Как найти радиус зная площадь боковой поверхности

В данной публикации мы рассмотрим, как можно вычислить радиус цилиндра и разберем примеры решения задач для закрепления материала.

  • Формулы вычисления радиуса цилиндра

    • 1. Через объем и высоту

    • 2. Через площадь боковой поверхности

    • 3. Через полную площадь поверхности

  • Примеры задач

Формулы вычисления радиуса цилиндра

Радиус цилиндра

1. Через объем и высоту

Радиус цилиндра рассчитывается по формуле:

Формула радиуса цилиндра через объем и высоту

V – объем цилиндра; считается как произведение числа π на высоту фигуры на квадрат радиуса круга, являющего ее основанием.

V = πR2h

  • R – радиус основания цилиндра, т.е. окружности;
  • π – число, округленное значение которого равняется 3,14.

2. Через площадь боковой поверхности

Радиус цилиндра считается таким образом:

Формула радиуса цилиндра через площадь боковой поверхности

Sбок. – площадь боковой поверхности цилиндра; равна произведению длины окружности (2πR), являющейся основанием фигуры, на его высоту:

S = 2πRh

3. Через полную площадь поверхности

Радиус цилиндра равен:

Формула радиуса цилиндра через полную площадь поверхности

Данная формула получена следующим образом:

S – полная площадь поверхности фигуры, равная:

S = 2πRh + 2πR2 или S = 2πR(h + R)

Возьмем первое выражение. Если перенести S в правую часть, получим:

2πR2 + 2πRh – S = 0

Можно заметить, что это квадратное уравнение вида ax+ bx + c = 0, где:

  • a = 2π
  • b = 2πh
  • c = -S

R является корнем данного уравнения (x). Подставив в стандартную формулу для расчета корней наши значения a, b и с получаем*:

Формула радиуса цилиндра через полную площадь поверхности

* в нашем случае – только один положительный корень, т.к. радиус не может быть отрицательным.

Примеры задач

Задание 1
Высота цилиндра равняется 5 см, а объем – 141,3 см3. Вычислите его радиус.

Решение:
Воспользуемся соответствующей формулой, подставив в нее известные по условиям задачи значения:
Вычисление радиуса цилиндра через объем и высоту

Задание 2
Найдите радиус цилиндра, если площадь его боковой поверхности равна 175,84 см2, а высота составляет 7 см.

Решение:
Применим формулу, в которой задействованы заданные величины:
Вычисление радиуса цилиндра через площадь боковой поверхности

Задание 3
Рассчитайте радиус цилиндра, если полная площадь его поверхности – 602,88 см2, а высота – 10 см.

Решение:
Используем третью формулу для нахождения неизвестной величины:
Расчет радиуса цилиндра через полную площадь поверхности

Радиус цилиндра

Радиус

При вращении прямоугольника вокруг своей стороны получается геометрическое тело, называемое цилиндром. Данная геометрическая фигура ограничена цилиндрической поверхностью и двумя пересекающими ее параллельными плоскостями — основаниями цилиндра. Радиусом считается отрезок, соединяющий на плоскости основания точку центральной оси цилиндра с точкой его поверхности.

— Если известен объем и высота цилиндра, можно найти его радиус, как корень квадратный из объема деленного на произведение числа пи на высоту цилиндра:

R = √V / πh

где V — объем цилиндра, h — высота.
Полная площадь поверхности цилиндра складывается из сумм площадей его боковой поверхности и двух оснований:

S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr2=πr (2h+r)

Площадь боковой поверхности равняется длине окружности основания умноженной на высоту:

S (б.п.) = hP = 2πrh

— Если известна площадь бок. поверхности S (б.п.) и высота h цилиндра, радиус будет равен частному от деления S (б.п.) на произведение 2пи на высоту:

r = S (б.п.) / 2πh

Площадь двух оснований равна удвоенному произведению пи на радиус в квадрате:

2S (осн.) = πr2

— Если известна площадь основания и высота, радиус находим как корень квадратный из площади одного основания деленного на пи:

r = √S (осн.) / π

S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr2

где S (п.п.) — полная площадь поверхности цилиндра; r — радиус; h — высота.

r = (√(8πS + √(2πh)) — 2πh) / 2π

Рассчитать радиус цилиндра через площадь и высоту

Как найти радиус основания цилиндра?

Лицо, в отношении которого ведется производство по делу об административном правонарушении, вправе знакомиться со всеми материалами дела, давать объяснения, представлять доказательства, заявлять ходатайства и отводы, пользоваться юридической помощью защитника, а также иными процессуальными правами в соответствии с …

Где находится радиус цилиндра?

Радиус цилиндра – это отрезок, соединяющий на плоскости основания точку центральной оси объемной геометрической фигуры с любой точкой на ее ограниченной окружностью поверхности.

Как найти площадь основания цилиндра зная высоту?

2. Если радиус и диаметр незнакомы, но даны высота (h) и объем (V) цилиндра, то этих параметров тоже будет довольно для нахождения площади (S) основания фигуры – примитивно поделите объем на высоту: S=V/h.

Нахождение радиуса цилиндра: формула и примеры

В данной публикации мы рассмотрим, как можно вычислить радиус цилиндра и разберем примеры решения задач для закрепления материала.

Формулы вычисления радиуса цилиндра

1. Через объем и высоту

Радиус цилиндра рассчитывается по формуле:

V – объем цилиндра; считается как произведение числа π на высоту фигуры на квадрат радиуса круга, являющего ее основанием.

V = π R 2 h

  • R – радиус основания цилиндра, т.е. окружности;
  • π – число, округленное значение которого равняется 3,14.

