Как найти радиус воздушного шара

В данной публикации мы рассмотрим, как можно вычислить радиус шара и разберем примеры решения задач для закрепления материала.

  • Формулы вычисления радиуса шара

    • 1. Через объем

    • 2. Через площадь поверхности

  • Примеры задач

Формулы вычисления радиуса шара

Радиус шара

1. Через объем

Радиус шара вычисляется по формуле:

Формула радиуса шара через объем

V – объем шара; равен трем четвертым произведения его радиуса в кубе и числа π.

Формула объема шара через радиус

π – число, приближенное значение которого равняется 3,14.

2. Через площадь поверхности

Радиус шара рассчитывается таким образом:

Формула радиуса шара через площадь поверхности

S – площадь поверхности шара; равна четырем его радиусам в квадрате, умноженным на число π.

S = 4πR2

Примеры задач

Задание 1
Объем шара составляет 904,32 см3. Найдите его радиус.

Решение:
Воспользовавшись первой формулой получаем:
Вычисление радиуса шара через объем

Задание 2
Вычислите радиус шара, если площадь его поверхности равна 314 см2.

Решение:
В данном случае рассчитать радиус шара можно, применив 2-ю формулу (через площадь поверхности):
Вычисление радиуса шара через площадь поверхности


Загрузить PDF


Загрузить PDF

Радиус шара (обозначается как r или R) – это отрезок, который соединяет центр шара с любой точкой на его поверхности. Как и в случае круга, радиус шара является важной величиной, которая необходима для нахождения диаметра шара, длины окружности, площади поверхности и/или объема. Но радиус шара можно найти и по данному значению диаметра, длины окружности и другой величины. Используйте формулу, в которую можно подставить данные значения.

  1. Изображение с названием Find the Radius of a Sphere Step 1

    1

    Вычислите радиус по диаметру. Радиус равен половине диаметра, поэтому используйте формулу г = D/2. Эта такая же формула, которая используется при вычислении радиуса и диаметра круга.[1]

    • Например, дан шар с диаметром 16 см. Радиус этого шара: r = 16/2 = 8 см. Если диаметр равен 42 см, то радиус равен 21 см (42/2=21).
  2. Изображение с названием Find the Radius of a Sphere Step 2

    2

    Вычислите радиус по длине окружности. Используйте формулу: r = C/2π. Так как длина окружности C = πD = 2πr, то разделите формулу для вычисления длины окружности на 2π и получите формулу для нахождения радиуса.[2]

    • Например, дан шар с длиной окружности 20 см. Радиус этого шара: r = 20/2π = 3,183 см.
    • Такая же формула используется при вычислении радиуса и длины окружности круга.
  3. Изображение с названием Find the Radius of a Sphere Step 3

    3

    Вычислите радиус по объему шара. Используйте формулу: r = ((V/π)(3/4))1/3.[3]
    Объем шара вычисляется по формуле V = (4/3)πr3. Обособив r на одной стороне уравнения, вы получите формулу ((V/π)(3/4))3 = г, то есть для вычисления радиуса объем шара делим на π, результат умножаем на 3/4, а полученный результат возводим в степень 1/3 (или извлекаем кубический корень).[4]

    • Например, дан шар с объемом 100 см3. Радиус этого шара вычисляется так:
      • ((V/π)(3/4))1/3 = r
      • ((100/π)(3/4))1/3 = r
      • ((31,83)(3/4))1/3 = r
      • (23,87)1/3 = r
      • 2,88 см = r
  4. Изображение с названием Find the Radius of a Sphere Step 4

    4

    Вычислите радиус по площади поверхности. Используйте формулу: г = √(A/(4 π)). Площадь поверхности шара вычисляется по формуле А = 4πr2. Обособив r на одной стороне уравнения, вы получите формулу √(A/(4π)) = r, то есть, чтобы вычислить радиус, нужно извлечь квадратный корень из площади поверхности, деленной на 4π. Вместо того чтобы извлекать корень, выражение (A/(4π)) можно возвести в степень 1/2.[5]

    • Например, дан шар с площадью поверхности 1200 см3. Радиус этого шара вычисляется так:
      • √(A/(4π)) = r
      • √(1200/(4π)) = r
      • √(300/(π)) = r
      • √(95,49) = r
      • 9,77 см = r

    Реклама

  1. Изображение с названием Find the Radius of a Sphere Step 5

    1

    Запомните основные величины, которые имеют отношение к вычислению радиуса шара. Радиус шара – это отрезок, который соединяет центр шара с любой точкой на его поверхности. Радиус шара можно вычислить по данным значениям диаметра, длины окружности, объема или площади поверхности.

