Как найти радиус сферы 6 класс


Download Article


Download Article

The radius of a sphere (abbreviated as the variable r or R) is the distance from the exact center of the sphere to a point on the outside edge of that sphere. As with circles, the radius of a sphere is often an essential piece of starting information for calculating the shape’s diameter, circumference, surface area, and/or volume. However, you can also work backward from the diameter, circumference, etc. to find the sphere’s radius. Use the formula that works with the information you have.

  1. Image titled Find the Radius of a Sphere Step 1

    1

    Find the radius if you know the diameter. The radius is half the diameter, so use the formula r = D/2. This is identical to the method used for calculating the radius of a circle from its diameter.[1]

    • If you have a sphere with a diameter of 16 cm, find the radius by dividing 16/2 to get 8 cm. If the diameter is 42, then the radius is 21.
  2. Image titled Find the Radius of a Sphere Step 2

    2

    Find the radius if you know the circumference. Use the formula C/2π. Since the circumference is equal to πD, which is equal to 2πr, dividing the circumference by 2π will give the radius.[2]

    • If you have a sphere with a circumference of 20 m, find the radius by dividing 20/2π = 3.183 m.
    • Use the same formula to convert between the radius and circumference of a circle.

    Advertisement

  3. Image titled Find the Radius of a Sphere Step 3

    3

    Calculate the radius if you know the volume of a sphere. Use the formula ((V/π)(3/4))1/3.[3]
    The volume of a sphere is derived from the equation V = (4/3)πr3. Solving for the r variable in this equation gets ((V/π)(3/4))1/3 = r, meaning that the radius of a sphere is equal to the volume divided by π, times 3/4, all taken to the 1/3 power (or the cube root.)[4]

    • If you have a sphere with a volume of 100 inches3, solve for the radius as follows:
      • ((V/π)(3/4))1/3 = r
      • ((100/π)(3/4))1/3 = r
      • ((31.83)(3/4))1/3 = r
      • (23.87)1/3 = r
      • 2.88 in = r
  4. Image titled Find the Radius of a Sphere Step 4

    4

    Find the radius from the surface area. Use the formula r = √(A/(4π)). The surface area of a sphere is derived from the equation A = 4πr2. Solving for the r variable yields √(A/(4π)) = r, meaning that the radius of a sphere is equal to the square root of the surface area divided by 4π. You can also take (A/(4π)) to the 1/2 power for the same result.[5]

    • If you have a sphere with a surface area of 1,200 cm2, solve for the radius as follows:
      • √(A/(4π)) = r
      • √(1200/(4π)) = r
      • √(300/(π)) = r
      • √(95.49) = r
      • 9.77 cm = r
  5. Advertisement

  1. Image titled Find the Radius of a Sphere Step 5

    1

    Identify the basic measurements of a sphere. The radius (r) is the distance from the exact center of the sphere to any point on the surface of the sphere. Generally speaking, you can find the radius of a sphere if you know the diameter, the circumference, the volume, or the surface area.

    • Diameter (D): the distance across the sphere – double the radius. Diameter is the length of a line through the center of the sphere: from one point on the outside of the sphere to a corresponding point directly across from it. In other words, the greatest possible distance between two points on the sphere.
    • Circumference (C): the one-dimensional distance around the sphere at its widest point. In other words, the perimeter of a spherical cross-section whose plane passes through the center of the sphere.
    • Volume (V): the three-dimensional space contained inside the sphere. It is the “space that the sphere takes up.”[6]
    • Surface Area (A): the two-dimensional area on the outside surface of the sphere. The amount of flat space that covers the outside of the sphere.
    • Pi (π): a constant that expresses the ratio of the circle’s circumference to the circle’s diameter. The first ten digits of Pi are always 3.141592653, although it is usually rounded to 3.14.
  2. Image titled Find the Radius of a Sphere Step 6

    2

    Use various measurements to find the radius. You can use the diameter, circumference, volume, and surface area to calculate the radius of a sphere. You can also calculate each of these numbers if you know the length of the radius itself. Thus, to find the radius, try reversing the formulas for these components’ calculations. Learn the formulas that use the radius to find diameter, circumference, volume, and surface area.[7]

    • D = 2r. As with circles, the diameter of a sphere is twice the radius.
    • C = πD or 2πr. As with circles, the circumference of a sphere is equal to π times the diameter. Since the diameter is twice the radius, we can also say that the circumference is twice the radius times π.
    • V = (4/3)πr3. The volume of a sphere is the radius cubed (times itself twice), times π, times 4/3.
    • A = 4πr2. The surface area of a sphere is the radius squared (times itself), times π, times 4. Since the area of a circle is πr2, it can also be said that the surface area of a sphere is four times the area of the circle formed by its circumference.
  3. Advertisement

