Как найти радиус шкива

Малая ось эллиптического поперечного сечения плеча шкива при заданном крутящем моменте и изгибающем напряжении

Идти



Малая ось шкива = (16*Крутящий момент, передаваемый шкивом/(pi*Количество рычагов в шкиве*Напряжение изгиба в плече шкива))^(1/3)

Напряжение изгиба в плече шкива с ременным приводом при крутящем моменте, передаваемом шкивом

Идти



Напряжение изгиба в плече шкива = 16*Крутящий момент, передаваемый шкивом/(pi*Количество рычагов в шкиве*Малая ось шкива^3)

Крутящий момент, передаваемый шкивом при изгибающем напряжении в рычаге

Идти



Крутящий момент, передаваемый шкивом = Напряжение изгиба в плече шкива*(pi*Количество рычагов в шкиве*Малая ось шкива^3)/16

Количество плеч шкива при изгибающем напряжении в плече

Идти



Количество рычагов в шкиве = 16*Крутящий момент, передаваемый шкивом/(pi*Напряжение изгиба в плече шкива*Малая ось шкива^3)

Тангенциальная сила на конце каждого рычага шкива при заданном крутящем моменте, передаваемом шкивом

Идти



Тангенциальная сила на конце каждого рычага шкива = Крутящий момент, передаваемый шкивом/(Радиус обода шкива*(Количество рычагов в шкиве/2))

Радиус обода шкива при заданном крутящем моменте, передаваемом шкивом

Идти



Радиус обода шкива = Крутящий момент, передаваемый шкивом/(Тангенциальная сила на конце каждого рычага шкива*(Количество рычагов в шкиве/2))

Количество плеч шкива, передаваемого крутящим моментом, передаваемым шкивом

Идти



Количество рычагов в шкиве = 2*Крутящий момент, передаваемый шкивом/(Тангенциальная сила на конце каждого рычага шкива*Радиус обода шкива)

Крутящий момент, передаваемый шкивом

Идти



Крутящий момент, передаваемый шкивом = Тангенциальная сила на конце каждого рычага шкива*Радиус обода шкива*(Количество рычагов в шкиве/2)

Изгибающий момент на плече шкива с ременным приводом при заданном изгибающем напряжении в плече

Идти



Изгибающий момент в плече шкива = Площадь момента инерции оружия*Напряжение изгиба в плече шкива/Малая ось шкива

Момент инерции рычага шкива при заданном изгибном напряжении в рычаге

Идти



Площадь момента инерции оружия = Изгибающий момент в плече шкива*Малая ось шкива/Напряжение изгиба в плече шкива

Напряжение изгиба в рычаге шкива с ременным приводом

Идти



Напряжение изгиба в плече шкива = Изгибающий момент в плече шкива*Малая ось шкива/Площадь момента инерции оружия

Большая ось эллиптического поперечного сечения рычага шкива с учетом момента инерции рычага

Идти



Большая ось шкива = (64*Площадь момента инерции оружия/(pi*Малая ось шкива))^(1/3)

Малая ось эллиптического поперечного сечения плеча с учетом момента инерции плеча

Идти



Малая ось шкива = 64*Площадь момента инерции оружия/(pi*Большая ось шкива^3)

Момент инерции рычага шкива

Идти



Площадь момента инерции оружия = (pi*Малая ось шкива*Большая ось шкива^3)/64

Тангенциальная сила на конце каждого плеча шкива при заданном изгибающем моменте на плече

Идти



Тангенциальная сила на конце каждого рычага шкива = Изгибающий момент в плече шкива/Радиус обода шкива

Радиус обода шкива при заданном изгибающем моменте, действующем на рычаг

Идти



Радиус обода шкива = Изгибающий момент в плече шкива/Тангенциальная сила на конце каждого рычага шкива

Изгибающий момент на рычаге шкива с ременным приводом

Идти



Изгибающий момент в плече шкива = Тангенциальная сила на конце каждого рычага шкива*Радиус обода шкива

Малая ось эллиптического поперечного сечения рычага шкива при изгибающем напряжении в рычаге

Идти



Малая ось шкива = 1.72*((Изгибающий момент в плече шкива/(2*Напряжение изгиба в плече шкива))^(1/3))

