Как найти радиус шара в геометрии


Загрузить PDF


Загрузить PDF

Радиус шара (обозначается как r или R) – это отрезок, который соединяет центр шара с любой точкой на его поверхности. Как и в случае круга, радиус шара является важной величиной, которая необходима для нахождения диаметра шара, длины окружности, площади поверхности и/или объема. Но радиус шара можно найти и по данному значению диаметра, длины окружности и другой величины. Используйте формулу, в которую можно подставить данные значения.

  1. Изображение с названием Find the Radius of a Sphere Step 1

    1

    Вычислите радиус по диаметру. Радиус равен половине диаметра, поэтому используйте формулу г = D/2. Эта такая же формула, которая используется при вычислении радиуса и диаметра круга.[1]

    • Например, дан шар с диаметром 16 см. Радиус этого шара: r = 16/2 = 8 см. Если диаметр равен 42 см, то радиус равен 21 см (42/2=21).
  2. Изображение с названием Find the Radius of a Sphere Step 2

    2

    Вычислите радиус по длине окружности. Используйте формулу: r = C/2π. Так как длина окружности C = πD = 2πr, то разделите формулу для вычисления длины окружности на 2π и получите формулу для нахождения радиуса.[2]

    • Например, дан шар с длиной окружности 20 см. Радиус этого шара: r = 20/2π = 3,183 см.
    • Такая же формула используется при вычислении радиуса и длины окружности круга.
  3. Изображение с названием Find the Radius of a Sphere Step 3

    3

    Вычислите радиус по объему шара. Используйте формулу: r = ((V/π)(3/4))1/3.[3]
    Объем шара вычисляется по формуле V = (4/3)πr3. Обособив r на одной стороне уравнения, вы получите формулу ((V/π)(3/4))3 = г, то есть для вычисления радиуса объем шара делим на π, результат умножаем на 3/4, а полученный результат возводим в степень 1/3 (или извлекаем кубический корень).[4]

    • Например, дан шар с объемом 100 см3. Радиус этого шара вычисляется так:
      • ((V/π)(3/4))1/3 = r
      • ((100/π)(3/4))1/3 = r
      • ((31,83)(3/4))1/3 = r
      • (23,87)1/3 = r
      • 2,88 см = r
  4. Изображение с названием Find the Radius of a Sphere Step 4

    4

    Вычислите радиус по площади поверхности. Используйте формулу: г = √(A/(4 π)). Площадь поверхности шара вычисляется по формуле А = 4πr2. Обособив r на одной стороне уравнения, вы получите формулу √(A/(4π)) = r, то есть, чтобы вычислить радиус, нужно извлечь квадратный корень из площади поверхности, деленной на 4π. Вместо того чтобы извлекать корень, выражение (A/(4π)) можно возвести в степень 1/2.[5]

    • Например, дан шар с площадью поверхности 1200 см3. Радиус этого шара вычисляется так:
      • √(A/(4π)) = r
      • √(1200/(4π)) = r
      • √(300/(π)) = r
      • √(95,49) = r
      • 9,77 см = r

    Реклама

  1. Изображение с названием Find the Radius of a Sphere Step 5

    1

    Запомните основные величины, которые имеют отношение к вычислению радиуса шара. Радиус шара – это отрезок, который соединяет центр шара с любой точкой на его поверхности. Радиус шара можно вычислить по данным значениям диаметра, длины окружности, объема или площади поверхности.

    • Диаметр (D) – это отрезок, который соединяет две точки на поверхности шара и проходит через его центр (то есть это наибольшее расстояние между противоположными точками, лежащими на поверхности шара). Диаметр равен удвоенному радиусу.
    • Длина окружности (С) представляет собой длину окружности большого круга, то есть круга, который образует секущая плоскость, проходящая через центр шара.
    • Объем (V) – это значение трехмерного пространства, занимаемого шаром.[6]
    • Площадь поверхности (А) – это значение двумерного (плоского) пространства, ограниченного поверхностью шара.
    • Пи (π) – это постоянная, которая равна отношению длины окружности к ее диаметру. Первыми десятью цифрами этой постоянной являются 3,141592653, но зачастую число Пи округляется до 3,14.
  2. Изображение с названием Find the Radius of a Sphere Step 6

    2

    Воспользуйтесь значениями данных величин, чтобы найти радиус. Радиус можно вычислить по данным значениям диаметра, длины окружности, объема и площади поверхности. Более того, указанные величины можно найти по данному значению радиуса. Чтобы вычислить радиус, просто преобразуйте формулы для нахождения указанных величин. Ниже приведены формулы (в которых присутствует радиус) для вычисления диаметра, длины окружности, объема и площади поверхности.

