-
Расчет величины рабочего тока линии
Вся расчетная
схема разбивается на отдельные линии
с различными правилами определения
рабочего тока:
-
линия
к единственному приемнику электрической
энергии (рис. 4.5а); -
линия
к нескольким приемникам с независимыми
пусками (рис. 4.5б); -
линия
к нескольким приемникам с общим пуском,
соединенными в цепочку (рис. 4.5в); -
линия
к станции управления (рис. 4.5г); -
линии
связи между РП и ГРЩ; -
линия
от ТП к главному ГРЩ (фидер);
5.1.1. Расчетный ток линии к единственному трехфазному асинхронному двигателю
В
этом случае (рис. 4,5а) расчетный ток
равен номинальному току двигателя и
берется из паспортных данных двигателя
или определяется выражением:
,
где
Рн
– номинальная мощность двигателя, кВт;
–номинальный
КПД двигателя;
–номинальный
коэффициент мощности;
Рн,
U,
,
cos
φ −
величины, определяемые по паспортным
данным двигателя.
В
том случае, когда известно, что двигатель
загружен на мощность,
менее номинальной, расчетный ток
уменьшается пропорционально Кз
коэффициенту
загрузки
.
5.1.2. Расчетный ток однофазной линии и линии постоянного тока к одному потребителю с активной нагрузкой
Ток
определяется из выражения
.
5.1.3. Расчетный ток трехфазной линии
к электрической нагревательной печи
Ток
определяется из выражения
.
5.1.4. Расчетный ток трехфазной линии
к выпрямительной установке
,
где
Sh
− полная,
номинальная мощность выпрямительной
установки.
5.1.5. Расчетный ток однофазной линии к
нескольким приемникам электрической
энергии с независимыми пусками
В
этом подключении (рис. 4.5б,г) расчетный
ток определяется как сумма токов всех
подключенных двигателей с учетом
коэффициента одновременности их работы
КО
,
где
Ii
− ток
каждого двигателя, подключенного к
станции.
Здесь
и в следующих за этим выражениях значение
КО
следует брать из отраслевых норм или
по результатам испытания конкретной
установки. Если других сведений нет,
можно считать КО
=1.
5.1.6. Расчетный ток линии от
распределительного пункта до главного
распределительного щита
Расчетный
ток определятся как сумма токов линий,
выходящихиз
РП
,
где
Ii
− ток
каждого вывода (линии, подключенной к
РП).
5.1.7. Расчетный ток кабеля, соединяющего
ГРЩ и ТП, (ток фидера)
Ток
входной линии (фидера) ГРЩ, питающего
несколько РП и соединяющего ГРЩ с
трансформатором определяется аналогично
,
где
Ii
− ток
каждого подключенного РП.
5.2. Пример расчета сечений проводников
линий
От
РП1 отходит две линии до СУ1 и СУ2, причем
к СУ1 присоединено два потребителя (см.
табл. 2). При расчете сечений проводников
следует воспользоваться сведениями о
кабелях, проводниках и шнурах [
? ].
5.2.1. Линии от распределительного пункта
до станции управления
Линия
от РП до СУ1 питает одновременно сушильную
машину
СПК-1-10ЛУ1
и рулоноразмоточник РР-2М. Суммарная
мощность подключенных двигателей 88,8
кВт. Двигатели включаются и работают
одновременно, расчетный ток приравняем
сумме номинальных токов двигателей
обоих агрегатов (см. табл. 1) Iрас
=220 А.
Для
передачи токов более 200 А рекомендуется
использовать кабель.
Принимаем
кабель марки СБ-1000 (3 х 185 + 1 х 150) с сечением
токопроводящей жилы S
= 185 мм. Длительно допустимый ток I
дд
= 450 А [13]. Это
силовой кабель с медной жилой, бронированный
стальной лентой. Прокладка — в земле
(траншеях) с низкой коррозионной
активностью (с наличием и без блуждающих
токов) и средней коррозионной активностью
(только для кабелей на напряжение 1 кВ)
по стенам вне зданий при возможности
механических повреждений и наличии
блуждающих токов, но при отсутствии
значительных растягивающих усилий.
Линия
от РП до СУ2 питает агрегат М-110-Л.
Установленная мощность 36,2 кВт, номинальный
ток 7,5 А.
По
ПУЭ [14, таб. 5.20] принимаем провод ПВ с
медными жилами
S
= 35 мм2.
Соседние файлы в папке табл_электромеханика
- #
- #
- #
- #
Расчет электрического тока по мощности: формулы, онлайн расчет, выбор автомата
- Формула расчета мощности электрического тока
- Подбираем номинал автоматического выключателя
- Онлайн расчет мощности тока для однофазной и трехфазной сети
Проектируя электропроводку в помещении, начинать надо с расчета силы тока в цепях. Ошибка в этом расчете может потом дорого обойтись. Электрическая розетка может расплавиться под действием слишком сильного для нее тока. Если ток в кабеле больше расчетного для данного материала и сечения жилы, проводка будет перегреваться, что может привести к расплавлению провода, обрыва или короткого замыкания в сети с неприятными последствиями, среди которых необходимость полной замены электропроводки – еще не самое плохое.