Изгибающий момент на плече шкива с ременным приводом при заданном крутящем моменте, передаваемом шкивом

Идти



Изгибающий момент в плече шкива = 2*Крутящий момент, передаваемый шкивом/Количество рычагов в шкиве

Крутящий момент, передаваемый шкивом с учетом изгибающего момента на рычаге

Идти



Крутящий момент, передаваемый шкивом = Изгибающий момент в плече шкива*Количество рычагов в шкиве/2

Количество плеч шкива с учетом изгибающего момента на плече

Идти



Количество рычагов в шкиве = 2*Крутящий момент, передаваемый шкивом/Изгибающий момент в плече шкива

Малая ось эллиптического поперечного сечения рычага шкива с учетом момента инерции рычага

Идти



Малая ось шкива = (8*Площадь момента инерции оружия/pi)^(1/4)

Момент инерции плеча шкива при заданной малой оси плеча эллиптического сечения

Идти



Площадь момента инерции оружия = pi*Малая ось шкива^4/8

Физика, 10 класс

Урок 05. Поступательное движение. Вращательное движение твёрдого тела

Перечень вопросов, рассматриваемых на уроке:

  1. Поступательное и вращательное движение абсолютно твердого тела.
  2. Характеристики вращательного движения абсолютно твердого тела.

Глоссарий по теме

1. Абсолютно твердое тело – это тело, расстояние между любыми двумя точками которого остается постоянным при его движении.

2. Поступательным называется такое движение абсолютно твердого тела, при котором любой отрезок, соединяющий любые две точки тела, остается параллельным самому себе. Одинаковыми остаются при поступательном движении перемещение, траектория, путь, скорость, ускорение.

3. Вращением твердого тела вокруг неподвижной оси называется такое движение, при котором все точки тела описывают окружности, центры которых находятся на одной прямой перпендикулярной плоскостям этих окружностей. Сама эта прямая есть ось вращения.

4. Угол поворота – угол, на который поворачивается радиус-вектор, соединяющий центр окружности с точкой вращающегося тела.

5. Угловая скорость – отношение угла поворота φ к промежутку времени, в течение которого совершен этот поворот при равномерном движении.

6. Линейная скорость – отношение длины дуги окружности пройденной точкой тела к промежутку времени, в течение которого этот поворот совершен.

7. Период – промежуток времени, за который тело делает один полный оборот.

8. Частота обращения тела – число оборотов за единицу времени

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н.. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2016. – С. 57-61

Рымкевич А.П. Сборник задач по физике. 10-11 класс.-М.:Дрофа,2009.-С.20-22

Открытые электронные ресурсы:

http://kvant.mccme.ru/1986/11/kinematika_vrashchatelnogo_dvi.htm

Теоретический материал для самостоятельного изучения

1. Вы знаете, что в физике для упрощения исследования реальных ситуаций часто используются модели. Одной из механических моделей, используемых при описании движения и взаимодействия тел, является абсолютно твёрдое тело- тело, расстояние между любыми двумя точками которого остаётся постоянным при его движении.

2. Поступательным называется такое движение абсолютно твёрдого тела, при котором любой отрезок, соединяющий любые две точки тела, остаётся параллельным самому себе. Примером поступательного движения может служить свободное падение тел, движение лифта, поезда на прямолинейном участке дороги. При поступательном движении все точки тела описывают одинаковые траектории, совершают одинаковые перемещения, проходят одинаковые пути, в каждый момент времени имеют равные скорости и ускорения.

Для описания поступательного движения абсолютно твёрдого тела достаточно написать уравнение движения одной из его точек.

3. Вращательным движением абсолютно твёрдого тела вокруг неподвижной оси называется такое его движение, при котором все точки тела описывают окружности, центры которых находятся на одной прямой, называемой осью вращения. При этом плоскости, которым принадлежат эти окружности, перпендикулярны оси вращения.

Вращательное движение позволяет осуществить непрерывный процесс работы с использованием больших скоростей. Вращающиеся механизмы более компактны и более экономичны, так как потери энергии на преодоление сил трения качения меньше, чем на преодоление сил трения скольжения. Поэтому в современной технике вращательное движение рабочих частей машин всё более вытесняет возвратно-поступательное. Например, вместо ножовочной пилы в технике используют вращающуюся дисковую пилу, поршневые насосы в большинстве случаев вытесняются центробежными.