    • D = 2г. Как и в случае круга, диаметр шара в два раза больше его радиуса.
    • C = πD = 2πr. Как и в случае круга, длина окружности шара равна произведению π на диаметр шара. Так как диаметр вдвое больше радиуса, то длина окружности шара равна удвоенному произведению π на радиус шара.
    • V = (4/3)πr3. Объем шара равен произведению 4/3 на π и на радиус в кубе.[7]
    • А = 4πr2. Площадь поверхности шара равна учетверенному произведению π на радиус в квадрате. Так как площадь круга равна πr2, то площадь поверхности шара в четыре раза больше площади круга, который образует секущая плоскость, проходящая через центр шара.

    Реклама

  1. Изображение с названием Find the Radius of a Sphere Step 7

    1

    Найдите координаты (х,у,z) центра шара. Радиус шара равен расстоянию между его центром и любой точкой, лежащей на поверхности шара. Если известны координаты центра шара и любой точки, лежащей на его поверхности, можно найти радиус шара по специальной формуле, вычислив расстояние между двумя точками. Сначала найдите координаты центра шара. Имейте в виду, что так как шар является трехмерной фигурой, то точка будет иметь три координаты (х,у,z), а не две (х,у).

    • Рассмотрим пример. Дан шар с центром с координатами (4,-1,12). Воспользуйтесь этими координатами, чтобы найти радиус шара.
  2. Изображение с названием Find the Radius of a Sphere Step 8

    2

    Найдите координаты точки, лежащей на поверхности шара. Теперь нужно найти координаты (х,у,z) любой точки, лежащей на поверхности шара. Так как все точки, лежащие на поверхности шара, расположены на одинаковом расстоянии от центра шара, для вычисления радиуса шара можно выбрать любую точку.

    • В нашем примере допустим, что некоторая точка, лежащая на поверхности шара, имеет координаты (3,3,0). Вычислив расстояние между этой точкой и центром шара, вы найдете радиус.
  3. Изображение с названием Find the Radius of a Sphere Step 9

    3

    Вычислите радиус по формуле d = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2). Узнав координаты центра шара и точки, лежащей на его поверхности, вы можете найти расстояние между ними, которое равно радиусу шара. Расстояние между двумя точками вычисляется по формуле d = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2), где d – расстояние между точками, (x1,y1,z1) – координаты центра шара, (x2,y2,z2) – координаты точки, лежащей на поверхности шара.

    • В рассматриваемом примере вместо (x1,y1,z1) подставьте (4,-1,12), а вместо (x2,y2,z2) подставьте (3,3,0):
      • d = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2)
      • d = √((3 – 4)2 + (3 – -1)2 + (0 – 12)2)
      • d = √((-1)2 + (4)2 + (-12)2)
      • d = √(1 + 16 + 144)
      • d = √(161)
      • d = 12,69. Это искомый радиус шара.
  4. Изображение с названием Find the Radius of a Sphere Step 10

    4

    Имейте в виду, что в общих случаях r = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2). Все точки, лежащие на поверхности шара, расположены на одинаковом расстоянии от центра шара. Если в формуле для нахождения расстояния между двумя точками “d” заменить на “r”, получится формула для вычисления радиуса шара по известным координатам (x1,y1,z1) центра шара и координатам (x2,y2,z2) любой точки, лежащей на поверхности шара.

    • Возведите обе стороны этого уравнения в квадрат, и получите r2 = (x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2. Отметьте, что это уравнение соответствует уравнению сферы r2 = x2 + y2 + z2 с центром с координатами (0,0,0).

    Реклама

Советы

  • Не забывайте про порядок выполнения математических операций. Если вы не помните этот порядок, а ваш калькулятор умеет работать с круглыми скобками, пользуйтесь ими.
  • В этой статье рассказывается о вычислении радиуса шара. Но если вы испытываете затруднения с изучением геометрии, лучше начать с вычисления величин, связанных с шаром, через известное значение радиуса.
  • π (Пи) – это буква греческого алфавита, которая обозначает постоянную, равную отношению диаметра круга к длине его окружности. Число Пи является иррациональным числом, которое не записывается как отношение действительных чисел. Существует множество приближений, например, отношение 333/106 позволит найти число Пи с точностью до четырех цифр после десятичной запятой. Как правило, пользуются приблизительным значением числа Пи, которое равно 3,14.