    • Диаметр (D) – это отрезок, который соединяет две точки на поверхности шара и проходит через его центр (то есть это наибольшее расстояние между противоположными точками, лежащими на поверхности шара). Диаметр равен удвоенному радиусу.
    • Длина окружности (С) представляет собой длину окружности большого круга, то есть круга, который образует секущая плоскость, проходящая через центр шара.
    • Объем (V) – это значение трехмерного пространства, занимаемого шаром.[6]
    • Площадь поверхности (А) – это значение двумерного (плоского) пространства, ограниченного поверхностью шара.
    • Пи (π) – это постоянная, которая равна отношению длины окружности к ее диаметру. Первыми десятью цифрами этой постоянной являются 3,141592653, но зачастую число Пи округляется до 3,14.
  2. Изображение с названием Find the Radius of a Sphere Step 6

    2

    Воспользуйтесь значениями данных величин, чтобы найти радиус. Радиус можно вычислить по данным значениям диаметра, длины окружности, объема и площади поверхности. Более того, указанные величины можно найти по данному значению радиуса. Чтобы вычислить радиус, просто преобразуйте формулы для нахождения указанных величин. Ниже приведены формулы (в которых присутствует радиус) для вычисления диаметра, длины окружности, объема и площади поверхности.

    • D = 2г. Как и в случае круга, диаметр шара в два раза больше его радиуса.
    • C = πD = 2πr. Как и в случае круга, длина окружности шара равна произведению π на диаметр шара. Так как диаметр вдвое больше радиуса, то длина окружности шара равна удвоенному произведению π на радиус шара.
    • V = (4/3)πr3. Объем шара равен произведению 4/3 на π и на радиус в кубе.[7]
    • А = 4πr2. Площадь поверхности шара равна учетверенному произведению π на радиус в квадрате. Так как площадь круга равна πr2, то площадь поверхности шара в четыре раза больше площади круга, который образует секущая плоскость, проходящая через центр шара.

    Реклама

  1. Изображение с названием Find the Radius of a Sphere Step 7

    1

    Найдите координаты (х,у,z) центра шара. Радиус шара равен расстоянию между его центром и любой точкой, лежащей на поверхности шара. Если известны координаты центра шара и любой точки, лежащей на его поверхности, можно найти радиус шара по специальной формуле, вычислив расстояние между двумя точками. Сначала найдите координаты центра шара. Имейте в виду, что так как шар является трехмерной фигурой, то точка будет иметь три координаты (х,у,z), а не две (х,у).

    • Рассмотрим пример. Дан шар с центром с координатами (4,-1,12). Воспользуйтесь этими координатами, чтобы найти радиус шара.
  2. Изображение с названием Find the Radius of a Sphere Step 8

    2

    Найдите координаты точки, лежащей на поверхности шара. Теперь нужно найти координаты (х,у,z) любой точки, лежащей на поверхности шара. Так как все точки, лежащие на поверхности шара, расположены на одинаковом расстоянии от центра шара, для вычисления радиуса шара можно выбрать любую точку.

    • В нашем примере допустим, что некоторая точка, лежащая на поверхности шара, имеет координаты (3,3,0). Вычислив расстояние между этой точкой и центром шара, вы найдете радиус.
  3. Изображение с названием Find the Radius of a Sphere Step 9

    3

    Вычислите радиус по формуле d = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2). Узнав координаты центра шара и точки, лежащей на его поверхности, вы можете найти расстояние между ними, которое равно радиусу шара. Расстояние между двумя точками вычисляется по формуле d = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2), где d – расстояние между точками, (x1,y1,z1) – координаты центра шара, (x2,y2,z2) – координаты точки, лежащей на поверхности шара.

    • В рассматриваемом примере вместо (x1,y1,z1) подставьте (4,-1,12), а вместо (x2,y2,z2) подставьте (3,3,0):
      • d = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2)
      • d = √((3 – 4)2 + (3 – -1)2 + (0 – 12)2)
      • d = √((-1)2 + (4)2 + (-12)2)
      • d = √(1 + 16 + 144)
      • d = √(161)
      • d = 12,69. Это искомый радиус шара.
  4. Изображение с названием Find the Radius of a Sphere Step 10

    4

    Имейте в виду, что в общих случаях r = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2). Все точки, лежащие на поверхности шара, расположены на одинаковом расстоянии от центра шара. Если в формуле для нахождения расстояния между двумя точками “d” заменить на “r”, получится формула для вычисления радиуса шара по известным координатам (x1,y1,z1) центра шара и координатам (x2,y2,z2) любой точки, лежащей на поверхности шара.