2. Через площадь боковой поверхности

Радиус цилиндра считается таким образом:

Sбок. – площадь боковой поверхности цилиндра; равна произведению длины окружности (2 π R), являющейся основанием фигуры, на его высоту:

S = 2 π Rh

3. Через полную площадь поверхности

Радиус цилиндра равен:

Данная формула получена следующим образом:

S – полная площадь поверхности фигуры, равная:

S = 2 π Rh + 2 π R 2 или S = 2 π R(h + R)

Возьмем первое выражение. Если перенести S в правую часть, получим:

2 π R 2 + 2 π Rh – S = 0

Можно заметить, что это квадратное уравнение вида ax 2 + bx + c = 0, где:

R является корнем данного уравнения (x). Подставив в стандартную формулу для расчета корней наши значения a, b и с получаем*:

* в нашем случае – только один положительный корень, т.к. радиус не может быть отрицательным.

Примеры задач

Задание 1
Высота цилиндра равняется 5 см, а объем – 141,3 см 3 . Вычислите его радиус.

Решение:
Воспользуемся соответствующей формулой, подставив в нее известные по условиям задачи значения:

Задание 2
Найдите радиус цилиндра, если площадь его боковой поверхности равна 175,84 см 2 , а высота составляет 7 см.

Решение:
Применим формулу, в которой задействованы заданные величины:

Задание 3
Рассчитайте радиус цилиндра, если полная площадь его поверхности – 602,88 см 2 , а высота – 10 см.

Решение:
Используем третью формулу для нахождения неизвестной величины:

Радиус цилиндра

При вращении прямоугольника вокруг своей стороны получается геометрическое тело, называемое цилиндром. Данная геометрическая фигура ограничена цилиндрической поверхностью и двумя пересекающими ее параллельными плоскостями — основаниями цилиндра. Радиусом считается отрезок, соединяющий на плоскости основания точку центральной оси цилиндра с точкой его поверхности.

— Если известен объем и высота цилиндра, можно найти его радиус, как корень квадратный из объема деленного на произведение числа пи на высоту цилиндра:

R = √V / πh

где V — объем цилиндра, h — высота.
Полная площадь поверхности цилиндра складывается из сумм площадей его боковой поверхности и двух оснований:

S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr 2 =πr (2h+r)

Площадь боковой поверхности равняется длине окружности основания умноженной на высоту:

S (б.п.) = hP = 2πrh

— Если известна площадь бок. поверхности S (б.п.) и высота h цилиндра, радиус будет равен частному от деления S (б.п.) на произведение 2пи на высоту:

r = S (б.п.) / 2πh

Площадь двух оснований равна удвоенному произведению пи на радиус в квадрате:

2S (осн.) = πr 2

— Если известна площадь основания и высота, радиус находим как корень квадратный из площади одного основания деленного на пи:

r = √S (осн.) / π

S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr 2

где S (п.п.) — полная площадь поверхности цилиндра; r — радиус; h — высота.

[spoiler title=”источники:”]

[/spoiler]

1) Если вам известны объем V и высота конуса H, выразите его радиус основания R из формулы V=1/3∙πR²H. Получите: R²=3V/πH, откуда R=√ (3V/πH)

. 2) Если вам известны площадь боковой поверхности конуса S и длина его образующей L, выразите радиус R из формулы: S=πRL. Вы получите R=S/πL.

3) Следующие способы нахождения радиуса основания конуса базируются на утверждении, что конус образован при вращении прямоугольного треугольника вокруг одного из катетов к оси. Так, если вам известны высота конуса H и длина его образующей L, то для нахождения радиуса R вы можете воспользоваться теоремой Пифагора: L²=R²+H². Выразите из данной формулы R, получите: R²=L²-H² и R=√ (L²-H²).

4) Используйте правила соотношений между сторонами и углами в прямоугольном треугольнике. Если известны образующая конуса L и угол α между высотой конуса и его образующей, найдите радиус основания R, равный одному из катетов прямоугольного треугольника, по формуле: R=L∙sinα.

5) Если известны образующая конуса L и угол β между радиусом основания конуса и его образующей, найдите радиус основания R по формуле: R=L∙cosβ. Если известны высота конуса H и угол α между его образующей и радиусом основания, найдите радиус основания R по формуле: R=H∙tgα.

6) Пример: образующая конуса L равна 20 см и угол α между образующей и высотой конуса равен 15º. Найдите радиус основания конуса. Решение: В прямоугольном треугольнике с гипотенузой L и острым углом α противолежащий этому углу катет R вычисляется по формуле R=L∙sinα. Подставьте соответствующие значения, получите: R=L∙sinα=20∙sin15º. Sin15º находится из формул тригонометрических функций половинного аргумента и равен 0,5√ (2-√3). Отсюда катет R=20∙0,5√ (2-√3) = 10√ (2-√3) см. Соответственно, радиус основания конуса R равен 10√ (2-√3) см.

7) Частный случай: в прямоугольном треугольнике катет, противолежащий углу в 30º, равен половине гипотенузы. Таким образом, если известны длина образующей конуса и угол между его образующей и высотой равен 30º, то найдите радиус по формуле: R=1/2L.

Агриппич

15 декабря, 17:28

  1. Лилюша

    15 декабря, 17:48


    0

    Площадь боковой поверхности конуса

    Sбок = πRL

    S бок = 125,6π

    L = 15,7

    125,6π = πR · 15.7

    125.6 = 15.7R

    R = 8

    Ответ: 8

    • Комментировать
    • Жалоба
    • Ссылка

Найдите правильный ответ на вопрос ✅ «Найди радиус конуса у которого площадь боковой поверхности равна 125,6 п, а образующая 15,7 …» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.

Смотреть другие ответы

Новые вопросы по математике

Главная » Математика » Найди радиус конуса у которого площадь боковой поверхности равна 125,6 п, а образующая 15,7

Добавить комментарий