Реклама

Похожие статьи

Об этой статье

Эту страницу просматривали 114 800 раз.

Была ли эта статья полезной?

В данной публикации мы рассмотрим, как можно вычислить радиус шара и разберем примеры решения задач для закрепления материала.

  • Формулы вычисления радиуса шара

    • 1. Через объем

    • 2. Через площадь поверхности

  • Примеры задач

Формулы вычисления радиуса шара

Радиус шара

1. Через объем

Радиус шара вычисляется по формуле:

Формула радиуса шара через объем

V – объем шара; равен трем четвертым произведения его радиуса в кубе и числа π.

Формула объема шара через радиус

π – число, приближенное значение которого равняется 3,14.

2. Через площадь поверхности

Радиус шара рассчитывается таким образом:

Формула радиуса шара через площадь поверхности

S – площадь поверхности шара; равна четырем его радиусам в квадрате, умноженным на число π.

S = 4πR2

Примеры задач

Задание 1
Объем шара составляет 904,32 см3. Найдите его радиус.

Решение:
Воспользовавшись первой формулой получаем:
Вычисление радиуса шара через объем

Задание 2
Вычислите радиус шара, если площадь его поверхности равна 314 см2.

Решение:
В данном случае рассчитать радиус шара можно, применив 2-ю формулу (через площадь поверхности):
Вычисление радиуса шара через площадь поверхности


Download Article


Download Article

The radius of a sphere (abbreviated as the variable r or R) is the distance from the exact center of the sphere to a point on the outside edge of that sphere. As with circles, the radius of a sphere is often an essential piece of starting information for calculating the shape’s diameter, circumference, surface area, and/or volume. However, you can also work backward from the diameter, circumference, etc. to find the sphere’s radius. Use the formula that works with the information you have.

  1. Image titled Find the Radius of a Sphere Step 1

    1

    Find the radius if you know the diameter. The radius is half the diameter, so use the formula r = D/2. This is identical to the method used for calculating the radius of a circle from its diameter.[1]

    • If you have a sphere with a diameter of 16 cm, find the radius by dividing 16/2 to get 8 cm. If the diameter is 42, then the radius is 21.
  2. Image titled Find the Radius of a Sphere Step 2

    2

    Find the radius if you know the circumference. Use the formula C/2π. Since the circumference is equal to πD, which is equal to 2πr, dividing the circumference by 2π will give the radius.[2]

    • If you have a sphere with a circumference of 20 m, find the radius by dividing 20/2π = 3.183 m.
    • Use the same formula to convert between the radius and circumference of a circle.

    Advertisement

  3. Image titled Find the Radius of a Sphere Step 3

    3

    Calculate the radius if you know the volume of a sphere. Use the formula ((V/π)(3/4))1/3.[3]
    The volume of a sphere is derived from the equation V = (4/3)πr3. Solving for the r variable in this equation gets ((V/π)(3/4))1/3 = r, meaning that the radius of a sphere is equal to the volume divided by π, times 3/4, all taken to the 1/3 power (or the cube root.)[4]

    • If you have a sphere with a volume of 100 inches3, solve for the radius as follows:
      • ((V/π)(3/4))1/3 = r
      • ((100/π)(3/4))1/3 = r
      • ((31.83)(3/4))1/3 = r
      • (23.87)1/3 = r
      • 2.88 in = r
  4. Image titled Find the Radius of a Sphere Step 4

    4

    Find the radius from the surface area. Use the formula r = √(A/(4π)). The surface area of a sphere is derived from the equation A = 4πr2. Solving for the r variable yields √(A/(4π)) = r, meaning that the radius of a sphere is equal to the square root of the surface area divided by 4π. You can also take (A/(4π)) to the 1/2 power for the same result.[5]

    • If you have a sphere with a surface area of 1,200 cm2, solve for the radius as follows:
      • √(A/(4π)) = r
      • √(1200/(4π)) = r
      • √(300/(π)) = r
      • √(95.49) = r
      • 9.77 cm = r
  5. Advertisement

  1. Image titled Find the Radius of a Sphere Step 5

    1

    Identify the basic measurements of a sphere. The radius (r) is the distance from the exact center of the sphere to any point on the surface of the sphere. Generally speaking, you can find the radius of a sphere if you know the diameter, the circumference, the volume, or the surface area.