    • Возведите обе стороны этого уравнения в квадрат, и получите r2 = (x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2. Отметьте, что это уравнение соответствует уравнению сферы r2 = x2 + y2 + z2 с центром с координатами (0,0,0).

    Реклама

Советы

  • Не забывайте про порядок выполнения математических операций. Если вы не помните этот порядок, а ваш калькулятор умеет работать с круглыми скобками, пользуйтесь ими.
  • В этой статье рассказывается о вычислении радиуса шара. Но если вы испытываете затруднения с изучением геометрии, лучше начать с вычисления величин, связанных с шаром, через известное значение радиуса.
  • π (Пи) – это буква греческого алфавита, которая обозначает постоянную, равную отношению диаметра круга к длине его окружности. Число Пи является иррациональным числом, которое не записывается как отношение действительных чисел. Существует множество приближений, например, отношение 333/106 позволит найти число Пи с точностью до четырех цифр после десятичной запятой. Как правило, пользуются приблизительным значением числа Пи, которое равно 3,14.

Реклама

Похожие статьи

Об этой статье

Эту страницу просматривали 114 745 раз.

Была ли эта статья полезной?

Как вычислить радиус шара по объему?

Для вычисления параметров шара существуют формулы.

В частности, чтобы вычислить радиус шара при известном объеме, следует использовать такую формулу:

Где R – радиус шара (искомое значение), V – объем (известное значение), пи – константа, значение которой принимается как 3,14, при этом для более точных вычислений следует брать большее количество знаков после запятой.

автор вопроса выбрал этот ответ лучшим

Ксарф­акс
[156K]

5 лет назад 

Радиус шара по объему

Шар представляет собой геометрическое тело, являющееся совокупностью всех точек пространства, которые находятся от центра шара на расстоянии не больше заданного. Данное расстояние называется радиусом шара.

Для того, чтобы выразить радиус шара через объём, нужно вспомнить формулу:

Объём шара V равен произведению 4/3 на число π (которое является константой и равно 3,14) и на радиус в кубе.

Из этой формулы можно сначала выразить куб радиуса:

Конечная формула получится такой:

Радиус шара будет равен кубическому корню из дроби; числитель дроби – объем, умноженный на 3; знаменатель дроби – число π, умноженное на 4.


Пример

Предположим, объем шара равен 9 кубическим метрам.

Радиус шара находим по формуле, приведенной выше:

R ≈ ³√((3 * 9) / (4 * 3,14)) ≈ ³√(27 / 12,56) ≈ 3 / ³√12,56 ≈ 3 / 2,29 ≈ 1,31 метр.

Таким образом, если объём шара составляет 9 куб. метров, то его радиус будет равен приблизительно 1,31 метра.

Барха­тные лапки
[382K]

более года назад 

Такие задания иногда встречаются на ЕГЭ, с одной стороны вроде ничего сложного, но все же извилины придется напрячь, чтобы ее решить. Лично мне такие задачки давались с трудом, так как я не сильно любила геометрию, но все же формулы приходилось заучивать, чтобы решать задачки.

Давайте для начала вспомним по какой формуле мы находим объем шара.

Итак, эта формула выглядит следующим образом:

Значит радиус шара мы можем вычислить по такой формуле:

В данном случае мы выражаем одну величину через другую.

Так что все оказалось не так уж и запутанно и ученикам вполне под силу справится с такой заковыристой задачкой.

bezde­lnik
[34.1K]

5 лет назад 

Радиус шара по известному объёму вычисляется по формуле R равен корню кубическому из 3*V}/4*pi, где V – объём шара, pi- трансцендентное число равное отношению длины половины окружности к её радиусу. Поэтому точно вычислить радиус не возможно, а только с определённой погрешностью. Некоторую сложность представляет извлечение кубического корня. Для этого можно воспользоваться таблицей кубов. Например, при V=1000 куб.мм. и pi=3,14 подкоренное выражение равно 238,8535… и по таблице находим R равен примерно 6,2 мм.

Марин­а Волог­да
[295K]

более года назад 

Надо вспомнить формулу и проблем с вычислением радиуса шара не возникнет.