  1. Image titled Find the Radius of a Sphere Step 7

    1

    Find the (x,y,z) coordinates of the central point of the sphere. One way to think of the radius of a sphere is as the distance between the point at the center of the sphere and any point on the surface of the sphere. Because this is true, if you know the coordinates of the point at the center of the sphere and of any point on the surface, you can find the radius of the sphere simply by calculating the distance between the two points with a variant of the basic distance formula. To begin, find the coordinates of the sphere’s center point. Note that because spheres are three-dimensional, this will be an (x,y,z) point rather than an (x,y) point.

    • This process is easier to understand by following along with an example. For our purposes, let’s say that we have a sphere centered around the (x,y,z) point (4, -1, 12). In the next few steps, we’ll use this point to help find the radius.
  2. Image titled Find the Radius of a Sphere Step 8

    2

    Find the coordinates of a point on the surface of the sphere. Next, you’ll need to find the (x,y,z) coordinates of a point on the surface of the sphere. This can be any point on the surface of the sphere. Because the points on the surface of a sphere are equidistant from the center point by definition, any point will work for determining the radius.

    • For our example problem, let’s say that we know that the point (3, 3, 0) lies on the surface of the sphere. By calculating the distance between this point and the center point, we can find the radius.
  3. Image titled Find the Radius of a Sphere Step 9

    3

    Find the radius with the formula d = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2).[8]
    Now that you know the center of the sphere and a point on the surface, calculating the distance between the two will find the radius. Use the three-dimensional distance formula d = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2), where d equals distance, (x1,y1,z1) equals the coordinates of the center point, and (x2,y2,z2) equals the coordinates of the point on the surface to find the distance between the two points.

    • In our example, we would plug in (4, -1, 12) for (x1,y1,z1) and (3, 3, 0) for (x2,y2,z2), solving as follows:
      • d = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2)
      • d = √((3 – 4)2 + (3 – -1)2 + (0 – 12)2)
      • d = √((-1)2 + (4)2 + (-12)2)
      • d = √(1 + 16 + 144)
      • d = √(161)
      • d = 12.69. This is the radius of our sphere.
  4. Image titled Find the Radius of a Sphere Step 10

    4

    Know that, in general cases, r = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2).[9]
    In a sphere, every point on the surface of the sphere is the same distance from the center point. If we take the three-dimensional distance formula above and replace the “d” variable with the “r” variable for radius, we get a form of the equation that can can find the radius given any center point (x1,y1,z1) and any corresponding surface point (x2,y2,z2).

    • By squaring both sides of this equation, we get r2 = (x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2. Note that this is essentially equal to the basic sphere equation r2 = x2 + y2 + z2 which assumes a center point of (0,0,0).
  5. Advertisement

Add New Question

  • Question

    How do I find the radius of a sphere if I know its volume is three times its surface area?

    Donagan

    Write an equation whereby the volume [(4πr³) / 3] is set equal to three times the surface area (4πr²). Thus, [(4πr³) / 3] = 12πr². Divide both sides by 4π, so that r³/3 = r². Multiply by 3: r³ = 3r². Divide by r²: r = 3. In other words, a sphere’s volume can be three times its surface area only if its radius is 3 units.

  • Question

    How do I calculate the radius of a sphere in my hand by using a ruler?

    Donagan

    You can get a very close approximation by carefully measuring the circumference and dividing by twice-pi (6.28).

  • Question

    Two solid spheres A & B are made of the same material. The radius of B is 3 times the radius of A, and the surface area of A is 20 cubic cm. How do I calculate the surface area of B?

    Donagan

    The surface area (S) of a sphere equals 4πr², where r is the radius. Using that equation to solve for r: r = √(S / 4π). Now substitute 20 for S, and solve for the radius of sphere A: r = √(20 / 4π) = √(20 / 12.56) = √ 1.59 = 1.26 cm. That’s the radius of sphere A. The radius of sphere B is three times the radius of sphere A: (3)(1.26) = 3.79 cm. So for sphere B, the surface area is 4πr² = (4)(3.14)(3.79)² = 180.4 square centimeters. (That answer makes sense, because when you multiply the radius of a sphere by 3, you multiply its surface area by 3² or 9.) (We didn’t exactly triple the original surface area, because we rounded off some numbers along the way.)