4. Угловой скоростью тела при равномерном вращении называется величина, равная отношению угла поворота тела ∆φ к промежутку времени ∆t, за которое этот поворот произошёл.

Будем обозначать угловую скорость греческой буквой ω (омега). Тогда по определению запишем формулу угловой скорости;

При равномерном вращательном движении угловая скорость у всех точек вращающегося тела одинаковая. Поэтому угловая скорость, так же как и угол поворота, является характеристикой движения всего вращающегося тела, а не только отдельных его частей.

Примером вращательного движения, близкого к равномерному, может служить вращение Земли вокруг своей оси.

Угловая скорость в СИ выражается в радианах в секунду (рад/с).

Один радиан – это центральный угол, опирающийся на дугу, длина которой равна радиусу окружности.

Угловая скорость положительна, если угол между радиусом вектором, определяющим положение одной из точек твердого тела, и осью ОХ увеличивается, и отрицательным, когда он уменьшается

5.Число полных оборотов за единицу времени называют частотой обращения.

Частоту обозначают греческой буквой «ню». Единица измерения частоты является секунда в минус первой степени

Время, за которое тело совершает один полный оборот, называют периодом обращения и обозначают буквой Т.

7. Связь между линейной и угловой скоростями:

8. Связь между ускорением и угловой скоростью:

Итак, мы рассмотрели два простейших движения абсолютно твердого тела – поступательное и вращательное. В жизни мы чаще встречаем сложное движение абсолютно твердого тела, однако, в этом случае любое сложное движение можно представить как сумму двух независимых движений: поступательного и вращательного.

Примеры и разбор типового тренировочного задания

  1. Ротор мощной паровой турбины делает 100 оборотов за 2 с. Определите угловую скорость.

Дано:

N=100 об.

t = 2 c

Найти: ω.

Решение:

2. Два шкива, соединенные друг с другом ремнем, вращаются вокруг неподвижных осей (см.рис). Больший шкив радиусом 20см делает 50 оборотов за 10 секунд, а частота вращения меньшего шкива 2400 оборотов в минуту. Чему равен радиус меньшего шкива? Шкивы вращаются без проскальзывания.

Дано:

Найти –

Решение:

Из условия задачи ученик видит что, шкивы соединены ремнем, следовательно, линейные скорости их равны:

но частота вращения разная.

Сокращает на 2π обе части.

Отсюда имеем:

и так, как в условии известно , то можем записать:

Отсюда находим радиус второго шкива:

Вторая неизвестная величина

Запишем формулу периода обращения для большего шкива:

так как по условию задачи нам известно число оборотов за 10 секунд.

Подставим в формулу (1) и получим конечную формулу:

Иногда возникает желание применить растянутый или порванный ремень GT2 от принтера в какой ни будь самоделке где не так важна точность. Для этого естественно нужен зубчатый шкив. Конечно существует множество программ с хорошим подробным расчётом и построением, но для изучения всех параметров требуется много времени и желания. Для довольно качественного и самое главное быстрого расчёта и моделирования зубчатых шкивов я предлагаю использовать данный метод.

Простой расчёт зубчатых шкивов под ремень GT2

Расчёт:

И так приступим для начала вспомним замечательную школьную формулу нахождения радиуса через длину окружности.

Простой расчёт зубчатых шкивов под ремень GT2 

Затем посмотрим на профиль ремня GT2

Простой расчёт зубчатых шкивов под ремень GT2

На один зуб у нас приходится 2 мм поэтому нужное нам количество зубьев умножаем на 2 для тестирования я взял 5 размеров с разными количествами зубьев.

Простой расчёт зубчатых шкивов под ремень GT2Рассчитаем радиусы шкивов.

R1 = 2 (шаг ремня) * 20(количество зубьев) / (2 * 3,14) = 6,369 – 1,5 (поправка на высоту зуба) = 4,869 мм

Думаю всё понятно единственное что стоит пояснить поправка на высоту зуба так как при моделировании сначала чертится окружность и затем зуб который естественно выступает за окружность, я использую высоту зуба 1,3 мм поэтому нужно вычитать эти 1,3 мм я вычитаю немного больше 1,5 мм как показала практика так лучше.