Итак, сначала укажем формулу:

R – это как раз искомый нами радиус.

3 и корень – это кубический корень из полученной дроби.

? – это пи (оно всегда едино и составляет 3.14).

V – объем шара, который нам известен.

Ну а теперь не сложно высчитать радиус, зная его объем, подставляя в формулу известные нам данные.

Simpl­e Ein
[191K]

3 года назад 

Найти радиус шара, зная объем очень легко.

Объем шара находится по формуле:

Выразим из данной формулы значение радиуса шара. Для этого необходимо объем разделить на число «Пи», умножив на ¾. Из полученного числа необходимо найти кубический корень.

-Алекс­андр–
[31K]

5 лет назад 

Формула объема шара:

V=4/3*п*(R в степени 3)

отсюда

R = корень третей степени из (3/4*V/п)

Лара Изюми­нка
[59.8K]

2 года назад 

Достаточно простая задача для тех, кто помнит, чему равен обьем шара. А он равен четыре третьх умножить на пи умножить на радиус в кубе.

Далее нужно уметь просто выражать одну величину через другую.

В итоге у нас радиус равен корень кубический из ( 3 умножить на обьем и это разделить на 4 пи.) Итак еще нужно вспомнить, что пи это 3,14 приблизительно. Если нужна большая точность, берут больше знаков после запятой в числе пи. Это имеет смысл при нахождении радиуса в больших сооружениях, в архитектуре. Обычно хватает точности два знака после запятой. Эта формула нужна при решении задач по стереометрии .

Vodil­a
[16.6K]

более года назад 

Зная, что обьем шара равен 43 пи умножить на радиус в квадрате совсем нетрудно выразить радиус. Очевидно, что он будет равен корень кубический из три четвертых обьема, деленного на пи. Вот собственно и вся формула. Такая задача иногда встречается в ЕГЭ по математике.

Hamst­er133­7
[28.6K]

2 года назад 

Для того, что бы найти радиус шара при наличии объёма, следует воспользоваться следующей формулой:

Где число “П” равно 3,14. Так же существуют другие формулы для поиска радиуса шара (из данной формулы можно вывести другую формулу).

Для того, чтобы отыскать радиус шара при том, что объем известен воспользуйтесь формулой, а именно, в качестве основной применима такая.

R является искомым значением, а также радиусом шара. V отображает значение, являющееся известным, объем. Пи является константа, у которой значение = 3,14. Так, когда делаются точные расчеты следует брать большее количество знаков, которые находятся после запятой.

Знаете ответ?

Баканина Л.П. Задачи о воздушных шарах // Квант. — 1975. — № 1. — С. 60-63.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

В наш век самолетов и ракет, для которых доступны любые высоты над поверхностью Земли, воздушные шары, громоздкие, ненадежные и неуправляемые, уже отошли в прошлое, хотя когда-то именно они дали человеку возможность подняться в воздух. Впрочем, в некоторых случаях воздушные шары очень удобны, они используются и сейчас. Например, с аэростата удобно обучать прыжкам с. парашютом, а метеорологи исследуют давление, температуру и воздушные потоки в атмосфере с помощью шаров-зондов.

Задачи о воздушных шарах даются иногда на вступительных экзаменах. Обычно их можно разделить на два типа:

1) задачи, в которых нужно найти связь между габаритами и наполнением шара и подъемной силой, действующей на шар у поверхности Земли;

2) задачи, в которых нужно определить максимальную высоту подъема шара; при этом задается какая-нибудь модель атмосферы, то есть закон изменения давления и температуры с высотой.

По существу, задачи обоих типов – это задачи на статику. Для их решения нужно уметь применять уравнение состояния газов и найти условие равновесия шара, на который действует сила притяжения Земли и выталкивающая сила со стороны окружающего шар воздуха. Если выталкивающая сила больше силы притяжения (разность этих сил называют подъемной силой), шар поднимается вверх. Но по мере подъема уменьшается плотность окружающего воздуха, а, следовательно, уменьшается и выталкивающая сила, по закону Архимеда равная

где ρ — плотность воздуха, а V — объем шара. На некоторой высоте выталкивающая сила окажется равной силе притяжения – это и будет максимальной высотой подъема шара.

Разберем теперь несколько конкретных задач, которые в разные годы предлагались на вступительных экзаменах в Московский физико-технический институт.