    • Diameter (D): the distance across the sphere – double the radius. Diameter is the length of a line through the center of the sphere: from one point on the outside of the sphere to a corresponding point directly across from it. In other words, the greatest possible distance between two points on the sphere.
    • Circumference (C): the one-dimensional distance around the sphere at its widest point. In other words, the perimeter of a spherical cross-section whose plane passes through the center of the sphere.
    • Volume (V): the three-dimensional space contained inside the sphere. It is the “space that the sphere takes up.”[6]
    • Surface Area (A): the two-dimensional area on the outside surface of the sphere. The amount of flat space that covers the outside of the sphere.
    • Pi (π): a constant that expresses the ratio of the circle’s circumference to the circle’s diameter. The first ten digits of Pi are always 3.141592653, although it is usually rounded to 3.14.
  2. Image titled Find the Radius of a Sphere Step 6

    2

    Use various measurements to find the radius. You can use the diameter, circumference, volume, and surface area to calculate the radius of a sphere. You can also calculate each of these numbers if you know the length of the radius itself. Thus, to find the radius, try reversing the formulas for these components’ calculations. Learn the formulas that use the radius to find diameter, circumference, volume, and surface area.[7]

    • D = 2r. As with circles, the diameter of a sphere is twice the radius.
    • C = πD or 2πr. As with circles, the circumference of a sphere is equal to π times the diameter. Since the diameter is twice the radius, we can also say that the circumference is twice the radius times π.
    • V = (4/3)πr3. The volume of a sphere is the radius cubed (times itself twice), times π, times 4/3.
    • A = 4πr2. The surface area of a sphere is the radius squared (times itself), times π, times 4. Since the area of a circle is πr2, it can also be said that the surface area of a sphere is four times the area of the circle formed by its circumference.
  3. Advertisement

  1. Image titled Find the Radius of a Sphere Step 7

    1

    Find the (x,y,z) coordinates of the central point of the sphere. One way to think of the radius of a sphere is as the distance between the point at the center of the sphere and any point on the surface of the sphere. Because this is true, if you know the coordinates of the point at the center of the sphere and of any point on the surface, you can find the radius of the sphere simply by calculating the distance between the two points with a variant of the basic distance formula. To begin, find the coordinates of the sphere’s center point. Note that because spheres are three-dimensional, this will be an (x,y,z) point rather than an (x,y) point.

    • This process is easier to understand by following along with an example. For our purposes, let’s say that we have a sphere centered around the (x,y,z) point (4, -1, 12). In the next few steps, we’ll use this point to help find the radius.
  2. Image titled Find the Radius of a Sphere Step 8

    2

    Find the coordinates of a point on the surface of the sphere. Next, you’ll need to find the (x,y,z) coordinates of a point on the surface of the sphere. This can be any point on the surface of the sphere. Because the points on the surface of a sphere are equidistant from the center point by definition, any point will work for determining the radius.

    • For our example problem, let’s say that we know that the point (3, 3, 0) lies on the surface of the sphere. By calculating the distance between this point and the center point, we can find the radius.
  3. Image titled Find the Radius of a Sphere Step 9

    3

    Find the radius with the formula d = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2).[8]
    Now that you know the center of the sphere and a point on the surface, calculating the distance between the two will find the radius. Use the three-dimensional distance formula d = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2), where d equals distance, (x1,y1,z1) equals the coordinates of the center point, and (x2,y2,z2) equals the coordinates of the point on the surface to find the distance between the two points.

    • In our example, we would plug in (4, -1, 12) for (x1,y1,z1) and (3, 3, 0) for (x2,y2,z2), solving as follows:
      • d = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2)
      • d = √((3 – 4)2 + (3 – -1)2 + (0 – 12)2)
      • d = √((-1)2 + (4)2 + (-12)2)
      • d = √(1 + 16 + 144)
      • d = √(161)
      • d = 12.69. This is the radius of our sphere.
  4. Image titled Find the Radius of a Sphere Step 10

    4

    Know that, in general cases, r = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2).[9]
    In a sphere, every point on the surface of the sphere is the same distance from the center point. If we take the three-dimensional distance formula above and replace the “d” variable with the “r” variable for radius, we get a form of the equation that can can find the radius given any center point (x1,y1,z1) and any corresponding surface point (x2,y2,z2).

