В данной публикации представлены формулы, с помощью которых можно найти радиус шара (сферы), вписанного в правильную пирамиду: треугольную, четырехугольную, шестиугольную и тетраэдр.
-
Формулы расчета радиуса шара (сферы)
- Правильная треугольная пирамида
- Правильная четырехугольная пирамида
-
Правильная шестиугольная пирамида
Формулы расчета радиуса шара (сферы)
Приведенная ниже информация применима только к правильным пирамидам. Формула для нахождения радиуса зависит от вида фигуры, рассмотрим самые распространенные варианты.
Правильная треугольная пирамида
На рисунке:
- a – ребро основания пирамиды, т.е. это равные отрезки AB, AC и BC;
- DE – высота пирамиды (h).
Если известны значения этих величин, то найти радиус (r) вписанного шара/сферы можно по формуле:
Частный случай правильной треугольной пирамиды – это правильный тетраэдр. Для него формула нахождения радиуса выглядит следующим образом:
Правильная четырехугольная пирамида
На рисунке:
- a – ребро основания пирамиды, т.е. AB, BC, CD и AD;
- EF – высота пирамиды (h).
Радиус (r) вписанного шара/сферы рассчитывается так:
Правильная шестиугольная пирамида
На рисунке:
- a – ребро основания пирамиды, т.е. AB, BC, CD, DE, EF, AF;
- GL – высота пирамиды (h).
Радиус (r) вписанного шара/сферы вычисляется по формуле:
Сфера, вписанная в пирамиду
Биссекторная плоскость. Основное свойство биссекторной плоскости
Определение 1. Биссекторной плоскостью двугранного угла называют такую плоскость, которая проходит через ребро двугранного угла и делит этот угол на два равных двугранных угла (рис. 1).
Утверждение 1. Точка, расположенная внутри двугранного угла, находится на одном и том же расстоянии от граней этого угла тогда и только тогда, когда она лежит на биссекторной плоскости.
Доказательство. Рассмотрим произвольную точку O, расположенную внутри двугранного угла, и проведем через эту точку плоскость δ , перпендикулярную к ребру AB двугранного угла (рис. 2).
Плоскость δ пересекает ребро AB двугранного угла в точке C, а грани двугранного угла α и β по лучам CD и CE соответственно. Угол DCE является линейным углом двугранного угла. Биссекторная плоскость γ пересекает плоскость δ по биссектрисе CF линейного угла DCE .
Таким образом, справедливость утверждения вытекает из соответствующих теорем о свойствах биссектрисы угла. Доказано.
Следствие 1. Если сфера, расположенная внутри двугранного угла, касается каждой из плоскостей граней этого угла, то центр сферы находится на биссекторной плоскости двугранного угла (рис. 3).
Сфера, вписанная в пирамиду. Свойства пирамиды, описанной около сферы
Определение 2. Сферой, вписанной в пирамиду, называют такую сферу, которая касается плоскостей всех граней пирамиды, причем точки касания лежат на гранях пирамиды (рис. 4).
Определение 3. Если сфера вписана в пирамиду, то пирамиду называют описанной около сферы.
Если сфера вписана в пирамиду, то она касается граней каждого внутреннего двугранного угла, образованного соседними гранями пирамиды. В соответствии со следствием 1 центр вписанной в пирамиду сферы должен находиться в точке пересечения биссекторных плоскостей всех внутренних двугранных углов, образованных соседними гранями пирамиды.
Если у пирамиды нет точки, в которой пересекаются биссекторные плоскости всех внутренних двугранных углов, образованных соседними гранями пирамиды, то в такую пирамиду нельзя вписать сферу.
Замечание 1. Для того, чтобы проверить, можно ли в пирамиду вписать сферу, достаточно проверить, существует ли точка пересения биссекторных плоскостей всех внутренних двугранных углов при основании пирамиды. Если такая точка существует, то она будет равноудалена как от основания пирамиды, так и от каждой из боковых граней.
Рассмотрим несколько типов пирамид, в которые можно вписать сферу.