Задача 1. Сферическая оболочка воздушного шара сделана из материала, квадратный метр которого имеет массу b = 1 кг/м2. Шар наполнен гелием при нормальном атмосферном давлении. При каком минимальном радиусе шар поднимает сам себя? Температура гелия и температура окружающего воздуха одинаковы и равны 0 ºС. Молекулярная масса воздуха 29 кг/кмоль, молекулярная масса гелия 4 кг/кмоль.

При увеличении радиуса шара выталкивающая сила растет пропорционально кубу радиуса, а вес оболочки – пропорционально квадрату радиуса. Следовательно, выталкивающая сила растет быстрее и, начиная с какого-то значения радиуса, станет больше, чем вес оболочки. Тогда шар начнет подниматься. Обозначим этот радиус оболочки через r. При этом

откуда

Плотности воздуха ρв и гелия ρНе при данных условиях найдем с помощью закона Менделеева–Клапейрона  :

Окончательно получаем

Задача 2. Объем воздушного шара равен V = 230 м3, масса оболочки М = 145 кг. Шар наполнен горячим воздухом при нормальном атмосферном давлении. Какую температуру должен иметь воздух внутри оболочки, чтобы шар начал подниматься? Температура наружного воздуха t0 = 0 оС.

При нагревании воздуха его плотность уменьшается, так как  (см. задачу 1). Шар начнет подниматься, если  (ρ0 – плотность наружного воздуха). Подставляя выражения для плотности наружного воздуха и воздуха внутри шара ρ, получаем

Отсюда

значит,

Tmin » 2T0 = 546 ºK = 273 ºC.

Задача 3. Для удержания на поверхности Земли метеорологического шара-зонда с массой М = 20 кг необходимо приложить силу F = 1000 Н. Шар поднимается до такой высоты, где его объем увеличивается в два раза. Температура воздуха, измеренная на этой высоте с помощью зонда, оказалась равной t = –43 ºС. Вычислить давление воздуха на этой высоте, если на поверхности Земли давление р0 = 754 мм рт. ст., а температура t0= +17 °С.

Условие равновесия шара у поверхности Земли записывается так:

                                   (1)

где V — объем шара у поверхности Земли, а  — плотность воздуха. При этом масса шара М включает в себя массу оболочки, приборов и газа, заключенного внутри оболочки. Из условия известно, что объем шара при подъеме увеличивается. Следовательно, оболочка шара мягкая и герметичная. Объем увеличивается потому, что при мягкой оболочке давление газа внутри должно быть таким же, как давление окружающего воздуха, которое уменьшается с высотой. Если оболочка герметичная, масса шара не изменяется при подъеме и максимальная высота его подъема определяется условием

                                         (2)

где . Решая совместно уравнения (1) и (2), находим

Задача 4. Шар-зонд, наполненный водородом, имеет герметичную оболочку постоянного объема V = 50 м3. Масса шара вместе с водородом М = 5 кг. Определить, на какую максимальную высоту он сможет подняться, если известно, что атмосферное давление уменьшается в два раза через каждые h = 5 км высоты. Температура в стратосфере t = –60 ºС. Молекулярная масса воздуха 29 кг/кмоль. Давление у поверхности Земли р0 = 1 атм.

На максимальной высоте выталкивающая сила равна весу шара- зонда:

Выразив плотность окружающего воздуха через давление и температуру, получим

Таким образом, давление воздуха на этой высоте равно

Посмотрим теперь, во сколько раз давление р меньше давления у поверхности Земли р0: .

Из условия известно, что давление падает в два раза через каждые 5 км подъема, то есть  , где Н — высота подъема, a h = 5 км. В нашем случае

Отсюда

H = 4h = 20 км.

Задача 5. Нерастяжимая оболочка шара-зонда объема V = 75 м3 имеет в нижней части небольшое отверстие. Масса оболочки t = 7 кг. Шар наполнен водородом. Определить, на какую максимальную высоту сможет подняться этот шар-зонд, если известно, что атмосферное давление уменьшается в два раза через каждые h = 5 км высоты. Температура воздуха в стратосфере t = –60 °С, температура водорода равна температуре окружающего воздуха. Давление у поверхности Земли р0 = 1 атм.

Эта задача отличается от предыдущей тем, что оболочка шара не герметична, а имеет отверстие. Следовательно, давление внутри шара все время равно давлению в атмосфере, и по мере увеличения высоты подъема шара водород вытекает из отверстия. Будем, считать, что подъем происходит достаточно быстро и можно пренебречь диффузией воздуха внутрь оболочки, тогда условие равновесия шара на максимальной высоте

Плотности водорода и воздуха можно найти из уравнения Менделеева-Клапейрона:

Таким образом, давление на максимальной высоте

Отношение , и, следовательно, высота подъема Н = 20 км (см. решение предыдущей задачи).