R2 = 2 * 44 / 6,28 = 14 – 1,5 = 12,51 мм

R3 = 2 * 60 / 6,28 = 19,1 – 1,5 = 17,6 мм

R4 = 2 * 88 / 6,28 = 28,025 – 1,5 = 26,525 мм

R5 = 2 * 100 / 6,28 = 31,847 – 1,5 = 30,347 мм

Далее приступаем к моделированию и печати.

Моделирование:

Для рисования шкива я использую такую модель зуба высота 1,3 мм, у основания 1 мм у края 0,8 мм для шкивов с количеством зубьев меньше 20 нужно будет уменьшить толщину зуба, но и сопло уже нужно будет не 0,4 а 0,3 или меньше.

Простой расчёт зубчатых шкивов под ремень GT2Далее круговой массив обрезка выдавливание все стандартно, получились 5 таких заготовок высота моделей 6 мм.

Простой расчёт зубчатых шкивов под ремень GT2Простой расчёт зубчатых шкивов под ремень GT2

Печать и тестирование:

Я печатал прозрачным пластиком PETG FDplast. 

Простой расчёт зубчатых шкивов под ремень GT2Простой расчёт зубчатых шкивов под ремень GT2Для тестирования я взял 3 ремня что были под рукой старый растянутый со стальным кордом, новый такой же и мягкий с волоконным кордом во всех случаях ремень подошёл отлично. 

Простой расчёт зубчатых шкивов под ремень GT2Простой расчёт зубчатых шкивов под ремень GT2

Для примера что будет если радиус изменить на миллиметр.

Простой расчёт зубчатых шкивов под ремень GT2Простой расчёт зубчатых шкивов под ремень GT2Вообще не планировал что то писать так случайно вышло при работе над шкивом для одного проекта, возможно кому ни будь будет полезным данный пост. Спасибо за внимание!

Простой расчёт зубчатых шкивов под ремень GT2

vedstr116

vedstr116

Вопрос по физике:

Движение от шкива 1 к шкиву 2 передается при помощи ременной передачи. Радиус второшо шкифа 20 см, период его вращения 4 с. Найдите радиус первого шкифа, если известно, что делает 60 оборотов в минуту полное решение

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок – бесплатно!

Ответы и объяснения 1
Знаете ответ? Поделитесь им!

Гость

Гость ?

Как написать хороший ответ?

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете
    правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не
    побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и
    пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся
    уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
    знаю» и так далее;
  • Использовать мат – это неуважительно по отношению к
    пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.

Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Физика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи –
смело задавайте вопросы!

Физика — область естествознания: естественная наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении.

Этот инструмент способен обеспечить Скорость шкива большего размера при заданной скорости шкива меньшего размера Расчет с формулой, связанной с ней.

ШАГ 0: Сводка предварительного расчета

ШАГ 1. Преобразование входов в базовый блок

ШАГ 2: Оцените формулу

ШАГ 3: Преобразуйте результат в единицу вывода

5 Метр / сек –> Конверсия не требуется

Источник: http://calculatoratoz.com/ru/speed-of-bigger-pulley-when-speed-of-smaller-pulley-is-given-calculator/Calc-27104

Другие калькуляторы

– расчет призматической шпонки

– расчет шлицевого соединения

– расчет фланцевого соединения

– расчет штифтового соединения

– расчет посадки с натягом

– расчет ресурса шариковых радиальных и радиально-упорных подшипников

– расчет ресурса шариковых упорных и упорно-радиальных подшипников

– расчет ресурса роликовых радиальных и радиально-упорных подшипников

– расчет ресурса роликовых упорных и упорно-радиальных подшипников

– расчет клиноременной передачи

– расчет зубчатой ременной передачи

– расчет цепной передачи

©ООО”Кайтек” 2020. Любое использование либо копирование материалов или подборки материалов сайта, может осуществляться лишь с разрешения автора (правообладателя) и только при наличии ссылки на сайт www.caetec.ru

Источник: http://caetec.ru/calconline/raschet-ploskoremennoj-peredachi.html

Профиль канавки шкива для клинового ремня

Шкивы по ГОСТ 20889-88 для приводных клиновых ремней

Условные обозначения:

Wp — расчетная ширина канавки шкива;

b — глубина канавки над расчетной шириной;

dp — расчетный диаметр шкива;

h — глубина канавки ниже расчетной ширины;

е — расстояние между осями канавок;

f — расстояние между осями крайней канавки и ближайшим торцом шкива;

α — угол канавки шкива;

de — наружный диаметр шкива;

r — радиус закругления верхней кромки канавки шкива;

М — ширина шкива.