Утверждение 2. Если у пирамиды SA1A2 . An основание O перпендикуляра, опущенного из вершины S на плоскость основания пирамиды, лежит внутри многоугольника A1A2 . An , а все боковые грани пирамиды наклонены под одним и тем же углом к плоскости основания пирамиды, то в такую пирамиду можно вписать сферу.
Доказательство. Пусть все боковые грани пирамиды наклонены к плоскости основания под углом φ , а высота пирамиды равна h. Рассмотрим, например, боковую грань SA1A2 и проведем в ней высоту SB (рис. 5).
По теореме о трех перпендикулярах отрезок OB перпендикулярен ребру A1A2 . Следовательно, угол SBO является линейным углом двугранного угла между боковой гранью SA1A2 и плоскостью основания пирамиды и равен φ. Биссекторная плоскость этого двугранного угла пересекает высоту пирамиды в точке O’ (рис. 6).
Катет OB прямоугольного треугольника SOB выражается через высоту пирамиды h и угол φ по формуле
Катет OO’ прямоугольного треугольника OO’B выражается через высоту пирамиды h и угол φ по формуле
Поскольку длина отрезка OO’ не зависит от выбора боковой грани пирамиды, то биссекторные плоскости всех внутренних двугранных углов при основании пирамиды пересекаются в точке O’, которая и является центром вписанной в пирамиду сферы.
Доказательство утверждения 2 завершено.
Поскольку у любой правильной пирамиды все внутренние двугранные углы при основании равны, то справедливо
Следствие 2. В любую правильную пирамиду можно вписать сферу, причем ее радиус R выражается через высоту пирамиды h и внутренний двугранный угол при основании пирамиды φ по формуле
(1) |
Радиус сферы, вписанной в правильную n – угольную пирамиду
Решение. Рассмотрим правильную n – угольную пирамиду SA1A2 . An и обозначим символом O’ центр вписанной в пирамиду сферы, а буквой O – центр основания пирамиды. Проведем плоскость через высоту пирамиды SO и апофему SB какой-либо боковой грани (рис. 7).
Буквой R на рисунке 7 обозначен радиус вписанной в пирамиду сферы, буквой r – радиус вписанной в основание пирамиды окружности, а буквой φ – внутренний двугранный угол при основании пирамиды. Из прямоугольного треугольника OSB получаем
(2) |
В силу следствия 2 из формул (1) и (2) получаем
из формулы (3) получаем соотношение
Ответ.
Следствие 3. Радиус сферы, вписанной в правильную треугольную пирамиду с высотой h и ребром основания a, равен
Следствие 4. Радиус сферы, вписанной в правильный тетраэдр с ребром a, равен
Следствие 5. Радиус сферы, вписанной в правильную четырехугольную пирамиду с высотой h и ребром основания a, равен
Следствие 6. Радиус сферы, вписанной в правильную шестиугольную пирамиду с высотой h и ребром основания a, равен
Сфера, вписанная в треугольную пирамиду.
Формула для радиуса вписанной сферы
Утверждение 3. В любую треугольную пирамиду можно вписать сферу.
Доказательство. Доказательство этого утверждения напоминает планиметрическое доказательство возможности вписать окружность в произвольный треугольник.
Действительно, пусть SABC – произвольный тетраэдр. Биссекторная плоскость внутреннего двугранного угла с ребром AC и биссекторная плоскость внутреннего двугранного угла с ребром AB пересекаются по некоторой прямой, проходящей через вершину A. Биссекторная плоскость внутреннего двугранного угла в ребром BC пересекает эту прямую в единственной точке O , которая и является центром вписанной сферы (рис. 8).
Получим формулу, позволяющую вычислить радиус вписанной в тетраэдр SABC сферы. Для этого заметим, что объем пирамиды SABC равен сумме объемов пирамид OABC, OSCA, OSAB, OSCB, причем высота каждой из пирамид OABC, OSCA, OSAB, OSCB равна радиусу R вписанной в пирамиду SABC сферы. Если обозначить площади граней тетраэдра SABC символами
а объемы пирамид SABC, OABC, OSCA, OSAB, OSCB – символами
то справедливы следующие равенства:
где символом Sполн обозначена площадь полной поверхности пирамиды SABC.