    • By squaring both sides of this equation, we get r2 = (x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2. Note that this is essentially equal to the basic sphere equation r2 = x2 + y2 + z2 which assumes a center point of (0,0,0).
  5. Advertisement

Add New Question

  • Question

    How do I find the radius of a sphere if I know its volume is three times its surface area?

    Donagan

    Write an equation whereby the volume [(4πr³) / 3] is set equal to three times the surface area (4πr²). Thus, [(4πr³) / 3] = 12πr². Divide both sides by 4π, so that r³/3 = r². Multiply by 3: r³ = 3r². Divide by r²: r = 3. In other words, a sphere’s volume can be three times its surface area only if its radius is 3 units.

  • Question

    How do I calculate the radius of a sphere in my hand by using a ruler?

    Donagan

    You can get a very close approximation by carefully measuring the circumference and dividing by twice-pi (6.28).

  • Question

    Two solid spheres A & B are made of the same material. The radius of B is 3 times the radius of A, and the surface area of A is 20 cubic cm. How do I calculate the surface area of B?

    Donagan

    The surface area (S) of a sphere equals 4πr², where r is the radius. Using that equation to solve for r: r = √(S / 4π). Now substitute 20 for S, and solve for the radius of sphere A: r = √(20 / 4π) = √(20 / 12.56) = √ 1.59 = 1.26 cm. That’s the radius of sphere A. The radius of sphere B is three times the radius of sphere A: (3)(1.26) = 3.79 cm. So for sphere B, the surface area is 4πr² = (4)(3.14)(3.79)² = 180.4 square centimeters. (That answer makes sense, because when you multiply the radius of a sphere by 3, you multiply its surface area by 3² or 9.) (We didn’t exactly triple the original surface area, because we rounded off some numbers along the way.)

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • This article was published on demand. However, if you are trying to get to grips with solid geometry for the first time, it’s arguably better to start the other end: calculating the properties of the sphere from the radius.

  • The order in which the operations are performed matters. If you are uncertain how priorities work, and your calculating device supports parentheses, then make sure to use them.

  • π or pi is a Greek letter that represents the ratio of the diameter of a circle to its circumference. It’s an irrational number and cannot be written as a ratio of 2 integers. Many approximations exist, 333/106 gives pi to four decimal places. Today most people memorize the approximation 3.14 which is usually sufficiently accurate for everyday purposes.

Show More Tips

Thanks for submitting a tip for review!

Advertisement

About This Article

Article SummaryX

If you know the diameter, you can find the radius of a sphere by dividing the diameter in half. If you know the circumference, you can find the radius by dividing the circumference by 2 times pi. To learn how to calculate the radius of a sphere using two points on the sphere, keep reading!

Did this summary help you?

Thanks to all authors for creating a page that has been read 522,007 times.

Did this article help you?

У этого термина существуют и другие значения, см. Шар (значения).

Поверхность шара — сфера
r — радиус шара

Шар — геометрическое тело; совокупность всех точек пространства, находящихся от центра на расстоянии, не больше заданного. Это расстояние называется радиусом шара. Шар образуется вращением полукруга около его неподвижного диаметра. Этот диаметр называется осью шара, а оба конца указанного диаметра — полюсами шара. Поверхность шара называется сферой: замкнутый шар включает эту сферу, открытый шар — исключает.

Связанные определения[править | править код]

Если секущая плоскость проходит через центр шара, то сечение шара называется большим кругом. Другие плоские сечения шара называются малыми кругами. Площадь этих сечений вычисляется по формуле πR².

Основные геометрические формулы[править | править код]

Площадь поверхности S и объём V шара радиуса r (и диаметром d = 2r) определяются формулами:

  • S= 4pi r^{2}
  • S= pi d^{2}
  • V={frac  {4}{3}}pi r^{3}

Доказательство

Возьмём четверть круга радиуса R с центром в точке left(0;0right). Уравнение окружности этого круга : x^{2}+y^{2}=R^{2}, откуда y^{2}=R^{2}-x^{2}.

Функция y={sqrt  {R^{2}-x^{2}}},xin (0;R) непрерывная, убывающая, неотрицательная. При вращении четверти круга вокруг оси Ox образуется полушар, следовательно:

{1 over 2}V=pi int limits _{0}^{R}(R^{2}-x^{2})dx=pi cdot {Bigl .}left(R^{2}x-{frac  {x^{3}}{3}}right){Bigr |}_{0}^{R}=pi cdot (R^{3}-{frac  {R^{3}}{3}})={frac  {2}{3}}pi R^{3}

Откуда V={frac  {4}{3}}pi R^{3} Ч. т. д.