Источник: http://pro-techinfo.ru/konstruktsii-detalej-mashin-onlajn/peredachi-detalej-mashin/remennye-peredachi/shkivy-po-gost-20889-88-dlya-privodnyh-klinovyh-remnej/

Шкивы тонкостенные клиноременных передач

Задача уменьшения массы и моментов инерции клиноременных шкивов решается изготовлением этих шкивов из тонкой листовой стали штамповкой и сваркой. Подобные шкивы (сварные и сборные) (рис. 11…16) получили в настоящее время широкое распространение. Конструкция сварного шкива дана также в разделе сварных соединений. Конструкция сборного шкива (рис. 14) позволяет изменением числа проставок (дисков) менять диаметр.


Соседние страницы

  • Натяжные устройства ременных передач
  • Натяжные ролики ременных передач
  • Ремни плоские приводные резинотканевые по ГОСТ 23831-79
  • Шкивы плоскоременных передач
  • Ремни приводные клиновые нормальных сечений по ГОСТ 1284.1-80 (СТ СЭВ 4481-84)
  • Ремни клиновые вариаторные
  • Раздвижные шкивы

Источник: http://sto82.ru/oborudovanie/raschet-shkivov.html

Как рассчитать шкивы зная обороты двигателя

Работы по переборке электродвигателя подходят к завершению. Приступаем к расчёту шкивов ремённой передачи станка. Немного терминологии по ремённой передаче.

Главными исходными данными у нас будут три значения. Первое значение это скорость вращения ротора (вала) электродвигателя 2790 оборотов в минуту. Второе и третье это скорости, которые необходимо получить на вторичном валу. Нас интересует два номинала 1800 и 3500 оборотов в минуту. Следовательно, будем делать шкив двухступенчатый.

Заметка! Для пуска трёхфазного электродвигателя мы будем использовать частотный преобразователь поэтому расчётные скорости вращения будут достоверными. В случае если пуск двигателя осуществляется при помощи конденсаторов, то значения скорости вращения ротора будут отличаться от номинального в меньшую сторону. И на этом этапе есть возможность свести погрешность к минимуму, внеся поправки. Но для этого придётся запустить двигатель, воспользоваться тахометром и замерить текущую скорость вращения вала.

Наши цели определены, переходим выбору типа ремня и к основному расчёту. Для каждого из выпускаемых ремней, не зависимо от типа (клиноременный, поликлиновидный или другой) есть ряд ключевых характеристик. Которые определяют рациональность применения в той или иной конструкции. Идеальным вариантом для большинства проектов будет использование поликлиновидного ремня. Название поликлиновидный получил за счет своей конфигурации, она типа длинных замкнутых борозд, расположенных по всей длине. Названия ремня происходит от греческого слова «поли», что означает множество. Эти борозды ещё называют по другому – рёбра или ручьи. Количество их может быть от трёх до двадцати.

Поликлиновидный ремень перед клиноременным имеет массу достоинств, таких как:

  • благодаря хорошей гибкости возможна работа на малоразмерных шкивах. В зависимости от ремня минимальный диаметр может начинаться от десяти – двенадцати миллиметров;
  • высокая тяговая способность ремня, следовательно рабочая скорость может достигать до 60 метров в секунду, против 20, максимум 35 метров в секунду у клиноременного;
  • сила сцепления поликлинового ремня с плоским шкивом при угле обхвата свыше 133° приблизительно равна силе сцепления со шкивом с канавками, а с увеличением угла обхвата сила сцепления становится выше. Поэтому для приводов с передаточным отношением свыше трёх и углом обхвата малого шкива от 120° до 150° можно применять плоский (без канавок) больший шкив;
  • благодаря легкому весу ремня уровни вибрации намного меньше.