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • This article was published on demand. However, if you are trying to get to grips with solid geometry for the first time, it’s arguably better to start the other end: calculating the properties of the sphere from the radius.

  • The order in which the operations are performed matters. If you are uncertain how priorities work, and your calculating device supports parentheses, then make sure to use them.

  • π or pi is a Greek letter that represents the ratio of the diameter of a circle to its circumference. It’s an irrational number and cannot be written as a ratio of 2 integers. Many approximations exist, 333/106 gives pi to four decimal places. Today most people memorize the approximation 3.14 which is usually sufficiently accurate for everyday purposes.

Show More Tips

Thanks for submitting a tip for review!

Advertisement

About This Article

Article SummaryX

If you know the diameter, you can find the radius of a sphere by dividing the diameter in half. If you know the circumference, you can find the radius by dividing the circumference by 2 times pi. To learn how to calculate the radius of a sphere using two points on the sphere, keep reading!

Did this summary help you?

Thanks to all authors for creating a page that has been read 521,826 times.

Did this article help you?

Перед тем, как смело броситься на амбразуру решения задачи по нахождению радиуса сферы, нужно узнать, что вообще такое сфера и шар. Стереометрия говорит нам, что сфера – это поверхность, состоящая из массы точек пространства, которые находятся на одном расстоянии от центра. Эта точка – центр сферы, а радиус сферы (R) – это расстояние, на которое каждая точка удалена от центра сферы. Шар – это тело, которое ограничено поверхностью сферы.

Безусловно, способ определения того самого радиуса сферы будет зависеть от данных, которые у нас есть.

Способ 1. Определение радиуса сферы при помощи площади ее поверхности

Допустим, нам дана сфера вместе с площадью её поверхности. В таком случае мы будем использовать формулу площади её поверхности для того, чтобы вычислить радиус.

где S – это площадь поверхности сферы, число Пи = 3,14.

Способ 2. Определение радиуса сферы при помощи объема шара

Если нам дан объём шара, ограниченного сферой, то радиус находится так:

где V – это объём шара, число Пи = 3,14.

Способ 3. Альтернативные формулы определения радиуса сферы

В случае, если наша сфера вписана в правильный многогранник или описана вокруг него, можно воспользоваться следующим рядом формул.

Формула 1. Сфера вписана в правильный тетраэдр

Для сферы, которая вписана в правильный тетраэдр:

где a – длина ребра тетраэдра (AS = SB = AB = BC = SC = AC = a).

Формула 2. Сфера описана около правильного тетраэдра

Для сферы, которая описана около правильного тетраэдра:

где a – длина ребра тетраэдра (AS = SB = AB = BC = SC = AC = a).

Формула 3. Сфера вписана в куб

Для сферы, которая вписана в куб:

где a – длина ребра куба.

Формула 4. Сфера описана около куба

Для сферы, которая описана около куба:

где a – длина ребра куба.

Сфера, шар, сегмент и сектор. Формулы и свойства сферы

Формула. Объём шара:

V = 4 π R 3 = 1 π D 3
3 6

S = 4 π R 2 = π D 2

Уравнение сферы

x 2 + y 2 + z 2 = R 2

( x – x 0) 2 + ( y – y 0) 2 + ( z – z 0) 2 = R 2

Основные свойства сферы и шара

Секущая, хорда, секущая плоскость сферы и их свойства

d m между секущей плоскостью и центром сферы всегда меньше радиуса R:

m r такого круга можно найти по формуле:

где R – радиус сферы (шара), m – расстояние от центра шара до секущей плоскости.

Касательная, касательная плоскость к сфере и их свойства

Формула. Объём сегмента сферы с высотой h через радиус сферы R:

S = π R(2 h + √ 2 h R – h 2 )

Формула. Объём сектора V с высотой O1H (h) через радиус шара OH (R):

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Нахождение радиуса шара: формула и примеры

В данной публикации мы рассмотрим, как можно вычислить радиус шара и разберем примеры решения задач для закрепления материала.

Формулы вычисления радиуса шара

1. Через объем

Радиус шара вычисляется по формуле:

V – объем шара; равен трем четвертым произведения его радиуса в кубе и числа π .

π – число, приближенное значение которого равняется 3,14.

2. Через площадь поверхности

Радиус шара рассчитывается таким образом:

S – площадь поверхности шара; равна четырем его радиусам в квадрате, умноженным на число π .

S = 4 π R 2

Примеры задач

Задание 1
Объем шара составляет 904,32 см 3 . Найдите его радиус.