Высота подъема в задаче 5 получилась такая же, как для герметичного шара в задаче 4, но не следует забывать, что мы рассматривали разные шары, с разными объемами и массами. А если оба шара совершенно одинаковы и отличаются только тем, что у одного оболочка герметичная, а у другого имеет отверстие, — какой из шаров поднимется выше в этом случае?

Выталкивающая сила будет одинакова для обоих шаров, так как их объемы равны. Если начальные массы шаров были одинаковы, то после подъема шар с отверстием окажется легче, так как часть наполняющего его газа вытечет при подъёме. Следовательно, шар с отверстием сможет подняться на большую высоту.

Обычно человеку, впервые задумавшемуся над этим вопросом, такой результат кажется странным. Часто задают вопрос: «Как вообще в шаре с отверстием возникает подъемная сила? Ведь снизу, там, где отверстие, воздух и газ внутри шара находятся в равновесии».

Давайте рассмотрим верхнюю точку шара. Если в нижней точке шара давление воздуха и газа равно р0, в верхней точке давление воздуха , а давление газа  (h — высота шара). Если , то  и, следовательно, на оболочку снизу действует большая сила, чем сверху — возникает подъемная сила. Легко убедиться (вы сможете это сделать сами для тела достаточно простой формы), что именно эта разница давлений и дает результирующую выталкивающую силу, определяемую законом Архимеда. Недоумение часто возникает потому, что при расчетах плотности газа внутри шара обычно считают давление в шаре всюду одинаковым. Не нужно забывать, что это всего лишь приближение. Если мы определяем саму величину

то, так как h мало — всего несколько метров, , и мы можем считать . Если же нас интересует разность

то здесь оба члена одинаковы по порядку величины, и учитывать их надо оба. Кстати сказать, то, что мы считаем ρв и ρг постоянными, — тоже приближение, на самом деле они уменьшаются с высотой по мере уменьшения давления. Но учет этого обстоятельства дал бы значительно меньшую поправку к выталкивающей силе, этой поправкой можно пренебречь.

Упражнения

1. Определить подъемную силу воздушного шара, в котором находится t г водорода. Оболочка шара герметичная и сделана из легкого неупругого материала, который может свободно растягиваться.

2. На сколько градусов надо нагреть воздух внутри сообщающегося с атмосферой воздушного шара, сферическая оболочка которого имеет диаметр 10 м и весит 10 кг, для того чтобы шар взлетел? Атмосферное давление 735 мм. рт. ст., температура окружающего воздуха +27 °С.

3. Воздушный шар представляет собой баллон постоянного объема, наполненный гелием. Через отверстие в нижней части шар сообщается с атмосферой. Как изменится максимальная высота подъема шара, если гелий нагреть до температуры t1? Температуру атмосферы считать постоянной и равной t0, а давление изменяющимся по закону , где а — постоянная, h — высота подъема, р0 — давление у поверхности Земли.

Ответы.

1. 13,5g.

2. Не менее чем на 5º.

3. .


Download Article


Download Article

The radius of a sphere (abbreviated as the variable r or R) is the distance from the exact center of the sphere to a point on the outside edge of that sphere. As with circles, the radius of a sphere is often an essential piece of starting information for calculating the shape’s diameter, circumference, surface area, and/or volume. However, you can also work backward from the diameter, circumference, etc. to find the sphere’s radius. Use the formula that works with the information you have.

  1. Image titled Find the Radius of a Sphere Step 1

    1

    Find the radius if you know the diameter. The radius is half the diameter, so use the formula r = D/2. This is identical to the method used for calculating the radius of a circle from its diameter.[1]

    • If you have a sphere with a diameter of 16 cm, find the radius by dividing 16/2 to get 8 cm. If the diameter is 42, then the radius is 21.
  2. Image titled Find the Radius of a Sphere Step 2

    2

    Find the radius if you know the circumference. Use the formula C/2π. Since the circumference is equal to πD, which is equal to 2πr, dividing the circumference by 2π will give the radius.[2]

    • If you have a sphere with a circumference of 20 m, find the radius by dividing 20/2π = 3.183 m.
    • Use the same formula to convert between the radius and circumference of a circle.