Принимая во внимание все достоинства поликлиновидных ремней, мы будем использовать именно этот тип в наших конструкциях. Ниже приведена таблица пяти основных сечений самых распространённых поликлиновидных ремней (PH, PJ, PK, PL, PM).

Обозначение PH PJ PK PL PM
Шаг ребер, S, мм 1.6 2.34 3.56 4.7 9.4
Высота ремня, H, мм 2.7 4.0 5.4 9.0 14.2
Нейтральный слой, h0, мм 0.8 1.2 1.5 3.0 4.0
Расстояние до нейтрального слоя, h, мм 1.0 1.1 1.5 1.5 2.0
Минимальный диаметр шкива, db, мм 13 20 45 75 180
Максимальная скорость, Vmax, м/с 60 60 50 40 35
Диапазон длины, L, мм 1140…2404 356…2489 527…2550 991…2235 2286…16764

Рисунок схематичного обозначения элементов поликлиновидного ремня в разрезе.

Как для ремня, так и для ответного шкива имеется соответствующая таблица с характеристиками для изготовления шкивов.

Сечение PH PJ PK PL PM
Расстояние между канавками, e, мм 1,60±0,03 2,34±0,03 3,56±0,05 4,70±0,05 9,40±0,08
Суммарная погрешность размера e, мм ±0,3 ±0,3 ±0,3 ±0,3 ±0,3
Расстояние от края шкива fmin, мм 1.3 1.8 2.5 3.3 6.4
Угол клина α, ° 40±0,5° 40±0,5° 40±0,5° 40±0,5° 40±0,5°
Радиус ra, мм 0.15 0.2 0.25 0.4 0.75
Радиус ri, мм 0.3 0.4 0.5 0.4 0.75
Минимальный диаметр шкива, db, мм 13 20 45 75 180

Минимальный радиус шкива задаётся не спроста, этот параметр регулирует срок службы ремня. Лучше всего будет если немного отступить от минимального диаметра в большую сторону. Для конкретной задачи мы выбрали самый распространённый ремень типа «РК». Минимальный радиус для данного типа ремней составляет 45 миллиметров. Учтя это, мы будем отталкиваться ещё и от диаметров имеющихся заготовок. В нашем случае имеются заготовки диаметром 100 и 80 миллиметров. Под них и будем подгонять диаметры шкивов.

Начинаем расчёт. Приведём ещё раз наши исходные данные и обозначим цели. Скорость вращения вала электродвигателя 2790 оборотов в минуту. Ремень поликлиновидный типа «РК». Минимальный диаметр шкива, который регламентируется для него, составляет 45 миллиметров, высота нейтрального слоя 1,5 миллиметра. Нам нужно определить оптимальные диаметры шкивов с учётом необходимых скоростей. Первая скорость вторичного вала 1800 оборотов в минуту, вторая скорость 3500 оборотов в минуту. Следовательно, у нас получается две пары шкивов: первая 2790 на 1800 оборотов в минуту, и вторая 2790 на 3500. Первым делом найдём передаточное отношение каждой из пар.

Формула для определения передаточного отношения:

, где n1 и n2 – скорости вращения валов, D1 и D2 – диаметры шкивов.

Первая пара 2790 / 1800 = 1.55 Вторая пара 2790 / 3500 = 0.797

Далее по следующей формуле определяем диаметр большего шкива:

, где h 0 нейтральный слой ремня, параметр из таблицы выше.

D2 = 45×1.55 + 2×1.5x(1.55 – 1) = 71.4 мм

Для удобства расчётов и подбора оптимальных диаметров шкивов можно использовать онлайн калькулятор.

Инструкция как пользоваться калькулятором. Для начала определимся с единицами измерений. Все параметры кроме скорости указываем в милиметрах, скорость указываем в оборотах в минуту. В поле «Нейтральный слой ремня» вводим параметр из таблицы выше столбец «PК». Вводим значение h0 равным 1,5 миллиметра. В следующем поле задаём скорость вращения валя электродвигателя 2790 оборотов в минуту. В поле диаметр шкива электродвигателя вводим значение минимально регламентируемое для конкретного типа ремня, в нашем случае это 45 миллиметров. Далее вводим параметр скорости, с которым мы хотим, чтобы вращался ведомый вал. В нашем случае это значение 1800 оборотов в минуту. Теперь остаётся нажать кнопку «Рассчитать». Диаметр ответного шкива мы получим соответствующем в поле, и оно составляет 71.4 миллиметра.