Решение:
Воспользовавшись первой формулой получаем:

Задание 2
Вычислите радиус шара, если площадь его поверхности равна 314 см 2 .

Решение:
В данном случае рассчитать радиус шара можно, применив 2-ю формулу (через площадь поверхности):

Площадь поверхности шара формула и калькулятор онлайн

Что такое шар?

В стереометрии есть большой раздел, который называется фигуры вращения. Об этом редко говорят в школе, но плоские фигуры можно вращать вокруг какой-либо оси или точки. Так получаются объемные фигуры.

Стереометрия это наука о фигурах в пространстве. Простейшими единицами стереометрии является точка, прямая и плоскость.

Например, цилиндр образован вращением прямоугольника или квадрата. Поэтому, если рассечь цилиндр плоскостью, то сечение примет форму того самого квадрата или прямоугольника, который вращали, чтобы получить фигуру.

Так же и шар образован вращением. Как не трудно догадаться, основной для шара послужил круг. Причем сразу стоит сказать, что именно круг, а не окружность.

Следует понимать, что круг и окружность разные фигуры. Так окружность представляет собой набор точек равноудаленных от центра. Переводя на более простой язык окружность – это сама линия и центр окружности. А круг включает в себя и все внутреннее пространство. У окружности не может быть площади.

То есть, шар имеет какое-то внутренне заполненное пространство. Интересно, что сфера так же имеет пространство внутри, только условно полое.

Формулы для вычисления радиуса

  • Например, дан шар с диаметром 16 см. Радиус этого шара: r = 16/2 = 8 см. Если диаметр равен 42 см, то радиус равен 21 см (42/2=21).

  • Например, дан шар с длиной окружности 20 см. Радиус этого шара: r = 20/2π = 3,183 см.
  • Такая же формула используется при вычислении радиуса и длины окружности круга.

  • Например, дан шар с объемом 100 см 3 . Радиус этого шара вычисляется так:
    • ((V/π)(3/4)) 1/3 = r
    • ((100/π)(3/4)) 1/3 = r
    • ((31,83)(3/4)) 1/3 = r
    • (23,87) 1/3 = r
    • 2,88 см = r

  • Например, дан шар с площадью поверхности 1200 см 3 . Радиус этого шара вычисляется так:
    • √(A/(4π)) = r
    • √(1200/(4π)) = r
    • √(300/(π)) = r
    • √(95,49) = r
    • 9,77 см = r

V = 4/3 πr3,

где V — объем, r — радиус шара.
Отсюда, радиус шара равен корню кубическому из объема шара деленного на три четвертых Пи:

Определение радиуса сферы при помощи площади ее поверхности

Допустим, нам дана сфера вместе с площадью её поверхности. В таком случае мы будем использовать формулу площади её поверхности для того, чтобы вычислить радиус.

где S – это площадь поверхности сферы, число Пи = 3,14.

Важные измерения

Радиус (обозначается r) — единственное необходимое измерение. Это расстояние от любой точки на поверхности сферы до её центра. Самый длинный отрезок, равный двум r, называется диаметром (d). Земля называется сфероидом, потому что она очень близка к шару, но не идеально круглая. Она немного вытянута на северном и южном полюсах.

Впервые вычислить площадь (S) поверхности шара удалось Архимеду. Именно он установил, что для того, чтобы найти S любого трёхмерного объекта, необходимо измерить его радиус. Для сферы получилась следующая формула: S = 4 * π * r ². Для того чтобы понять, как это работает, следует рассмотреть пример. Известно, что радиус детского мяча 10 см. Остаётся ещё одна неизвестная — число π. Это математическая константа, которая выражает отношение длины окружности к её диаметру и равна примерно 3,14. Далее, следует подставить цифры в уравнение:

  1. S = 4 * 3,14 * 10²;
  2. S мяча равна ≈ 1256 см².

Таким образом, можно найти площадь сферы через её радиус по формуле, полученной ещё в античности. Ещё одна важная характеристика — это объём (V) фигуры. Он вычисляется следующим образом: V = (4/3) * π * r³. Если придерживаться условий задачи, то V мяча = (4/3) * 3,14 * 10³ равен ≈ 4187 см ³. Сейчас можно избежать длительных расчётов, если нужно узнать площадь сферы, онлайн-калькуляторы — сервисы, которые очень в этом помогают.

Сектор сферы — это слой между двумя правильными круговыми конусами, имеющими общую вершину в центре шара и общую ось.