Замечание 2. Если в пирамиду (необязательно треугольную) можно вписать сферу, то, рассуждая аналогично, можно получить следующую формулу для радиуса вписанной в пирамиду сферы
где символами Vпир и Sполн обозначены объем и площадь полной поверхности пирамиды соответственно.
Нахождение радиуса шара (сферы), вписанного в правильную пирамиду
В данной публикации представлены формулы, с помощью которых можно найти радиус шара (сферы), вписанного в правильную пирамиду: треугольную, четырехугольную, шестиугольную и тетраэдр.
Формулы расчета радиуса шара (сферы)
Приведенная ниже информация применима только к правильным пирамидам. Формула для нахождения радиуса зависит от вида фигуры, рассмотрим самые распространенные варианты.
Правильная треугольная пирамида
-
a – ребро основания пирамиды, т.е. это равные отрезки AB, AC и BC;
Если известны значения этих величин, то найти радиус (r) вписанного шара/сферы можно по формуле:
Частный случай правильной треугольной пирамиды – это правильный тетраэдр. Для него формула нахождения радиуса выглядит следующим образом:
Правильная четырехугольная пирамида
- a – ребро основания пирамиды, т.е. AB, BC, CD и AD;
- EF – высота пирамиды (h).
Радиус (r) вписанного шара/сферы рассчитывается так:
Правильная шестиугольная пирамида
- a – ребро основания пирамиды, т.е. AB, BC, CD, DE, EF, AF;
- GL – высота пирамиды (h).
Радиус (r) вписанного шара/сферы вычисляется по формуле:
Все формулы для радиуса вписанной окружности
Радиус вписанной окружности в треугольник
a , b , c – стороны треугольника
p – полупериметр, p=( a + b + c )/2
Формула радиуса вписанной окружности в треугольник ( r ):
Радиус вписанной окружности в равносторонний треугольник
a – сторона треугольника
r – радиус вписанной окружности
Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):
Радиус вписанной окружности равнобедренный треугольник
1. Формулы радиуса вписанной окружности если известны: стороны и угол
a – равные стороны равнобедренного треугольника
b – сторона ( основание)
α – угол при основании
О – центр вписанной окружности
r – радиус вписанной окружности
Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :
Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :
2. Формулы радиуса вписанной окружности если известны: сторона и высота
a – равные стороны равнобедренного треугольника
b – сторона ( основание)
h – высота
О – центр вписанной окружности
r – радиус вписанной окружности
Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :
[spoiler title=”источники:”]
http://www-formula.ru/2011-09-24-00-40-48
[/spoiler]
В этом уроке приведены определение и свойства правильной треугольной пирамиды и ее частного случая – тетраэдра (см. ниже). Ссылки на примеры решения задач приведены в конце урока.
Определение
Правильная треугольная пирамида – это пирамида, основанием которой является правильный треугольник, а вершина проецируется в центр основания.
На рисунке обозначены:
ABC – Основание пирамиды
OS – Высота
KS – Апофема
OK – радиус окружности, вписанной в основание
AO – радиус окружности, описанной вокруг основания правильной треугольной пирамиды
SKO – двугранный угол между основанием и гранью пирамиды (в правильной пирамиде они равны)
Важно. В правильной треугольной пирамиде длина ребра (на рисунке AS, BS, CS ) может быть не равна длине стороны основания (на рисунке AB, AC, BC). Если длина ребра правильной треугольной пирамиды равна длине стороны основания, то такая пирамида называется тетраэдром (см. ниже).
Свойства правильной треугольной пирамиды:
- боковые ребра правильной пирамиды равны
- все боковые грани правильной пирамиды являются равнобедренными треугольниками
- в правильную треугольную пирамиду можно как вписать, так и описать вокруг неё сферу
- если центры вписанной и описанной вокруг правильной треугольной пирамиды, сферы совпадают, то сумма плоских углов при вершине пирамиды равна π (180 градусов) , а каждый из них соответственно равен π / 3 (пи делить на 3 или 60 градусов ).
- площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
- вершина пирамиды проецируется на основание в центр правильного равностороннего треугольника,, который является центром вписанной окружности и точкой пересечения медиан
Формулы для правильной треугольной пирамиды
Формула объема правильной треугольной пирамиды:
где
V – объем правильной пирамиды, имеющей в основании правильный (равносторонний) треугольник
h – высота пирамиды
a – длина стороны основания пирамиды
R – радиус описанной окружности
r – радиус вписанной окружности
Поскольку правильная треугольная пирамида является частным случаем правильной пирамиды, то формулы, которые верны для правильной пирамиды, верны и для правильной треугольной – см. формулы для правильной пирамиды.
Примеры решения задач:
- Нахождение периметра правильной треугольной пирамиды
- Вычисление объема
- Нахождение площади поверхности
Тетраэдр
Частным случаем правильной треугольной пирамиды является тетраэдр.
Тетраэдр – это правильный многогранник (правильная треугольная пирамида) у которой все грани являются правильными треугольниками.
У тетраэдра:
- Все грани равны
- 4 грани, 4 вершины и 6 ребер
- Все двугранные углы при рёбрах и все трёхгранные углы при вершинах равны
Медиана тетраэдра – это отрезок, соединяющий вершину с точкой пересечения медиан противоположной грани (медиан равностороннего треугольника, противолежащего вершине)
Бимедиана тетраэдра – это отрезок, соединяющий середины скрещивающихся рёбер (соединяющий середины сторон треугольника, являющегося одной из граней тетраэдра)
Высота тетраэдра – это отрезок, соединяющий вершину с точкой противоположной грани и перпендикулярный этой грани (то есть является высотой, проведенной от любой грани, также совпадает с центром описанной окружности).
Тетраэдр обладает следующими свойствами:
- Все медианы и бимедианы тетраэдра пересекаются в одной точке
- Эта точка делит медианы в отношении 3:1, считая от вершины
- Эта точка делит бимедианы пополам
Площадь, объем, высота, радиус вписанной и описанной окружности и другие формулы для тетраэдра
См. пример задачи: формулы и свойства тетраэдра.
0
Пирамида с равнобедренным треугольником в основании |
Описание курса
| Периметр основания правильной треугольной пирамиды
Чтобы легко справиться с решением задач на шар, вписанный в пирамиду, полезно разобрать небольшой теоретический материал.
Шар вписан в пирамиду (или сфера вписана в пирамиду) — значит, шар (сфера) касаются каждой грани пирамиды. Плоскости, содержащие грани пирамиды, являются касательными плоскостями шара. Отрезки, соединяющие центр шара с точками касания, перпендикуляры к касательным плоскостям. Их длины равны радиусу шара. Центр вписанного в пирамиду шара — точка пересечения бисекторных плоскостей двугранных углов при основании (то есть плоскостей, делящих эти углы пополам).
Чаще всего в задачах речь идет о шаре, вписанном в правильную пирамиду. Шар можно вписать в любую правильную пирамиду. Центр шара в этом случае лежит на высоте пирамиды. При решении задачи удобно провести сечение пирамиды и шара плоскостью, проходящей через апофему и высоту пирамиды.
Если пирамида четырехугольная или шестиугольная, сечение представляет собой равнобедренный треугольник, боковые стороны которого — апофемы, а основание — диаметр вписанной в основание окружности.
Если пирамида треугольная или пятиугольная, достаточно рассмотреть лишь часть этого сечения — прямоугольный треугольник, катеты которого — высота пирамиды и радиус вписанной в основание пирамиды окружности, а гипотенуза — апофема.
В любом случае, в итоге приходим к рассмотрению соответствующего прямоугольного треугольника и других связанных с ним треугольников.
Итак, в прямоугольном треугольнике SOF катет SO=H — высота пирамиды, катет OF=r — радиус вписанной в основание пирамиды окружности, гипотенуза SF=l — апофема пирамиды. O1- центр шара и, соответственно, окружности, вписанной в треугольник, полученный в сечении (мы рассматриваем его часть). Угол SFO — линейный угол двугранного угла между плоскостью основания и плоскостью боковой грани SBC. Точки K и O — точки касания, следовательно, O1K перпендикулярен SF. OO1=O1K=R — радиусу шара.
Прямоугольные треугольники OO1F и KO1F равны (по катетам и гипотенузе). Отсюда KF=OF=r.