Примечание: Если необходимо выполнить оценочный расчёт для плоского ремня или клиновидного, то значением нейтрального слоя ремня можно пренебречь, выставив в поле «ho» значение «0».

Теперь мы можем (если это нужно или требуется) увеличить диаметры шкивов. К примеру, это может понадобится для увеличения срока службы приводного ремня или увеличить коэффициент сцепления пара ремень-шкив. Также большие шкивы иногда делают намеренно для выполнения функции маховика. Но мы сейчас хотим максимально вписаться в заготовки (у нас имеются заготовки диаметром 100 и 80 миллиметров) и соответственно подберём для себя оптимальные размеры шкивов. После нескольких переборов значений мы остановились на следующих диаметрах D1 – 60 миллиметров и D2 – 94,5 миллиметров для первой пары.

D2 = 60×1.55 + 2×1.5x(1.55 – 1) = 94.65 мм

Для второй пары D1 – 75 миллиметров и D2 – 60 миллиметров.

D2 = 75×0.797 + 2×1.5x(0.797 – 1) = 59.18 мм

Далее мы приступаем к изготовлению шкивов. Всем удачной работы!

Дополнительная информация по шкивам:

Мы начали первые экспиременты и уже подготовили первую часть материала: Тест ремённого привода. Поликлиновидный ремень. Так же выпустили обучающий короткометражный видеофильм.

Источник

Источник: http://sto82.ru/oborudovanie/raschet-shkivov.html

Устройство ременной передачи, ее характеристики

Ременная передача представляет собой пару шкивов, соединенных бесконечным закольцованным ремнем. Эти приводные колеса, как правило, располагают в одной плоскости, а оси делают параллельными, при этом приводные колеса вращаются в одном направлении. Плоские (или круглые) ремни позволяют изменять направление вращения за счет перекрещивания, а взаимное расположение осей- за счет использования дополнительных пассивных роликов. При этом теряется часть мощности.

Клиноременные приводы за счет клиновидной формы поперечного сечения ремня позволяют увеличить площадь зацепления его со шкивом ременной передачи. На нем делается канавка по форме клина.

Зубчатоременные приводы имеют зубцы равного шага и профиля на внутренней стороне ремня и на поверхности обода. Они не проскальзывают, позволяя передавать большую мощность.

Читать также: Подключить выключатель света на две клавиши

Минимальный диаметр шкива клиноременной передачи

Для расчета привода важны следующие основные параметры:

  • число оборотов ведущего вала;
  • мощность, передаваемую приводом;
  • потребное число оборотов ведомого вала;
  • профиль ремня, его толщина и длина;
  • расчетный, наружный, внутренний диаметр колеса;
  • профиль канавки (для клиноременного);
  • шаг передачи (для зубчатоременного)
  • межосевое расстояние;

Вычисления обычно проводят в несколько этапов.

Источник: http://sto82.ru/oborudovanie/raschet-shkivov.html

Общая характеристика

предполагает использование особого способа приведения в действие всего механизма. При этом применяется энергия, производимая в процессе вращательного момента. Это обеспечивает ременная передача. Она использует механическую энергию, которую впоследствии передает другому механизму.

Такая конструкция состоит из ремня и минимум двух шкивов. Первый из названных конструкционных элементов изготавливается чаще всего из резины. Ремень клиноременной передачи изготавливается из материала, который прошел специальную обработку. Это позволяет представленному элементу быть устойчивым к средним и небольшим механическим воздействиям, повышенным температурам.

Среди ременных передач клиноременная является самой востребованной. Эту конструкцию сегодня достаточно часто применяют при производстве автомобилей, а также прочих разновидностей транспортных средств.

Источник: http://sto82.ru/oborudovanie/raschet-shkivov.html

Номинальные расчетные диаметры dp шкивов, мм:

50; (53); 56; (60); 63; (67); 71; (75); 80; (85); 90; (95); 100; (106); 112; (118); 125; (132); 140; (150); 160; (170); 180; (190); 200; (212); 224; (236); 250; (265); 280; (300); 315; (335); 355; (375); 400; (425); 450; 475; 500; (530); 560; (600); (620); 630; (670); 710; (750); 800; (850); 900; (950); 1000; (1060); 1120; (1180); 1250; (1320); 1400; (1500); 1600; (1700); 1800; (1900); 2000; (2120); 2240; (2360); 2500; (2650); (2800); (3000); (3150); (3550); (3750); (4000) мм.