Надо сказать, что внутренний конус может иметь основание с нулевым радиусом. Формула, по которой определяют площадь сектора, следующая: S = 2 * π * r * h, где h — высота. К слову, эта же формула применима, если необходимо найти S части шара, отрезанной плоскостью, то есть полусферы. Такая же формула применяется при нахождении S сегмента (часть между двумя параллельными плоскостями) и зоны сферы (изогнутая поверхность сферического сегмента).

Шар, сфера и их части

Введем следующие определения, связанные с шаром, сферой и их частями.

Определение 1. Сферой с центром в точке O и радиусом r называют множество точек, расстояние от которых до точки O равно r (рис. 1).

Определение 2. Шаром с центром в точке O и радиусом r называют множество точек, расстояние от которых до точки O не превосходит r (рис. 1).

Таким образом, сфера с центром в точке O и радиусом r является поверхностью шара с центром в точке O и радиусом r.

Замечание. Радиусом сферы ( радиусом шара ) называют отрезок, соединяющий любую точку сферы с центром сферы. Длину этого отрезка также часто называют радиусом сферы ( радиусом шара ).

Определение 3. Сферическим поясом (шаровым поясом) называют часть сферы , заключенную между двумя параллельными плоскостями параллельными плоскостями (рис. 2).

Определение 4. Шаровым слоем называют часть шара , заключенную между двумя параллельными плоскостями параллельными плоскостями (рис. 2).

Окружности, ограничивающие сферический пояс, называют основаниями сферического пояса.

Расстояние между плоскостями Расстояние между плоскостями оснований сферического пояса называют высотой сферического пояса.

Из определений 3 и 4 следует, что шаровой слой ограничен сферическим поясом и двумя кругами, плоскости которых параллельны параллельны между собой. Эти круги называют основаниями шарового слоя.

Высотой шарового слоя называют расстояние между плоскостями расстояние между плоскостями оснований шарового слоя .

Определение 5. Сферическим сегментом называют каждую из двух частей, на которые делит сферу пересекающая ее плоскость (рис. 3).

Определение 6. Шаровым сегментом называют каждую из двух частей, на которые делит шар пересекающая ее плоскость (рис. 3).

Из определений 3 и 5 следут, что сферический сегмент представляет собой сферический пояс , у которого одна из плоскостей оснований касается сферы (рис. 4). Высоту такого сферического пояса и называют высотой сферического сегмента.

Соответственно, шаровой сегмент – это шаровой слой, у которого одна из плоскостей оснований касается шара (рис. 4). Высоту такого шарового слоя называют высотой шарового сегмента .

По той же причине всю сферу можно рассматривать как сферический пояс , у которого обе плоскости оснований касаются сферы (рис. 5). Соответственно, весь шар – это шаровой слой, у которого обе плоскости оснований касаются шара (рис. 5).

Определение 7. Шаровым сектором называют фигуру, состоящую из всех отрезков, соединяющих точки сферического сегмента с центром сферы (рис. 6).

Высотой шарового сектора называют высоту его сферического сегмента .

Замечание. Шаровой сектор состоит из шарового сегмента и конуса с общим основанием. Вершиной конуса является центр сферы .

Объем шара через длину окружности

Формула для нахождения объема шара через длину окружности: <6pi^3>> , где L — длина окружности шара.

Эта формула легко выводится формулы объема шара через его радиус и формулы для нахождения длины окружности

Уравнение сферы

x 2 + y 2 + z 2 = R 2

( x – x 0) 2 + ( y – y 0) 2 + ( z – z 0) 2 = R 2

3. Параметрическое уравнение сферы с центром в точке ( x 0, y 0, z 0):
x = x 0 + R · sin θ · cos φ y = y 0 + R · sin θ · sin φ z = z 0 + R · cos θ
где θ ϵ [0, π ], φ ϵ [0,2 π ].

Определение радиуса сферы при помощи объема шара

Если нам дан объём шара, ограниченного сферой, то радиус находится так:

где V – это объём шара, число Пи = 3,14.

Определение основных величин

  • Диаметр (D) – это отрезок, который соединяет две точки на поверхности шара и проходит через его центр (то есть это наибольшее расстояние между противоположными точками, лежащими на поверхности шара). Диаметр равен удвоенному радиусу.
  • Длина окружности (С) представляет собой длину окружности большого круга, то есть круга, который образует секущая плоскость, проходящая через центр шара.
  • Объем (V) – это значение трехмерного пространства, занимаемого шаром. [6]
  • Площадь поверхности (А) – это значение двумерного (плоского) пространства, ограниченного поверхностью шара.
  • Пи (π) – это постоянная, которая равна отношению длины окружности к ее диаметру. Первыми десятью цифрами этой постоянной являются 3,141592653, но зачастую число Пи округляется до 3,14.