  • V={frac  {pi d^{3}}{6}}

Доказательство

d=2r, V={4 over 3} pi r^3 = {4 over 3} pi left ( {d over 2} right )^3 = {4 over 3} pi frac {d^3} {8} = frac {pi d^3} {6} Ч. т. д.

Понятие шара в метрическом пространстве естественно обобщает понятие шара в евклидовой геометрии.

Определения[править | править код]

Пусть дано метрическое пространство (X,rho). Тогда

B_{r}(x_{0})={xin Xmid rho (x,x_{0})<r}.
D_{r}(x_{0})={xin Xmid rho (x,x_{0})leqslant r}.

Замечания[править | править код]

Шар радиуса r с центром x_{0} также называют r-окрестностью точки x_{0}.

Свойства[править | править код]

B_{1}(x)={x},;overline {B_{1}(x)}={x},;D_{1}(x)=X.

Объём[править | править код]

Объём n-мерного шара радиуса R в n-мерном евклидовом пространстве:[1]

{displaystyle V_{n}(R)={frac {pi ^{n/2}}{Gamma ({frac {n}{2}}+1)}}R^{n},}

где Γ — это эйлеровская гамма-функция (которая является расширением факториала на поле действительных и комплексных чисел). Используя частные представления гамма-функции для целых и полуцелых значений, можно получить формулы объёма n-мерного шара, которые не требуют гамма-функции:

{displaystyle V_{2k}(R)={frac {pi ^{k}}{k!}}R^{2k}},
{displaystyle V_{2k+1}(R)={frac {2^{k+1}pi ^{k}}{(2k+1)!!}}R^{2k+1}={frac {2(k!)(4pi )^{k}}{(2k+1)!}}R^{2k+1}}.

Знаком !! здесь обозначен двойной факториал.

Эти формулы также можно свести в одну общую:

{displaystyle V_{n}(R)={frac {2^{left[{frac {n+1}{2}}right]}pi ^{left[{frac {n}{2}}right]}}{n!!}}R^{n}}.

Обратная функция для выражения зависимости радиуса от объёма:

{displaystyle R_{n}(V)={frac {Gamma (n/2+1)^{1/n}}{sqrt {pi }}}V^{1/n}}.

Эта формула также может быть разделена на две: для пространств с чётным и нечётным количеством размерностей, используя факториал и двойной факториал вместо гамма-функции:

{displaystyle R_{2k}(V)={frac {(k!V)^{1/2k}}{sqrt {pi }}}},
{displaystyle R_{2k+1}(V)=left({frac {(2k+1)!!V}{2^{k+1}pi ^{k}}}right)^{1/(2k+1)}}.

Рекурсия[править | править код]

Формулу объёма также можно выразить в виде рекурсивной функции. Эти формулы могут быть доказаны непосредственно или выведены из основной формулы, представленной выше. Проще всего выразить объём n-мерного шара через объём шара размерности n-2 (при условии, что они имеют одинаковый радиус):

{displaystyle V_{n}(R)={frac {2pi R^{2}}{n}}V_{n-2}(R)}.

Также существует формула объёма n-мерного шара в зависимости от объёма (n−1)-мерного шара того же радиуса:

{displaystyle V_{n}(R)=R{sqrt {pi }}{frac {Gamma ({frac {n+1}{2}})}{Gamma ({frac {n}{2}}+1)}}V_{n-1}(R)}.

То же без гамма-функции:

{displaystyle {begin{aligned}V_{2k}(R)&=Rpi {frac {(2k-1)!!}{2^{k}k!}}V_{2k-1}(R)=Rpi {frac {(2k-1)(2k-3)cdots 5cdot 3cdot 1}{(2k)(2k-2)cdots 6cdot 4cdot 2}}V_{2k-1}(R),\V_{2k+1}(R)&=2R{frac {2^{k}k!}{(2k+1)!!}}V_{2k}(R)=2R{frac {(2k)(2k-2)cdots 6cdot 4cdot 2}{(2k+1)(2k-1)cdots 5cdot 3cdot 1}}V_{2k}(R).end{aligned}}}