    Advertisement

  3. Image titled Find the Radius of a Sphere Step 3

    3

    Calculate the radius if you know the volume of a sphere. Use the formula ((V/π)(3/4))1/3.[3]
    The volume of a sphere is derived from the equation V = (4/3)πr3. Solving for the r variable in this equation gets ((V/π)(3/4))1/3 = r, meaning that the radius of a sphere is equal to the volume divided by π, times 3/4, all taken to the 1/3 power (or the cube root.)[4]

    • If you have a sphere with a volume of 100 inches3, solve for the radius as follows:
      • ((V/π)(3/4))1/3 = r
      • ((100/π)(3/4))1/3 = r
      • ((31.83)(3/4))1/3 = r
      • (23.87)1/3 = r
      • 2.88 in = r
  4. Image titled Find the Radius of a Sphere Step 4

    4

    Find the radius from the surface area. Use the formula r = √(A/(4π)). The surface area of a sphere is derived from the equation A = 4πr2. Solving for the r variable yields √(A/(4π)) = r, meaning that the radius of a sphere is equal to the square root of the surface area divided by 4π. You can also take (A/(4π)) to the 1/2 power for the same result.[5]

    • If you have a sphere with a surface area of 1,200 cm2, solve for the radius as follows:
      • √(A/(4π)) = r
      • √(1200/(4π)) = r
      • √(300/(π)) = r
      • √(95.49) = r
      • 9.77 cm = r
  5. Advertisement

  1. Image titled Find the Radius of a Sphere Step 5

    1

    Identify the basic measurements of a sphere. The radius (r) is the distance from the exact center of the sphere to any point on the surface of the sphere. Generally speaking, you can find the radius of a sphere if you know the diameter, the circumference, the volume, or the surface area.

    • Diameter (D): the distance across the sphere – double the radius. Diameter is the length of a line through the center of the sphere: from one point on the outside of the sphere to a corresponding point directly across from it. In other words, the greatest possible distance between two points on the sphere.
    • Circumference (C): the one-dimensional distance around the sphere at its widest point. In other words, the perimeter of a spherical cross-section whose plane passes through the center of the sphere.
    • Volume (V): the three-dimensional space contained inside the sphere. It is the “space that the sphere takes up.”[6]
    • Surface Area (A): the two-dimensional area on the outside surface of the sphere. The amount of flat space that covers the outside of the sphere.
    • Pi (π): a constant that expresses the ratio of the circle’s circumference to the circle’s diameter. The first ten digits of Pi are always 3.141592653, although it is usually rounded to 3.14.
  2. Image titled Find the Radius of a Sphere Step 6

    2

    Use various measurements to find the radius. You can use the diameter, circumference, volume, and surface area to calculate the radius of a sphere. You can also calculate each of these numbers if you know the length of the radius itself. Thus, to find the radius, try reversing the formulas for these components’ calculations. Learn the formulas that use the radius to find diameter, circumference, volume, and surface area.[7]

    • D = 2r. As with circles, the diameter of a sphere is twice the radius.
    • C = πD or 2πr. As with circles, the circumference of a sphere is equal to π times the diameter. Since the diameter is twice the radius, we can also say that the circumference is twice the radius times π.
    • V = (4/3)πr3. The volume of a sphere is the radius cubed (times itself twice), times π, times 4/3.
    • A = 4πr2. The surface area of a sphere is the radius squared (times itself), times π, times 4. Since the area of a circle is πr2, it can also be said that the surface area of a sphere is four times the area of the circle formed by its circumference.
  3. Advertisement

  1. Image titled Find the Radius of a Sphere Step 7

    1

    Find the (x,y,z) coordinates of the central point of the sphere. One way to think of the radius of a sphere is as the distance between the point at the center of the sphere and any point on the surface of the sphere. Because this is true, if you know the coordinates of the point at the center of the sphere and of any point on the surface, you can find the radius of the sphere simply by calculating the distance between the two points with a variant of the basic distance formula. To begin, find the coordinates of the sphere’s center point. Note that because spheres are three-dimensional, this will be an (x,y,z) point rather than an (x,y) point.

    • This process is easier to understand by following along with an example. For our purposes, let’s say that we have a sphere centered around the (x,y,z) point (4, -1, 12). In the next few steps, we’ll use this point to help find the radius.
  2. Image titled Find the Radius of a Sphere Step 8

    2

    Find the coordinates of a point on the surface of the sphere. Next, you’ll need to find the (x,y,z) coordinates of a point on the surface of the sphere. This can be any point on the surface of the sphere. Because the points on the surface of a sphere are equidistant from the center point by definition, any point will work for determining the radius.

