1. Формулы радиуса вписанной окружности если известны: диагональ, стороны и угол
a – сторона ромба
D – большая диагональ
d – меньшая диагональ
α – острый угол
О – центр вписанной окружности
r – радиус вписанной окружности
Формула радиуса вписанной окружности в ромб через диагонали ( r ) :
Формула радиуса вписанной окружности в ромб через сторону и угол ( r ) :
Формула радиуса вписанной окружности в ромб через диагональ и угол ( r ) :
Формула радиуса вписанной окружности в ромб через диагональ и сторону ( r ) :
2. Радиус вписанной окружности ромба, равен половине его высоты
a – сторона ромба
h – высота
О – центр вписанной окружности
r – радиус вписанной окружности
Формула радиуса вписанной окружности в ромб ( r ) :
Удобно, когда все формулы, по которым можно найти радиус вписанной в треугольник и в многоугольник окружности, размещены на одной странице.
Радиус вписанной в многоугольник окружности
Если в многоугольник можно вписать окружность, то формула для вычисления радиуса вписанной окружности:
где p — полупериметр, то есть полусумма длин всех сторон этого многоугольника.
Например, для пятиугольника со сторонами a, b, c, d, e радиус вписанной окружности находится по формуле
откуда
По этой же формуле ищут радиус вписанной в треугольник окружности.
Радиус вписанной в треугольник окружности
Формула для нахождения радиуса вписанной в треугольник окружности (верна для треугольника любого вида)
где p — полупериметр,
где a, b, c — стороны треугольника.
Радиус вписанной в прямоугольный треугольник окружности
Формула для нахождения радиуса окружности, вписанной в прямоугольный треугольник
где a и b — катеты, c — гипотенуза.
Радиус окружности, вписанной в правильный многоугольник
Формула радиуса вписанной в правильный многоугольник окружности
где a — сторона многоугольника, n — количество сторон.
Частные случаи — правильный (равносторонний) треугольник, правильный четырехугольник (квадрат) и правильный шестиугольник.
Радиус окружности, вписанной в правильный треугольник
Формула радиуса вписанной окружности для правильного треугольника:
В правильном треугольнике радиус вписанной окружности вдвое меньше радиуса описанной окружности:
Радиус окружности, вписанной в квадрат
Формула радиуса вписанной в квадрат окружности:
где a — сторона квадрата.
Радиус окружности, вписанной в правильный шестиугольник
Формула радиуса вписанной в правильный шестиугольник окружности:
где a — сторона правильного шестиугольника.
Для любого многоугольника центр вписанной окружности лежит в точке пересечения его биссектрис.
Радиус вписанной окружности
Удобно, когда все формулы, по которым можно найти радиус вписанной в треугольник и в многоугольник окружности, размещены на одной странице.
Радиус вписанной в многоугольник окружности
Если в многоугольник можно вписать окружность, то формула для вычисления радиуса вписанной окружности:
где p — полупериметр, то есть полусумма длин всех сторон этого многоугольника.
Например, для пятиугольника со сторонами a, b, c, d, e радиус вписанной окружности находится по формуле
Радиус вписанной в треугольник окружности
Формула для нахождения радиуса вписанной в треугольник окружности (верна для треугольника любого вида)
где p — полупериметр,
где a, b, c — стороны треугольника.
Радиус вписанной в прямоугольный треугольник окружности
Формула для нахождения радиуса окружности, вписанной в прямоугольный треугольник
где a и b — катеты, c — гипотенуза.
Радиус окружности, вписанной в правильный многоугольник
Формула радиуса вписанной в правильный многоугольник окружности
где a — сторона многоугольника, n — количество сторон.
Частные случаи — правильный (равносторонний) треугольник, правильный четырехугольник (квадрат) и правильный шестиугольник.
Радиус окружности, вписанной в правильный треугольник
Формула радиуса вписанной окружности для правильного треугольника:
В правильном треугольнике радиус вписанной окружности вдвое меньше радиуса описанной окружности:
Радиус окружности, вписанной в квадрат
Формула радиуса вписанной в квадрат окружности:
где a — сторона квадрата.
Радиус окружности, вписанной в правильный шестиугольник
Формула радиуса вписанной в правильный шестиугольник окружности:
где a — сторона правильного шестиугольника.
Для любого многоугольника центр вписанной окружности лежит в точке пересечения его биссектрис.
5 Comments
Почему для квадрата не подходит формула S=pr
Вполне подходит. Полупериметр p=2а, r=a/2, откуда S=2a∙(a/2)=a².
Огромное спасибо этому сайту!Всё просто, понятно и правильно.
Радиус вписанной окружности это есть высота правильного многоугольника? Работает ли это для всех многоугольников?
Все формулы для радиуса вписанной окружности
Радиус вписанной окружности в треугольник
a , b , c – стороны треугольника
p – полупериметр, p=( a + b + c )/2
Формула радиуса вписанной окружности в треугольник ( r ):
Радиус вписанной окружности в равносторонний треугольник
a – сторона треугольника
r – радиус вписанной окружности
Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):
Радиус вписанной окружности равнобедренный треугольник
1. Формулы радиуса вписанной окружности если известны: стороны и угол
a – равные стороны равнобедренного треугольника
b – сторона ( основание)
α – угол при основании
О – центр вписанной окружности
r – радиус вписанной окружности
Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :
Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :
2. Формулы радиуса вписанной окружности если известны: сторона и высота
a – равные стороны равнобедренного треугольника
b – сторона ( основание)
h – высота
О – центр вписанной окружности
r – радиус вписанной окружности
Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :
Вписанная окружность
Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.