Прямоугольные треугольники SKO1 и SOF подобны (по острому углу S), откуда следует, что
В треугольнике SOF применим свойство биссектрисы треугольника:
Из прямоугольного треугольника OO1F
При решении задач на шар, вписанный в правильную пирамиду, будет полезным еще одно рассуждение.
Теперь найдем отношение объема пирамиды к площади ее поверхности:
Таким образом, радиус вписанного шара выражается через объем пирамиды и ее полную поверхность:
Все эти рассуждения верны не только для правильной пирамиды, но и для пирамиды, основание высоты которой совпадает с центром вписанной в основание окружности (то есть для пирамиды, у которой все двугранные углы при основании равны).
Зная сторону основания правильной пирамиды, то есть пирамиды, в основании которой лежит правильный многоугольник, можно найти периметр основания, его площадь, радиус окружностей, которые можно вписать или описать около него, а также угол между сторонами многоугольника.
Периметр правильного многоугольника равен произведению длины его стороны на их удвоенное количество, а площадь представляет собой отношение количества сторон, умноженного на квадрат длины одной стороны, к четырем тангенсам 180 градусов, деленных на количество сторон.
P=n(a+b)
S=(na^2)/(4 tan〖(180°)/n〗 )
Чтобы найти радиус окружности, вписанной в основание правильной пирамиды, нужно разделить сторону основания на два тангенса из 180 градусов, деленных на количество сторон в основании. (рис.34.1)
r=a/(2 tan〖(180°)/n〗 )
Радиус окружности, описанной вокруг основания правильной пирамиды, равен отношению стороны основания к двум синусам того же угла.(рис.34.2)
R=a/(2 sin〖(180°)/n〗 )
Угол γ между сторонами правильного многоугольника, заложенного в основание пирамиды, легко найти, умножив 180 градусов на количество сторон многоугольника без двух, и деленное на полное количество сторон. (рис.34.3)
γ=180°(n-2)/n
Параметры самой пирамиды, как объемного тела, такие как боковое ребро и апофема пирамиды вычисляются через теорему Пифагора в прямоугольном треугольнике с высотой во внутреннем пространстве пирамиды. Вторым катетом прямоугольного треугольника с апофемой является радиус вписанной окружности, а катетом треугольника с боковым ребром – радиус описанной окружности основания. (рис.34.4,34.5)
l=√(h^2+r^2 )=√(h^2+(a/(2 tan〖(180°)/n〗 ))^2 )
b=√(h^2+R^2 )=√(h^2+(a/(2 sin〖(180°)/n〗 ))^2 )
Угол между апофемой и основанием рассчитывается как отношение синуса – высоты к радиусу вписанной окружности, а угол между боковым ребром и основанием аналогично – высоты к радиусу описанной окружности, из тех же прямоугольных треугольников.
sinα=h/r=(2h tan〖(180°)/n〗)/a
sinβ=h/R=(2h sin〖(180°)/n〗)/a
Зная апофему и сторону основания пирамиды, можно найти площадь боковой поверхности, а затем площадь полной поверхности пирамиды.
S_(б.п.)=lan/2
S_(п.п.)=an(l/2+a/(4 tan〖(180°)/n〗 ))
Объем пирамиды равен трети произведения площади основания на высоту, таким образом, зная высоту и сторону основания пирамиды, вычислить ее объем можно, подставив соответствующее выражение вместо площади основания.
V=1/3 S_(осн.) h=(na^2 h)/(12 tan〖(180°)/n〗 )
В любую правильную пирамиду (в основании которой лежит правильный многоугольник) можно вписать сферу, а также описать сферу около нее. Радиусы вписанной и описанной сфер зависят не только от высоты и стороны основания, но и от объема пирамиды, площади полной поверхности и бокового ребра пирамиды, поэтому для их вычисления необходимо произвести алгебраические преобразования формул. (рис.34.6,34.7)
r_1=3V/S_(п.п.) =ah/(tan〖(180°)/n〗 (2l+a/tan〖(180°)/n〗 ) )
R_1=b^2/2h=(h^2+(a/(2 sin〖(180°)/n〗 ))^2)/2h