Пространства младших размерностей[править | править код]

Формулы объёма для некоторых пространств младших размерностей:

Кол-во измерений Объём шара радиуса R Радиус шара объёма V
1 {displaystyle 2R} {displaystyle V/2}
2 pi R^{2} {displaystyle {frac {V^{1/2}}{sqrt {pi }}}}
3 {displaystyle {frac {4pi }{3}}R^{3}} {displaystyle left({frac {3V}{4pi }}right)^{1/3}}
4 {displaystyle {frac {pi ^{2}}{2}}R^{4}} {displaystyle {frac {(2V)^{1/4}}{sqrt {pi }}}}
5 {displaystyle {frac {8pi ^{2}}{15}}R^{5}} {displaystyle left({frac {15V}{8pi ^{2}}}right)^{1/5}}
6 {displaystyle {frac {pi ^{3}}{6}}R^{6}} {displaystyle {frac {(6V)^{1/6}}{sqrt {pi }}}}
7 {displaystyle {frac {16pi ^{3}}{105}}R^{7}} {displaystyle left({frac {105V}{16pi ^{3}}}right)^{1/7}}
8 {displaystyle {frac {pi ^{4}}{24}}R^{8}} {displaystyle {frac {(24V)^{1/8}}{sqrt {pi }}}}
9 {displaystyle {frac {32pi ^{4}}{945}}R^{9}} {displaystyle left({frac {945V}{32pi ^{4}}}right)^{1/9}}
10 {displaystyle {frac {pi ^{5}}{120}}R^{10}} {displaystyle {frac {(120V)^{1/10}}{sqrt {pi }}}}

Пространства старших размерностей[править | править код]

Объём гипершара размерности n единичного радиуса в зависимости от n.

При стремлении количества размерностей к бесконечности объём шара единичного радиуса стремится к нулю. Это может быть выведено из рекурсивного представления формулы объёма.

Примеры[править | править код]

  • Пусть mathbb{R}^d — евклидово пространство с обычным евклидовым расстоянием. Тогда
  • если d=1 (пространство — прямая), то
{displaystyle B_{r}(x_{0})={xin mathbb {R} mid |x-x_{0}|<r}=left(x_{0}-{r},x_{0}+{r}right),}
{displaystyle D_{r}(x_{0})={xin mathbb {R} mid |x-x_{0}|leq r}=left[x_{0}-{r},x_{0}+{r}right].}
 — открытый и замкнутый отрезок соответственно.
 — открытый и замкнутый диск соответственно.
 — открытый и замкнутый стереометрический шар соответственно.
Тогда

См. также[править | править код]

  • Шаровой слой
  • Гиперсфера
  • Сферический слой

Примечания[править | править код]

  1. Equation 5.19.4, NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.6 of 2013-05-06.

Литература[править | править код]

  • Шар, геометрическое тело // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

Ссылки на онлайн калькуляторы[править | править код]

  • Вычисление объема и площади шара. Дата обращения: 12 марта 2012. Архивировано из оригинала 8 августа 2011 года.
  • Онлайн-калькуляторы. Дата обращения: 2 июля 2019. Архивировано из оригинала 9 января 2019 года.
  • Математические этюды. Дата обращения: 20 октября 2011. Архивировано из оригинала 18 октября 2011 года. Мультфильм про объём шара

Как вычислить радиус шара по объему?

Для вычисления параметров шара существуют формулы.

В частности, чтобы вычислить радиус шара при известном объеме, следует использовать такую формулу:

Где R – радиус шара (искомое значение), V – объем (известное значение), пи – константа, значение которой принимается как 3,14, при этом для более точных вычислений следует брать большее количество знаков после запятой.

автор вопроса выбрал этот ответ лучшим

Ксарф­акс
[156K]

5 лет назад 

Радиус шара по объему

Шар представляет собой геометрическое тело, являющееся совокупностью всех точек пространства, которые находятся от центра шара на расстоянии не больше заданного. Данное расстояние называется радиусом шара.

Для того, чтобы выразить радиус шара через объём, нужно вспомнить формулу:

Объём шара V равен произведению 4/3 на число π (которое является константой и равно 3,14) и на радиус в кубе.

Из этой формулы можно сначала выразить куб радиуса:

Конечная формула получится такой:

Радиус шара будет равен кубическому корню из дроби; числитель дроби – объем, умноженный на 3; знаменатель дроби – число π, умноженное на 4.