Окружность, точно можно вписать в такие геометрические фигуры, как:
- Треугольник
- Выпуклый, правильный многоугольник
- Квадрат
- Равнобедренная трапеция
- Ромб
В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.
Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.
Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.
Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.
Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.
Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.
Свойства вписанной окружности
В треугольник
- В любой треугольник может быть вписана окружность, причем только один раз.
- Центр вписанной окружности — точка пересечения биссектрис треугольника.
- Вписанная окружность касается всех сторон треугольника.
- Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:
[ S = frac<1><2>(a+b+c) cdot r = pr ]
p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.
окружность и любая из сторон треугольника.
перпендикуляры к любой точке касания.
треугольника на 3 пары равных отрезков.
Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:
с — расстояние между центрами вписанной и описанной окружностей треугольника.
R — радиус описанной около треугольника.
r — радиус вписанной окружности треугольника.
В четырехугольник
- Не во всякий четырехугольник можно вписать окружность.
- Если у четырехугольника суммы длин его противолежащих
сторон равны, то окружность, может быть, вписана (Теорема Пито). - Центр вписанной окружности и середины двух
диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона). - Точка пересечения биссектрис — это центр вписанной окружности.
- Точка касания — это точка, в которой соприкасается
окружность и любая из сторон четырехугольника. - Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:
[ S = frac<1><2>(a+b+c+d)cdot r = pr ]
p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.
равноудалены от этой конца и начала этой стороны, то есть от его вершин.
Примеры вписанной окружности
Примеры описанного четырехугольника:
равнобедренная трапеция, ромб, квадрат.
Примеры описанного треугольника:
равносторонний, равнобедренный,
прямоугольный треугольники.
Верные и неверные утверждения
- Радиус вписанной окружности в треугольник и радиус вписанной
в четырехугольник вычисляется по одной и той же формуле. Верное утверждение. - Любой параллелограмм можно вписать в окружность. Неверное утверждение.
- В любой четырехугольник можно вписать окружность. Неверное утверждение.
- В любой ромб можно вписать окружность. Верное утверждение.
- Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
- Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
- Угол вписанный в окружность равен соответствующему центральному
углу опирающемуся на ту же дугу. Неверное утверждение. - Радиус вписанной окружности в прямоугольный треугольник равен
половине разности суммы катетов и гипотенузы. Верное утверждение. - Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
- Вписанная окружность в треугольник имеет в общем
три общие точки со всеми сторонами треугольника. Верное утверждение.
Окружность вписанная в угол
Окружность вписанная в угол — это окружность, которая
лежит внутри этого угла и касается его сторон.
Центр окружности, которая вписана в угол,
расположен на биссектрисе этого угла.
К центру окружности вписанной в угол, можно провести,
в общей сложности два перпендикуляра со смежных сторон.
Длина диаметра, радиуса, хорды, дуги вписанной окружности
измеряется в км, м, см, мм и других единицах измерения.
[spoiler title=”источники:”]
http://www-formula.ru/2011-09-24-00-40-48
http://colibrus.ru/vpisannaya-okruzhnost/
[/spoiler]
Радиус вписанной окружности в правильный многоугольник, формула
Правильный многоугольник — это многоугольник с равными сторонами и углами. Угол между двумя соседними вершинами правильного n-угольника равен: [AOB = α = frac{360°}{n}] |
Построим треугольник AOB отдельно. Об этом треугольнике мы знаем: он равнобедренный, и высота этого треугольника это радиус вписанной окружности правильного многоугольника. Также нам известна длина основания a этого треугольника — которое является стороной исходного правильного многоугольника. |
Также известен угол между бедрами — по формуле (1).
Опустим высоту на основание и рассмотрим получившийся прямоугольный треугольник.
При помощи тригонометрических функций острого угла получим:
[tgbigg(frac{360°}{2n}bigg) = frac{a}{2r}]
отсюда получим формулу радиуса вписанной окружности правильного многоугольника:
[r = frac{a}{2 tg(frac{360°}{2n})}]
(a – сторонa правильного многоугольника; n – число сторон правильного многоугольника; r – радиус вписанной окружности правильного многоугольника)
Вычислить, найти радиус вписанной окружности в правильный многоугольник по формуле (3)
Радиус вписанной окружности в правильный многоугольник |
стр. 256 |
---|
В любой правильный многоугольник можно вписать окружность. Радиусы такой окружности, проведенные перпендикулярами ко всем сторонам, делят любой правильный многоугольник на множество равнобедренных треугольников, равных по количеству сторонам многоугольника, каждый из которых разделе радиусом вписанной окружности на две части. В каждом таком треугольнике катетами являются радиус вписанной окружности и половина стороны, а гипотенузой – радиус описанной окружности. Центральный угол равен , где n – количество сторон многоугольника. Радиус вписанной окружности из такого треугольника будет равен отношению половины стороны многоугольника к тангенсу угла α: