Радиус описанной окружности прямоугольного треугольника
Радиус описанной окружности прямоугольного треугольника равен половине его гипотенузы.
a , b – катеты прямоугольного треугольника
c – гипотенуза
Формула радиуса описанной окружности прямоугольного треугольника (R):
Калькулятор – вычислить, найти радиус описанной окружности прямоугольного треугольника
Нахождение радиуса описанной вокруг треугольника окружности
В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.
Формулы вычисления радиуса описанной окружности
Произвольный треугольник
Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:
где a, b, c – стороны треугольника, S – его площадь.
Прямоугольный треугольник
Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.
Равносторонний треугольник
Радиус описанной около правильного треугольника окружности вычисляется по формуле:
где a – сторона треугольника.
Примеры задач
Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.
Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:
Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:
Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.
Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:
Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.
Радиус описанной окружности около прямоугольного треугольника онлайн
С помощю этого онлайн калькулятора можно найти радиус описанной окружности около любого треугольника, в том числе радиус описанной окружности около прямоугольного треугольника. Для нахождения радиуса окружности описанной около треугольника введите известные данные в ячейки и нажмите на кнопку “Вычислить”. Теоретическую часть и численные примеры смотрите ниже.
Открыть онлайн калькулятор
1. Радиус окружности описанной около прямоугольного треугольника, если известна гипотенуза треугольника
Пусть известна гипотенуза c прямоугольного треугольника (Рис.1). Найдем радиус описанной окружности около треугольника.
На странице Радиус окружности описанной около треугольника формула радиуса описанной окружности около треугольника по стороне и противолежащему углу имеет вид:
( small R=frac<large c> <large 2 sin C>)
где C − угол противолежащий гипотенузе прямоугольного треугольника. Поскольку угол, противолежащий гипотенузе − прямой, то получим:
( small R=frac<large c><large 2 sin 90°>=frac<large c><large 2>, )
( small R=frac<large c><large 2>. ) | (1) |
Пример 1. Известна гипотенуза ( small с=frac<9> <2>) прямоугольного треугольника. Найти радиус окружности описанной около треугольника.
Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (1).
Подставим значение ( small c=frac<9> <2>) в (1):
Ответ:
2. Радиус окружности описанной около прямоугольного треугольника, если известны катеты треугольника
Пусть известны катеты a и b прямоугольного треугольника. Найдем радиус описанной окружности около треугольника (Рис.2).
Из теоремы Пифагора запишем формулу гипотенузы, выраженная через катеты:
( small c=sqrt. ) | (2) |
Подставляя (2) в (1), получим:
( small R=frac<large sqrt><large 2>. ) | (3) |
Пример 2. Катеты прямоугольного треугольника равны: ( small a=15 , ; b=3.) Найти радиус окружности описанной около треугольника.
Решение. Для нахождения радиуса окружности описанной около прямоугольного треугольника воспользуемся формулой (3). Подставим значения ( small a=15 , ; b=3) в (3):
Ответ:
3. Радиус окружности описанной около прямоугольного треугольника, если известны катет и противолежащий угол треугольника
Формула для вычисления радиуса окружности описанной около прямоугольного треугольника, если известны катет и противолежащий угол треугольника аналогична формуле вычисления радиуса описанной окружности около произвольного треугольника (см. статью на странице Радиус описанной окружности около треугольника онлайн):
(4) |
4. Радиус окружности описанной около прямоугольного треугольника, если известны катет и прилежащий острый угол треугольника
Пусть известны катет a и прилежащий острый угол B прямоугольного треугольника (Рис.4). Найдем радиус описанной окружности около треугольника.
Так как треугольник прямоугольный, то сумма острых углов треугольника равна 90°:
( small angle A+angle B=90°. )
( small angle A=90°-angle B. ) | (5) |
Подставляя (5) в (4), получим:
( small R=frac<large a><large 2 sin A>=frac<large a><large 2 sin(90°-B)>) ( small =frac<large a> <large 2 cos B>)
( small R=frac<large a><large 2 cos B>. ) | (6) |
Пример 3. Катет прямоугольного треугольника равен: ( small a=15 ,) а прилежащий угол равен ( small angle B=25°. ) Найти радиус окружности описанной около треугольника.
Решение. Для нахождения радиуса окружности описанной около прямоугольного треугольника воспользуемся формулой (6). Подставим значения ( small a=15 , ; angle B=25° ) в (6):
Ответ:
[spoiler title=”источники:”]
http://matworld.ru/geometry/radius-opisannoj-okruzhnosti-pryamougolnogo-treugolnika.php
[/spoiler]
, , – стороны треугольника
– полупериметр
– центр окружности
Формула радиуса описанной окружности треугольника ( R ) :
– сторона треугольника
– высота
– радиус описанной окружности
Формула радиуса описанной окружности равностороннего треугольника через его сторону:
Формула радиуса описанной окружности равностороннего треугольника через высоту:
Зная стороны равнобедренного треугольника, можно по формуле, найти, радиус описанной окружности около этого треугольника.
a, b – стороны треугольника
Формула радиуса описанной окружности равнобедренного треугольника(R):
Радиус описанной окружности прямоугольного треугольника равен половине его гипотенузы.
a, b – катеты прямоугольного треугольника
c – гипотенуза
Формула радиуса описанной окружности прямоугольного треугольника (R):
a – боковые стороны трапеции
c – нижнее основание
b – верхнее основание
d – диагональ
p – полупериметр треугольника DBC
p = (a+d+c)/2
Формула радиуса описанной окружности равнобокой трапеции, (R)
Радиус описанной окружности квадрата равен половине его диагонали
a – сторона квадрата
d – диагональ
Формула радиуса описанной окружности квадрата (R):
Радиус описанной окружности прямоугольника равен половине его диагонали
a, b – стороны прямоугольника
d – диагональ
Формула радиуса описанной окружности прямоугольника (R):
a – сторона многоугольника
N – количество сторон многоугольника
Формула радиуса описанной окружности правильного многоугольника, (R):
a – сторона шестиугольника
d – диагональ шестиугольника
Радиус описанной окружности правильного шестиугольника (R):
В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.
-
Формулы вычисления радиуса описанной окружности
-
Произвольный треугольник
- Прямоугольный треугольник
- Равносторонний треугольник
-
Произвольный треугольник
- Примеры задач
Формулы вычисления радиуса описанной окружности
Произвольный треугольник
Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:
где a, b, c – стороны треугольника, S – его площадь.
Прямоугольный треугольник
Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.
Равносторонний треугольник
Радиус описанной около правильного треугольника окружности вычисляется по формуле:
где a – сторона треугольника.
Примеры задач
Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.
Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:
Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:
Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.
Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:
Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.
Радиус описанной окружности прямоугольного треугольника, формула
Если хорошенько приглядеться и построить еще один прямоугольный треугольник, равный первому и симметричный относительно гипотенузы, то мы увидим, что получился прямоугольник. Центр описанной окружности лежит на пересечении диагоналей этого прямоугольника. Отсюда следует, что гипотенуза прямоугольного треугольника является диаметром окружности. Соотвественно радиус описанной окружности прямоугольного треугольника вычисляется по формуле Пифагора:
[ R = frac{1}{2} sqrt{a^2+b^2}]
(a, b – стороны прямоугольного треугольника; R – радиус описанной окружности прямоугольного треугольника)
Вычислить, найти радиус описанной окружности прямоугольного треугольника по формуле (1)
Радиус описанной окружности прямоугольного треугольника |
стр. 247 |
---|
Радиус описанной около треугольника окружности
Определение
Треугольник является геометрической фигурой на плоскости, которая включает три стороны в виде отрезков, образованных с помощью соединения трех точек, не лежащих на одной прямой.
Обозначают данную геометрическую фигуру символом △.
Точками A, B и C обычно обозначают вершины треугольника. Отрезки AB, BC и AC определяют стороны треугольника, которые, как правило, обозначают с помощью латинской буквы. К примеру, AB = a, BC = b, AC = c.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Внутренность треугольника представляет собой часть плоскости, которая ограничена сторонами треугольника. Стороны треугольника в вершинах формируют три угла, которые обычно обозначают, используя греческие буквы – (alpha, beta, gamma) и другие. По этой причине треугольник получил название многоугольника с тремя углами. Для обозначения углов также применяют символ ∠, к примеру:
- (alpha )∠BAC или ∠CAB;
- (beta) ∠ABC или ∠CBA;
- (gamma )∠ACB или ∠BCA.
Треугольники различают по величине углов или количеству равных сторон:
- остроугольный, в котором все три угла острые, то есть меньше (90^{0});
- тупоугольный, обладает один из углов больше (90^{0}), а два остальных угла являются острыми;
- прямоугольный с одним прямым углом в (90^{0}), двумя сторонами, образующими прямой угол, которые называют катетами, третьей стороной, расположенной напротив прямого угла в виде гипотенузы;
- разносторонний, со сторонами разной длины;
- равнобедренный, с двумя одинаковыми боковыми сторонами и третьей стороной в виде основания, углы при котором равны;
- равносторонний (правильный) обладает тремя сторонами с одинаковой длиной и углами, равными по (60^{0}).
Определение
Окружностью называют замкнутую плоскую прямую, каждая точка которой равноудалена от данной точки или центра, лежащей в той же плоскости, что и кривая.
Примечание
Окружность, описанная около треугольника, является окружностью, проходящей через все три вершины рассматриваемого треугольника.
Радиус окружности, описанной около треугольника, определяется с помощью специальных формул, подкрепленных соответствующими доказательствами. Первая закономерность позволяет рассчитать его согласно расширенной теореме синусов:
- радиус R окружности, описанной около треугольника, равен отношению стороны треугольника к удвоенному синусу противолежащего угла.
Формула для нахождения радиуса:
(R=frac{AB}{2sin angle C} =frac{AC}{2sin angle B} =frac{BC}{2sin angle A})
Вторую формулу для определения радиуса описанной около треугольника окружности записывают таким образом:
(R=frac{AB*BC*AC}{4S_{ABC}})
Общий вид:
(R=frac{abc}{4S})
Таким образом, для определения радиуса окружности, которая описана около треугольника, требуется произведение длины сторон этой геометрической фигуры разделить на четыре площади треугольника.
Площадь треугольника можно рассчитать, используя формулу Герона:
(S=sqrt{p(p-a)(p-b)(p-c)})
В данном случае р обозначает полупериметр и определяется по формуле:
(p=frac{a+b+c}{2})
В результате преобразованная формула для определения радиуса описанной около треугольника окружности примет следующий вид:
(R=frac{abc}{4sqrt{p(p-a)(p-b)(p-c)}})
Представленные закономерности справедливы в случае любого треугольника, независимо от его вида. При расчетах необходимо учитывать расположение центра описанной окружности.
Расположение центра окружности, описанной около треугольника:
- остроугольный треугольник – во внутренней области;
- прямоугольный треугольник – на середине гипотенузы;
- тупоугольный треугольник – вне геометрической фигуры, напротив тупого угла.
Вычисление радиуса через стороны
Выше были рассмотрены формулы, с помощью которых можно определить радиус окружности, описанной вокруг треугольника, зная его стороны. Кроме того, при решении задач можно использовать некоторые закономерности, предусмотренные для треугольников определенного типа.
Формула для равнобедренного треугольника
Обладая информацией о длине сторон равнобедренного треугольника, можно определить радиус окружности, описанной вокруг этого треугольника.
(R=frac{a^{2}}{sqrt{4a^{2}-b^{2}}})
где a и b являются сторонами треугольника.
Формула для равностороннего треугольника
Такое выражение подходит для расчета радиуса окружности, описанной около любого правильного многоугольника. Формула имеет вид:
(R=frac{a}{2sin frac{180^{0}}{n}})
Здесь а является длиной стороны многоугольника, n – определяет количество его сторон.
Частным случаем правильного многоугольника является правильный треугольник. Тогда данную формулу можно применить для расчета радиуса окружности, описанной около правильного треугольника.
Формула радиуса описанной окружности для правильного треугольника:
(R=frac{a}{sqrt{3}})
Исключая иррациональность в знаменателе, получим:
(R=frac{asqrt{3}}{3})
Следует заметить, что в случае правильного треугольника радиус описанной окружности в два раза превышает радиус вписанной окружности:
R=2r
Формула для произвольного треугольника
Как правило, при решении задач по геометрии необходимо вычислить радиус окружности, описанной около произвольного треугольника. В этом случае целесообразно воспользоваться формулой:
(R=frac{abc}{4S})
Справедливо следующее равенство:
(R=frac{a}{2sin alpha }=frac{b}{2sin beta }= frac{c}{2sin gamma })
где a, b, c являются длинами сторон треугольника, (alpha, beta, gamma) определяются, как противолежащие этим сторонам углы, S представляет собой площадь треугольника.