Пример

Предположим, объем шара равен 9 кубическим метрам.

Радиус шара находим по формуле, приведенной выше:

R ≈ ³√((3 * 9) / (4 * 3,14)) ≈ ³√(27 / 12,56) ≈ 3 / ³√12,56 ≈ 3 / 2,29 ≈ 1,31 метр.

Таким образом, если объём шара составляет 9 куб. метров, то его радиус будет равен приблизительно 1,31 метра.

Барха­тные лапки
[382K]

более года назад 

Такие задания иногда встречаются на ЕГЭ, с одной стороны вроде ничего сложного, но все же извилины придется напрячь, чтобы ее решить. Лично мне такие задачки давались с трудом, так как я не сильно любила геометрию, но все же формулы приходилось заучивать, чтобы решать задачки.

Давайте для начала вспомним по какой формуле мы находим объем шара.

Итак, эта формула выглядит следующим образом:

Значит радиус шара мы можем вычислить по такой формуле:

В данном случае мы выражаем одну величину через другую.

Так что все оказалось не так уж и запутанно и ученикам вполне под силу справится с такой заковыристой задачкой.

bezde­lnik
[34.1K]

5 лет назад 

Радиус шара по известному объёму вычисляется по формуле R равен корню кубическому из 3*V}/4*pi, где V – объём шара, pi- трансцендентное число равное отношению длины половины окружности к её радиусу. Поэтому точно вычислить радиус не возможно, а только с определённой погрешностью. Некоторую сложность представляет извлечение кубического корня. Для этого можно воспользоваться таблицей кубов. Например, при V=1000 куб.мм. и pi=3,14 подкоренное выражение равно 238,8535… и по таблице находим R равен примерно 6,2 мм.

Марин­а Волог­да
[295K]

более года назад 

Надо вспомнить формулу и проблем с вычислением радиуса шара не возникнет.

Итак, сначала укажем формулу:

R – это как раз искомый нами радиус.

3 и корень – это кубический корень из полученной дроби.

? – это пи (оно всегда едино и составляет 3.14).

V – объем шара, который нам известен.

Ну а теперь не сложно высчитать радиус, зная его объем, подставляя в формулу известные нам данные.

Simpl­e Ein
[191K]

3 года назад 

Найти радиус шара, зная объем очень легко.

Объем шара находится по формуле:

Выразим из данной формулы значение радиуса шара. Для этого необходимо объем разделить на число «Пи», умножив на ¾. Из полученного числа необходимо найти кубический корень.

-Алекс­андр–
[31K]

5 лет назад 

Формула объема шара:

V=4/3*п*(R в степени 3)

отсюда

R = корень третей степени из (3/4*V/п)

Лара Изюми­нка
[59.8K]

2 года назад 

Достаточно простая задача для тех, кто помнит, чему равен обьем шара. А он равен четыре третьх умножить на пи умножить на радиус в кубе.

Далее нужно уметь просто выражать одну величину через другую.

В итоге у нас радиус равен корень кубический из ( 3 умножить на обьем и это разделить на 4 пи.) Итак еще нужно вспомнить, что пи это 3,14 приблизительно. Если нужна большая точность, берут больше знаков после запятой в числе пи. Это имеет смысл при нахождении радиуса в больших сооружениях, в архитектуре. Обычно хватает точности два знака после запятой. Эта формула нужна при решении задач по стереометрии .

Vodil­a
[16.6K]

более года назад 

Зная, что обьем шара равен 43 пи умножить на радиус в квадрате совсем нетрудно выразить радиус. Очевидно, что он будет равен корень кубический из три четвертых обьема, деленного на пи. Вот собственно и вся формула. Такая задача иногда встречается в ЕГЭ по математике.

Hamst­er133­7
[28.6K]

2 года назад 

Для того, что бы найти радиус шара при наличии объёма, следует воспользоваться следующей формулой:

Где число “П” равно 3,14. Так же существуют другие формулы для поиска радиуса шара (из данной формулы можно вывести другую формулу).

Для того, чтобы отыскать радиус шара при том, что объем известен воспользуйтесь формулой, а именно, в качестве основной применима такая.

R является искомым значением, а также радиусом шара. V отображает значение, являющееся известным, объем. Пи является константа, у которой значение = 3,14. Так, когда делаются точные расчеты следует брать большее количество знаков, которые находятся после запятой.

Знаете ответ?

Добавить комментарий