Знать силу тока в цепи надо и для подбора автоматических выключателей, которые должны обеспечивать адекватную защиту от перегрузки сети. Если автомат стоит с большим запасом по номиналу, к моменту его срабатывания оборудование может уже выйти из строя. Но если номинальный ток автоматического выключателя меньше тока, возникающего в сети при пиковых нагрузках, автомат будет доводить до бешенства, постоянно обесточивая помещение при включении утюга или чайника.
Формула расчета мощности электрического тока
Согласно закону Ома, сила тока(I) пропорциональна напряжению(U) и обратно пропорциональна сопротивлению(R), а мощность(P) рассчитывается как произведение напряжения и силы тока. Исходя из этого, ток в участке сети рассчитывается: I = P/U.
В реальных условиях в формулу добавляется еще одна составляющая и формула для однофазной сети приобретает вид:
I = P/(U*cos φ),
а для трехфазной сети: I = P/(1,73*U*cos φ),
где U для трехфазной сети принимается 380 В, cos φ – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.
Для современных блоков питания реактивная компонента незначительна, величину cos φ можно принимать равной 0,95. Исключение составляют мощные трансформаторы (например, сварочные аппараты) и электродвигатели, они имеют большое индуктивное сопротивление. В сетях, где планируется подключение подобных устройств, максимальную силу тока следует рассчитывать с использованием коэффициента cos φ, равного 0,8 или рассчитать силу тока по стандартной методике, а потом применить повышающий коэффициент 0,95/0,8 = 1,19.
Подставив действующие значения напряжения 220 В/380 В и коэффициента мощности 0,95, получаем I = P/209 для однофазной сети и I = P/624 для трехфазной сети, то есть в трехфазной сети при одинаковой нагрузке ток втрое меньше. Никакого парадокса тут нет, так как трехфазная проводка предусматривает три фазных провода, и при равномерной нагрузке на каждую из фаз она делится натрое. Поскольку напряжение между каждым фазным и рабочим нулевым проводами равно 220 В, можно и формулу переписать в другом виде, так она нагляднее: I = P/(3*220*cos φ).
Подбираем номинал автоматического выключателя
Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки. Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину. А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:
- 6 А – 1,2 кВт;
- 8 А – 1,6 кВт;
- 10 А – 2 кВт;
- 16 А – 3,2 кВт;
- 20 А – 4 кВт;
- 25 А – 5 кВт;
- 32 А – 6,4 кВт;
- 40 А – 8 кВт;
- 50 А – 10 кВт;
- 63 А – 12,6 кВт;
- 80 А – 16 кВт;
- 100 А – 20 кВт.
С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю. Эта информация содержится в документации на изделия. Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.
При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:
- электросауна (12 кВт) – 60 А;
- электроплита (10 кВт) – 50 А;
- варочная панель (8 кВт) – 40 А;
- электроводонагреватель проточный (6 кВт) – 30 А;
- посудомоечная машина (2,5 кВт) – 12,5 А;
- стиральная машина (2,5 кВт) – 12,5 А;
- джакузи (2,5 кВт) – 12,5 А;
- кондиционер (2,4 кВт) – 12 А;
- СВЧ-печь (2,2 кВт) – 11 А;
- электроводонагреватель накопительный (2 кВт) – 10 А;
- электрочайник (1,8 кВт) – 9 А;
- утюг (1,6 кВт) – 8 А;
- солярий (1,5 кВт) – 7,5 А;
- пылесос (1,4 кВт) – 7 А;
- мясорубка (1,1 кВт) – 5,5 А;
- тостер (1 кВт) – 5 А;
- кофеварка (1 кВт) – 5 А;
- фен (1 кВт) – 5 А;
- настольный компьютер (0,5 кВт) – 2,5 А;
- холодильник (0,4 кВт) – 2 А.
Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.
Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А. И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом. Для электроплиты (варочной панели) делается отдельный ввод с автоматом на 40 А и устанавливается силовая розетка с номинальным током 40 А, ничего больше туда подключать не надо. Для стиральной машины и другого оборудования ванной комнаты делается отдельная группа, с автоматом соответствующего номинала. Эту группу обычно защищают УЗО с номинальным током на 15% большим, чем номинал автоматического выключателя. Отдельные группы выделяют для освещения и для настенных розеток в каждой комнате.
На расчет мощностей и токов придется потратить некоторое время, но можно быть уверенным, что труды не пропадут даром. Грамотно спроектированная и качественно смонтированная электропроводка – залог комфорта и безопасности вашего жилища.
Онлайн расчет мощности тока для однофазной и трехфазной сети
Данный онлайн калькулятор позволяет произвести расчет тока по мощности электросети с любыми параметрами. Присутствует возможность задать такие параметры как тип сети (однофазная или трехфазная) напряжение, мощность, а так же коэффициент мощности (cosφ).
