данная призма разделится на конечное число прямых призм, основания которых являются прямоугольными треугольниками. Высоты этих призм равны h , а сумма площадей оснований этих призм равна площади основания данной призмы: Призма в геометрии - определение, формулы и примеры

Объём данной призмы равен сумме объёмов составляющих её треугольных призм:

Призма в геометрии - определение, формулы и примеры

или Призма в геометрии - определение, формулы и примеры

Теорема. Объём произвольной призмы равен произведению площади его основания на высоту: Призма в геометрии - определение, формулы и примеры

По рисунку 5.3 докажите эту теорему самостоятельно, сначала для треугольной призмы (рис. 5.3.а), затем для любой призмы (рис. 5.3.b).

Призма в геометрии - определение, формулы и примеры

Пример:

Стороны основания прямого параллелепипеда равны а и b, а угол между ними 30°. Найдите его объём, если площадь его боковой поверхности равна S.

Решение:

Обозначим высоту параллелепипеда h(рис. 54).

Призма в геометрии - определение, формулы и примеры

Тогда по условию задачи:

Призма в геометрии - определение, формулы и примеры

  • Цилиндр в геометрии
  • Пирамида в геометрии
  • Конус в геометрии
  • Сфера в геометрии
  • Возникновение геометрии
  • Геометрические преобразования в геометрии
  • Планиметрия – формулы, определение и вычисление
  • Стереометрия – формулы, определение и вычисление

Призма

Призма – это многогранник, состоящий из двух равных многоугольников, расположенных в параллельных плоскостях, и $n$-го количества параллелограммов.

Многоугольники $ABCD$ и $A_1B_1C_1D_1$ – называются основаниями призмы.

Параллелограммы $АА_1В_1В, ВВ_1С_1С$ и т.д.- боковыми гранями.

Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы.

$С_1Н$ – высота

Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.

Формулы вычисления объема и площади поверхности призмы:

Чтобы были понятны формулы, введем обозначения:

$P_{осн}$ – периметр основания;

$S_{осн}$ – площадь основания;

$S_{бок}$ – площадь боковой поверхности;

$S_{п.п}$ – площадь полной поверхности;

$h$ – высота призмы.

$S_{бок}=P_{осн}·h$

$S_{п.п}=S_{бок}+2S_{осн}$

$V=S_{осн}·h$

В основании призмы могут лежать различные многоугольники, рассмотрим площади некоторых из них.

В основании лежит треугольник.

  1. $S={a·h_a}/{2}$, где $h_a$ – высота, проведенная к стороне $а$
  2. $S={a·b·sin⁡α}/{2}$, где $a,b$ – соседние стороны, $α$ – угол между этими соседними сторонами.
  3. Формула Герона $S=√{p(p-a)(p-b)(p-c)}$, где $р$ – это полупериметр $p={a+b+c}/{2}$
  4. $S=p·r$, где $r$ – радиус вписанной окружности
  5. $S={a·b·c}/{4R}$, где $R$ – радиус описанной окружности
  6. Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ – катеты прямоугольного треугольника.

В основании лежит четырехугольник

1. Прямоугольник

$S=a·b$, где $а$ и $b$ – смежные стороны.

2. Ромб

$S={d_1·d_2}/{2}$, где $d_1$ и $d_2$ – диагонали ромба

$S=a^2·sin⁡α$, где $а$ – длина стороны ромба, а $α$ – угол между соседними сторонами.

3. Трапеция

$S={(a+b)·h}/{2}$, где $а$ и $b$ – основания трапеции, $h$ – высота трапеции.

Прямая призма называется правильной, если ее основания – правильные многоугольники.

Рассмотрим площади правильных многоугольников:

1. Для равностороннего треугольника $S={a^2√3}/{4}$, где $а$ – длина стороны.

2. Квадрат

$S=a^2$, где $а$ – сторона квадрата.

3. Правильный шестиугольник

Шестиугольник разделим на шесть правильных треугольников и найдем площадь как:

$S=6·S_{треугольника}={6·a^2√3}/{4}={3·a^2√3}/{2}$, где $а$ – сторона правильного шестиугольника.

Пример:

Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными $10$ и $24$, а её боковое ребро равно $20$.

Решение:

Построим прямую призму, в основании которой лежит ромб.

Распишем формулу площади полной поверхности:

$S_{п.п}=S_{бок}+2S_{осн}=P_{осн}·h+2S_{ромба}$

В прямой призме высота равна боковому ребру, следовательно, $h=С_1С=20$

Чтобы найти периметр основания, надо узнать сторону ромба. Рассмотрим один из прямоугольных треугольников, получившихся, при пересечении диагоналей и воспользуемся теоремой Пифагора.

Диагонали точкой пересечения делятся пополам, поэтому катеты прямоугольного треугольника равны $5$ и $12$.

$АВ=√{5^2+12^2}=√{25+144}=√{169}=13$

$Р=13·4=52$

Теперь найдем площадь основания: площадь ромба равна половине произведения его диагоналей.

$S_{основания}={d_1·d_2}/{2}={10·24}/{2}=120$

Далее подставим все найденные величины в формулу полной поверхности и вычислим ее:

$S_{п.п}=P_{осн}·h+2S_{ромба}=52·20+2·120=1040+240=1280$

Ответ: $1280$

Цилиндр – это та же призма, в основании которой лежит круг.

$S_{бок}=P_{осн}·h=2πRh$

$S_{п.п}=S_{бок}+2S_{осн}=2πRh+2πR^2=2πR(h+R)$

$V=S_{осн}·h=πR^2 h$

Подобные призмы: при увеличении всех линейных размеров призмы в $k$ раз, её объём увеличится в $k^3$ раз.

Средняя линия треугольника параллельна основанию и равна его половине.

$MN$ – средняя линия, так как соединяет середины соседних сторон.

$MN {//} AC, MN = {AC}/{2}$

Подобие треугольников

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.

Число $k$ – коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)

  1. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$.
  2. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Прямоугольный треугольник и его свойства:

В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Некоторые свойства прямоугольного треугольника:

  1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.
  2. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$AC^2+BC^2=AB^2$

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В: АС$ – противолежащий катет; $ВС$ – прилежащий катет.

Для острого угла $А: ВС$ – противолежащий катет; $АС$ – прилежащий катет.

  1. Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
  4. Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
  5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
  6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
  7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения

Значения тригонометрических функций некоторых углов:

$α$ $30$ $45$ $60$
$sinα$ ${1}/{2}$ ${√2}/{2}$ ${√3}/{2}$
$cosα$ ${√3}/{2}$ ${√2}/{2}$ ${1}/{2}$
$tgα$ ${√3}/{3}$ $1$ $√3$
$ctgα$ $√3$ $1$ ${√3}/{3}$

Теорема синусов

Во всяком треугольнике стороны относятся как синусы противолежащих углов:

${a}/{sinα}={b}/{sinβ}={c}/{sinγ}=2R$, где $R$ – радиус описанной около треугольника окружности.

Теорема косинусов

Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

$a^2=b^2+c^2-2·b·c·cosα;$

$b^2=a^2+c^2-2·a·c·cos⁡β;$

$c^2=b^2+a^2-2·b·a·cosγ.$

Добавить комментарий