  • D = 2г. Как и в случае круга , диаметр шара в два раза больше его радиуса.
  • C = πD = 2πr. Как и в случае круга , длина окружности шара равна произведению π на диаметр шара. Так как диаметр вдвое больше радиуса, то длина окружности шара равна удвоенному произведению π на радиус шара.
  • V = (4/3)πr 3 . Объем шара равен произведению 4/3 на π и на радиус в кубе. [7]
  • А = 4πr 2 . Площадь поверхности шара равна учетверенному произведению π на радиус в квадрате. Так как площадь круга равна πr 2 , то площадь поверхности шара в четыре раза больше площади круга, который образует секущая плоскость, проходящая через центр шара.

r = С / 2π

π — величина постоянная, равна отношению длины окружности к диаметру. Число Пи, равное 3,141592653… обычно округляется до 3,14.

— по площади шара.
Площадь шара равна произведению четырех пи на квадрат радиуса:

Нахождение радиуса по расстоянию между двумя точками

  • Рассмотрим пример. Дан шар с центром с координатами (4,-1,12). Воспользуйтесь этими координатами, чтобы найти радиус шара.

  • В нашем примере допустим, что некоторая точка, лежащая на поверхности шара, имеет координаты (3,3,0). Вычислив расстояние между этой точкой и центром шара, вы найдете радиус.

  • В рассматриваемом примере вместо (x1,y1,z1) подставьте (4,-1,12), а вместо (x2,y2,z2) подставьте (3,3,0):
    • d = √((x2 – x1) 2 + (y2 – y1) 2 + (z2 – z1) 2 )
    • d = √((3 – 4) 2 + (3 – -1) 2 + (0 – 12) 2 )
    • d = √((-1) 2 + (4) 2 + (-12) 2 )
    • d = √(1 + 16 + 144)
    • d = √(161)
    • d = 12,69. Это искомый радиус шара.

  • Возведите обе стороны этого уравнения в квадрат, и получите r 2 = (x2 – x1) 2 + (y2 – y1) 2 + (z2 – z1) 2 . Отметьте, что это уравнение соответствует уравнению сферы r 2 = x 2 + y 2 + z 2 с центром с координатами (0,0,0).

C = πD = 2πr

Отсюда, радиус равен частному от деления длины окружности © на 2 пи:

Через площадь поверхности

Радиус шара рассчитывается таким образом:

S – площадь поверхности шара; равна четырем его радиусам в квадрате, умноженным на число π .

S = 4 π R 2

Одиннадцать свойств

В своей книге «Геометрия и воображение» Дэвид Гилберт и Стефан Кон-Фоссен описывают свойства сферы и обсуждают, однозначны ли такие характеристики. Несколько пунктов справедливы и для плоскости, которую можно представить как шар с бесконечным радиусом:

  1. Точки на сфере находятся на одинаковом расстоянии от одной фиксированной, называемой центром. Можно сделать единственный вывод: это обычное определение и оно однозначно. А также отношение расстояний между двумя фиксированными точками является постоянным. И здесь прослеживается аналогия с окружностями Аполлония, то есть с фигурами в плоскости.
  2. Контуры и плоские участки сферы являются кругами. Это однозначное свойство, которое определяет шар.
  3. Сфера имеет постоянную ширину и обхват. Ширина поверхности — это расстояние между парами параллельных касательных плоскостей. Множество других замкнутых выпуклых поверхностей имеют постоянную ширину, например, тело Мейснера. Обхват поверхности — это окружность границы её ортогональной проекции на плоскость. Каждое из этих свойств подразумевает другое.
  4. Все точки сферы омбилические. В любой точке поверхности вектор нормали расположен под прямым углом к ней, поскольку шар — это линии, выходящие из его центра. Пересечение плоскости, которая содержит нормаль с поверхностью, сформирует кривую — нормальное сечение. Любая замкнутая поверхность будет иметь как минимум четыре точки, называемых омбилическими. Для сферы кривизны всех нормальных сечений одинаковы, поэтому омбилической будет каждая точка.
  5. У шара нет центра поверхности. Например, два центра, соответствующие минимальной и максимальной секционной кривизне, называются фокальными точками, а совокупность всех таких точек образует одноимённую поверхность. И только у шара она преобразуется в единую точку.
  6. Все геодезические сферы являются замкнутыми кривыми. Для этой фигуры они большие круги. Многие другие поверхности разделяют это свойство.
  7. Имеет наименьшую площадь при наибольшем объёме. Это определяет шар однозначно. Например, мыльный пузырь: его окружает фиксированный объём, поверхностное натяжение минимизирует площадь его поверхности для такого объёма. Конечно, пузырь не будет идеальным шаром, поскольку внешние силы, такие как гравитация, будут искажать его форму.
  8. Сфера — единственная вложенная поверхность, у которой нет границы или сингулярностей с постоянной положительной средней кривизной.
  9. Сфера имеет наименьшую общую среднюю кривизну среди всех выпуклых тел с заданной площадью поверхности.
  10. Шар имеет постоянную гауссову кривизну. Это внутреннее свойство, которое определяется путём измерения длины и углов и не зависит от того, как поверхность встроена в пространство.