Формула для прямоугольного треугольника
Радиус описанной около прямоугольного треугольника окружности можно определить по формуле:
(R=frac{AB}{2})
Таким образом, в случае прямоугольного треугольника радиус окружности, которая описана около него, равен половине гипотенузы. Как правило, ее обозначают с помощью «с», то есть АВ = с. Поэтому формула принимает следующий вид:
(R=frac{c}{2})
Примеры решения задач
Задача 1
Стороны треугольника равны 4, 6 и 9 см. Необходимо определить радиус окружности, которая описана около данного треугольника.
Решение
В первую очередь нужно рассчитать площадь рассматриваемого треугольника. Зная длины его сторон, ее можно определить с помощью формулы Герона:
(S=sqrt{9.5(9.5-4)*(9.5-6)*(9.5-9)}approx 9.56)
Затем достаточно просто найти радиус окружности:
(R=frac{4*6*9}{4*9.56}approx 5.65)
Ответ: радиус окружности равен 5.65 см
Задача 2
Известно, что катеты прямоугольного треугольника равны 6 и 8 см. Требуется рассчитать радиус окружности, которая описана около данного треугольника.
Решение
Определим гипотенузу рассматриваемого треугольника с помощью теоремы Пифагора:
(c=sqrt{6^{2}+8^{2}}=10)
Известно, что радиус окружности, которая описана около прямоугольного треугольника, соответствует половине его гипотенузы. Таким образом:
(R = 10/2 = 5)
Ответ: радиус окружности равен 5 см.
Задача 3
Необходимо определить радиус описанной окружности около треугольника АВС, стороны которого равны (AB=4sqrt{2}) см,( AC=7 см) и (angle A=45^{circ}.)
Решение
Определить радиус окружности, которая описана около треугольника, можно, как отношение произведения сторон треугольника к его площади, умноженной на 4:
(R=frac{ABcdot BCcdot AC}{4S} )
По теореме косинусов следует рассчитать сторону ВС:
(BC=sqrt{AC^2 +AB^2 -2ACcdot ABcdot cos angle A} =)
(=sqrt{49+32-2cdot 7cdot 4sqrt{2} cdot frac{sqrt{2} }2 } =sqrt{25} =5 cm)
Затем можно определить площадь треугольника АВС:
(S_{ABC} =frac{1}{2} cdot ABcdot ACcdot sin angle A=14 cm^2 )
Зная площадь, легко рассчитать радиус окружности:
(R=frac{ABcdot BCcdot AC}{4S} =frac{4sqrt{2} cdot 5cdot 7}{4cdot 14} =frac{5sqrt{2} }{2} cm)
Ответ: радиус окружности равен (frac{5sqrt{2} }2 см.)
Задача 4
Дан треугольник АВС со сторонами AB=3 см,( AC=sqrt{6} см). Необходимо определить углы этой геометрической фигуры. При этом радиус описанной окружности равен (R=sqrt{3}) см.
Решение
Согласно формуле, радиус описанной окружности равен отношению стороны треугольника к удвоенному синусу противолежащего угла:
(R=frac{AB}{2sin angle C} =frac{AC}{2sin angle B} =frac{BC}{2sin angle A} )
Таким образом, можно вычислить синусы углов треугольника:
(sin angle C=frac{AB}{2R} =frac{3}{2sqrt{3} } =frac{sqrt{3} }{2}, откуда angle C=60^{circ},)
(sin angle B=frac{AC}{2R} =frac{sqrt{6} }{2sqrt{3} } =frac{sqrt{2} }{2}, откуда angle B=45^{circ}.)
Далее следует определить угол А:
(angle A=180^{circ} -60^{circ} -45^{circ} =75^{circ} )
Ответ: (angle A=75^{circ} , angle B=45^{circ} , angle C=60^{circ})