Примечание. Размеры, указанные в скобках, применяются в технически обоснованных случаях.

Источник: http://sto82.ru/oborudovanie/raschet-shkivov.html

От сети

Однофазные электродвигатели переменного тока также позволяют регулировать вращение ротора.

Коллекторные машины

Такие моторы стоят на электродрелях, электролобзиках и другом инструменте. Чтобы уменьшить или увеличить обороты, достаточно, как и в предыдущих случаях, изменять напряжение питания. Для этой цели также есть свои решения. Конструкция подключается непосредственно к сети. Регулировочный элемент – симистор, управление которого осуществляется динистором. Симистор ставится на теплоотвод, максимальная мощность нагрузки – 600 Вт.

Если есть подходящий ЛАТР, можно все это делать при помощи его.

Двухфазный двигатель

Аппарат, имеющий две обмотки – пусковую и рабочую, по своему принципу является двухфазным. В отличие от трехфазного имеет возможность менять скорость ротора. Характеристика крутящегося магнитного поля у него не круговая, а эллиптическая, что обусловлено его устройством. Есть две возможности контролирования числа оборотов:

  1. Менять амплитуду напряжения питания (Uy);
  2. Фазное – меняем емкость конденсатора.

Такие агрегаты широко распространены в быту и на производстве.

Обычные асинхронники

Электрические машины трехфазного тока, несмотря на простоту в эксплуатации, обладают рядом характеристик, которые нужно учитывать. Если просто изменять питающее напряжение, будет в небольших пределах меняться момент, но не более. Чтобы в широких пределах регулировать обороты, необходимо довольно сложное оборудование, которое просто так собрать и наладить сложно и дорого.

Как уменьшить частоту вращения электродвигателя

Для этой цели промышленностью налажен выпуск частотных преобразователей, помогающих менять обороты электродвигателя в нужном диапазоне.

Асинхронник набирает обороты в согласии с выставленными на частотнике параметрами, которые можно менять в широком диапазоне. Преобразователь – самое лучшее решение для таких двигателей.

Источник: http://sto82.ru/oborudovanie/raschet-shkivov.html

Повышающая и понижающая передача

Рассмотрим нижнюю картинку. Зеленый шкив с помощью ручки крутит персонаж с силой F. Это ведущий шкив. Синий шкив крутится за счет ремня. Это ведомый шкив. К нему на вал подвешен груз с максимально возможной массой, которую может поднять механизм.

Рис. 8. Виды ремённых передач

  1. В первом случае диаметр ведущего и ведомого шкивов одинаковый. Скорость и сила на выходе не поменяется.
  2. Во втором случае диаметр ведущего шкива меньше ведомого. Скорость на выходе упадет. Такая передача называется понижающей. Сила при этом увеличится и механизм сможет поднять груз большей массы, чем первый.
  3. В третьем случае диаметр ведущего шкива больше ведомого. Скорость на выходе увеличится. Такая передача называется повышающей. Сила при этом уменьшится и механизм сможет поднять груз меньшей массы, чем первый и второй.

Почему так происходит? Любой сложный механизм можно представить через простые механизмы. В данном случае ручка, за которую тянет персонаж и радиус к точке на окружности, которую толкает приводной ремень, образуют рычаг. Посмотрите на следующий рисунок.


Рис. 9. Схема понижающей и повышающей ремённой передачи

Короче плечо рычага к нагрузке (радиус шкива) – больше сила, но меньше пройденный путь.

Длиннее плечо рычага к нагрузке (радиус шкива) – меньше сила, но больше пройденный путь.

Эти схемы с понижающей и повышающей ремённой передачей наглядно демонстрируют работу золотого правила механики — за выигрыш в силе приходится платить таким же проигрышем в расстоянии (схема 1) или за выигрыш в расстоянии приходится платить таким же проигрышем в силе (схема 2).

Источник: http://sto82.ru/oborudovanie/raschet-shkivov.html

Добавить комментарий