Сфера превращается в себя трёхпараметрическим семейством жёстких движений. Любое вращение вокруг линии, проходящей через начало координат, может быть выражено как комбинация вращений вокруг трёхкоординатной оси.

[spoiler title=”источники:”]

http://exceltut.ru/ploshhad-poverhnosti-shara-formula-i-kalkulyator-onlajn/

[/spoiler]

Сфера, шар, сегмент и сектор. Формулы и свойства сферы

Определение.

Сфера (поверхность шара) — это совокупность всех точек в трехмерном пространстве, которые находятся на одинаковом расстоянии от одной точки, называемой центром сферы (О).

Сферу можно описать, как объёмную фигуру, которая образуется вращением окружности вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Изображение сферы с обозначениями

Определение.

Шар — это совокупность всех точек в трехмерном пространстве, расстояние от которых не превышает определенного расстояния до точки, называемой центром шара (О) (совокупность всех точек трехмерного пространства ограниченных сферой).

Шар можно описать как объёмную фигуру, которая образуется вращением круга вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение. Радиус сферы (шара) (R) – это расстояние от центра сферы (шара) O к любой точке сферы (поверхности шара).

Определение. Диаметр сферы (шара) (D) – это отрезок, соединяющий две точки сферы (поверхности шара) и проходящий через ее центр.

Формула. Объём шара:

V =  4 πR3 1 πD3
3 6

Формула. Площадь поверхности сферы через радиус или диаметр:

S = 4πR2 = πD2

Уравнение сферы

1. Уравнение сферы с радиусом R и центром в начале декартовой системе координат:

x2 + y2 + z2 = R2

2. Уравнение сферы с радиусом R и центром в точке с координатами (x0, y0, z0) в декартовой системе координат:

(xx0)2 + (yy0)2 + (zz0)2 = R2

Сегмент шара с обозначениями

3. Параметрическое уравнение сферы с центром в точке (x0, y0, z0):

x = x0 + R · sin θ · cos φ
y = y0 + R · sin θ · sin φ
z = z0 + R · cos θ

где θ ϵ [0,π], φ ϵ [0,2π].

Определение. Диаметрально противоположными точками называются любые две точки на поверхности шара (сфере), которые соединены диаметром.

Основные свойства сферы и шара

1. Все точки сферы одинаково удалены от центра.

2. Любое сечение сферы плоскостью является окружностью.

3. Любое сечение шара плоскостью есть кругом.

4. Сфера имеет наибольший объём среди всех пространственных фигур с одинаковой площадью поверхности.

5. Через любые две диаметрально противоположные точки можно провести множество больших окружностей для сферы или кругов для шара.

6. Через любые две точки, кроме диаметрально противоположных точек, можно провести только одну большую окружность для сферы или большой круг для шара.

7. Любые два больших круга одного шара пересекаются по прямой, проходящей через центр шара, а окружности пересекаются в двух диаметрально противоположных точках.

8. Если расстояние между центрами любых двух шаров меньше суммы их радиусов и больше модуля разности их радиусов, то такие шары пересекаются, а в плоскости пересечения образуется круг.

Секущая, хорда, секущая плоскость сферы и их свойства

Определение. Секущая сферы – это прямая, которая пересекает сферу в двух точках. Точки пересечения называются точками протыкания поверхности или точками входа и выхода на поверхности.

Определение. Хорда сферы (шара) – это отрезок, соединяющий две точки сферы (поверхности шара).

Определение. Секущая плоскость – это плоскость, которая пересекает сферу.

Определение. Диаметральная плоскость – это секущая плоскость, проходящая через центр сферы или шара, сечение образует соответственно большую окружность и большой круг. Большая окружность и большой круг имеют центр, который совпадают с центром сферы (шара).

Любая хорда, проходящая через центр сферы (шара) является диаметром.