    • For our example problem, let’s say that we know that the point (3, 3, 0) lies on the surface of the sphere. By calculating the distance between this point and the center point, we can find the radius.
  3. Image titled Find the Radius of a Sphere Step 9

    3

    Find the radius with the formula d = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2).[8]
    Now that you know the center of the sphere and a point on the surface, calculating the distance between the two will find the radius. Use the three-dimensional distance formula d = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2), where d equals distance, (x1,y1,z1) equals the coordinates of the center point, and (x2,y2,z2) equals the coordinates of the point on the surface to find the distance between the two points.

    • In our example, we would plug in (4, -1, 12) for (x1,y1,z1) and (3, 3, 0) for (x2,y2,z2), solving as follows:
      • d = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2)
      • d = √((3 – 4)2 + (3 – -1)2 + (0 – 12)2)
      • d = √((-1)2 + (4)2 + (-12)2)
      • d = √(1 + 16 + 144)
      • d = √(161)
      • d = 12.69. This is the radius of our sphere.
  4. Image titled Find the Radius of a Sphere Step 10

    4

    Know that, in general cases, r = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2).[9]
    In a sphere, every point on the surface of the sphere is the same distance from the center point. If we take the three-dimensional distance formula above and replace the “d” variable with the “r” variable for radius, we get a form of the equation that can can find the radius given any center point (x1,y1,z1) and any corresponding surface point (x2,y2,z2).

    • By squaring both sides of this equation, we get r2 = (x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2. Note that this is essentially equal to the basic sphere equation r2 = x2 + y2 + z2 which assumes a center point of (0,0,0).
  5. Advertisement

Add New Question

  • Question

    How do I find the radius of a sphere if I know its volume is three times its surface area?

    Donagan

    Write an equation whereby the volume [(4πr³) / 3] is set equal to three times the surface area (4πr²). Thus, [(4πr³) / 3] = 12πr². Divide both sides by 4π, so that r³/3 = r². Multiply by 3: r³ = 3r². Divide by r²: r = 3. In other words, a sphere’s volume can be three times its surface area only if its radius is 3 units.

  • Question

    How do I calculate the radius of a sphere in my hand by using a ruler?

    Donagan

    You can get a very close approximation by carefully measuring the circumference and dividing by twice-pi (6.28).

  • Question

    Two solid spheres A & B are made of the same material. The radius of B is 3 times the radius of A, and the surface area of A is 20 cubic cm. How do I calculate the surface area of B?

    Donagan

    The surface area (S) of a sphere equals 4πr², where r is the radius. Using that equation to solve for r: r = √(S / 4π). Now substitute 20 for S, and solve for the radius of sphere A: r = √(20 / 4π) = √(20 / 12.56) = √ 1.59 = 1.26 cm. That’s the radius of sphere A. The radius of sphere B is three times the radius of sphere A: (3)(1.26) = 3.79 cm. So for sphere B, the surface area is 4πr² = (4)(3.14)(3.79)² = 180.4 square centimeters. (That answer makes sense, because when you multiply the radius of a sphere by 3, you multiply its surface area by 3² or 9.) (We didn’t exactly triple the original surface area, because we rounded off some numbers along the way.)

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • This article was published on demand. However, if you are trying to get to grips with solid geometry for the first time, it’s arguably better to start the other end: calculating the properties of the sphere from the radius.

  • The order in which the operations are performed matters. If you are uncertain how priorities work, and your calculating device supports parentheses, then make sure to use them.

  • π or pi is a Greek letter that represents the ratio of the diameter of a circle to its circumference. It’s an irrational number and cannot be written as a ratio of 2 integers. Many approximations exist, 333/106 gives pi to four decimal places. Today most people memorize the approximation 3.14 which is usually sufficiently accurate for everyday purposes.

Show More Tips

Thanks for submitting a tip for review!

Advertisement

About This Article

Article SummaryX

If you know the diameter, you can find the radius of a sphere by dividing the diameter in half. If you know the circumference, you can find the radius by dividing the circumference by 2 times pi. To learn how to calculate the radius of a sphere using two points on the sphere, keep reading!

Did this summary help you?

Thanks to all authors for creating a page that has been read 521,579 times.

Did this article help you?

Добавить комментарий