Хорда является отрезком секущей прямой.

Расстояние d от центра сферы до секущей всегда меньше чем радиус сферы:

d < R

Расстояние m между секущей плоскостью и центром сферы всегда меньше радиуса R:

m < R

Местом сечения секущей плоскости на сфере всегда будет малая окружность, а на шаре местом сечения будет малый круг. Малая окружность и малый круг имеют свои центры, не совпадающих с центром сферы (шара). Радиус r такого круга можно найти по формуле:

r = √R2m2,

где R – радиус сферы (шара), m – расстояние от центра шара до секущей плоскости.

Определение. Полусфера (полушар) – это половина сферы (шара), которая образуется при ее сечении диаметральной плоскостью.

Касательная, касательная плоскость к сфере и их свойства

Определение.Касательная к сфере – это прямая, которая касается сферы только в одной точке.

Определение.Касательная плоскость к сфере – это плоскость, которая соприкасается со сферой только в одной точке.

Касательная пряма (плоскость) всегда перпендикулярна радиусу сферы проведенному к точке соприкосновения

Расстояние от центра сферы до касательной прямой (плоскости) равно радиусу сферы.

Сегмент шара с обозначениями

Определение. Сегмент шара – это часть шара, которая отсекается от шара секущей плоскостью. Основой сегмента называют круг, который образовался в месте сечения. Высотой сегмента h называют длину перпендикуляра проведенного с середины основы сегмента к поверхности сегмента.

Формула. Площадь внешней поверхности сегмента сферы с высотой h через радиус сферы R:

S = 2πRh

Формула. Объём сегмента сферы с высотой h через радиус сферы R:

Срез шара с обозначениями

Определение. Срез шара – это часть шара, которая образуется в результате его сечения двумя параллельными плоскостями и находится между ними.

Сектор шара с обозначениями

Определение. Сектором называется часть шара, ограниченная совокупностью всех лучей, исходящих из центра шара О и образующих круг на его поверхности с радиусом r.

Формула. Площадь поверхности сектора S с высотой O1H (h) через радиус шара OH (R):

S = πR(2h + √2hR – h2)

Формула. Объём сектора V с высотой O1H (h) через радиус шара OH (R):

Определение. Касательными сферами (шарами) называются любые две сферы (шара), которые имеют одну общую точку соприкосновения. Если расстояние между центрами больше суммы радиусов, то фигуры не касаются и не пересекаются.

Концентрические сферы

Определение. Концентрическими сферами называются любые две сферы, которые имеют общий центр и радиусы различной длины.

Определение шара и его радиуса

Начнем с главных определений:

Шар (сфера) – это совокупность точек трехмерного пространства, находящихся на расстоянии свыше заданного от центра. В повседневной жизни мы постоянно встречаемся с данной формой. В обыденности мы даже не замечаем на сколько масштабно присутствие фигуры рядом с нами, вне зависимости от того, какое будет наше местонахождение.

Часто путают объемную формой и круг. Конкретнее различать их помогут знания о том, что один является объемной фигурой, а другой плоской. Разберем визуально: стол – он круглый, так как имеет свою плоскость и никак не может приобрести объем, а если сможет, то потеряет свою основную функцию – возможность что-то поставить и удержать на месте; теперь возьмем мяч – это полноценная сфера, ведь он объемный, благодаря чему, способен катиться по поверхности при малейшем движении.

Радиус шара – отрезок, соединяющий точку поверхности с центром. Его длина имеет такое же название. Соответственно, этим определением можно называть как отрезок, так и длину отрезка (число).

Так можно найти:

  1. Площадь поверхности.

  2. Площадь сечения.

  3. Объем геометрической фигуры.

радиус шара равен

Формулы для вычислений

Радиус по диаметру находится по формуле:

r= D/2, где D – диаметр.

Примеры:

1. Если диаметр сферы составляет 22 см, то:

r = 22/2=12

2. При диаметре 48 см:

r = 48/2=24

3. Диаметр шара – 17,2 см, его радиус составит:

17,2/2=8,6

Радиус по длине окружности вычисляется по формуле:

r = C/2π, где С – длина окружности, а п – число Пи (3,14).

Примеры:

1. Если периметр круга 28 см, то:

r = 28/2*3,14=4,458

2. Периметр круга 36 мм, тогда радиус шара равен:

r = 36/2*3,14= 5,732

3. Если длина окружности 42,2 см, тогда:

r = 42,2/2*3,14=6,719

Данные формулы действительны как для сферы, так и круга.

Добавить комментарий