Полученное, в результате расчета, значение тока сети можно использовать для выбора автоматического выключателя, дифавтомата, УЗО, реле напряжения, магнитного пускателя и т.д. либо для определения требуемого сечения кабеля.
Ряд стандартных значений номинальных токов различных аппаратов защиты, а так же длительно допустимых токов алюминиевых и медных кабелей приведены в таблицах ниже.
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
Оказался ли полезен для Вас данный онлайн калькулятор? Или может быть у Вас остались вопросы? Напишите нам в комментариях!
Добрый день уважаемые читатели. Хочу обсудить и разобрать тему, на мой взгляд одну из самых Важных при проектировании внутреннего электроснабжения того, или иного объекта строительства.
Разберем основные вопросы темы:
1. Что такое расчет электрических нагрузок и для чего он необходим?
2. Наименование и расшифровка, формулы расчета всех показателей таблицы расчета нагрузок.
3. Работа с полученными значениями.
4. Последствия неправильного расчета электрических нагрузок.
1. Что такое расчет электрических нагрузок и для чего он необходим
Итак, давайте начнем с того как выглядит расчет электрических нагрузок
Выше мы с Вами видим таблицу расчета электрических нагрузок распределительного щита мебельного магазина. Данная таблица, как не сложно догадаться, разработана в программе Excel и полностью автоматизирована для просчета того, или иного значения при меняющихся исходных данных. Основные формулы, по которым ведется расчет любого значения, должны быть отображены в пояснительной записке раздела “Расчеты”, таблица же служит удобным документом, в который сводятся все значения.
Получив все расчетные данные, мы можем верно подобрать номиналы коммутационных аппаратов, а соответственно и сечение кабелей, выстроить селективность системы электроснабжения, равномерно распределить мощностную нагрузку по каждой фазе, понимать – соответствуют ли расчетные показатели выделенной на объект мощности.
Все расчетные показатели в таблице должны быть отображены на однолинейной схеме распределительного электрощита.
2. Наименование и расшифровка всех показателей таблицы расчета нагрузок.
Давайте теперь постараемся разобраться в данной таблице и в каждом ее значении. На первом этапе проектирования создается и подготавливается основа проекта (таблички, архитектурные планы), далее наносятся места расположение розеток, силового оборудования, светильников, выключателей, и т.д – это мы разберем в следующих статьях. После уже происходит расчет. Начинаем мы с того что группируем наши потребители (объединяем один, несколько и более потребителей в группу которая будет подключаться от определенного автоматического выключателя, УЗО или диф. автомата в щите. Теперь когда мы полностью сгруппировали все потребители переходим к подсчету мощностей по каждой группе и разбираем все последующие значения верхней строки таблицы.
Руст – Установленная мощность, (кВт) – это суммарная мощность всех объединенных в одной группе потребителей.
Например: Гр.1 – розетки коридора. В коридоре предусмотрено 5 бытовых розеток каждую бытовую розетку согласно СП31.110-2003 принято брать с расчетом 0,1кВт или 100Вт (при количестве розеток свыше 100 мощность розетки берется 0,06кВт), таким образом установленная мощность пяти розеток составит 0,5кВт или 500Вт.
Кс – Коэффициент спроса – это отношение совмещенного получасового максимума нагрузки электроприемников к их суммарной установленной мощности.
Другими словами – это отношение установленной мощности к расчетной Руст/Рр
Например: для розеточных групп данный коэффициент подбирается по таблице 7.6 СП31.110-2003. Соответственно Кс = 1
Данный коэффициент следует подбирать в зависимости от вида оборудования (для каждого вида и типа он имеет разное значение) и подбирается в соответствии с разделом 7 “Расчетные электрические нагрузки” СП31.110-2003
сosφ – это расчетный коэффициент мощности потребителя, характеризующий наличие в нагрузке реактивной составляющей
Для каждого вида и типа оборудования коэффициент мощности принимается разным. Например для кондиционеров и насосов сosφ= 0,75
tg φ – расчетный коэффициент характеризующий расход реактивной энергии на расход активной энергии
tg φ = (√(1-cos²φ))/cosφ, а также tg φ= Qр/Рр
Рр – расчетная (активная) мощность, кВт – характеризует наличие в нагрузке только активной составляющей и рассчитывается как
Рр = Руст*К с.
Qр – расчетная (реактивная) мощность, квар – мощностная составляющая, которая не была передана в нагрузку, а привела к потерям на нагрев и излучение
Qр = Рр*tg φ.
Sпол. = полная мощность, кВА – это физическая величина, равная произведению действующих элементов периодического электрического тока I в цепи и напряжения U на ее зажимах.
Рассчитывается как Sпол = √(Рр² + Qр²)
И последнее самое важное значение для полного расчета группы – это расчетный ток, Iр. Здесь необходимо также понимать, что существуют потребители номиналом 220В и потребители номиналом 380В т.е однофазные и трехфазные, соответственно и формула расчета тока будет для каждого номинала напряжения своя
Формула расчета однофазного тока: Iр = Рр*1000/(220*cosφ)
Формула расчета трёхфазного тока: Iр = Рр*1000/(1,731*380*cosφ)
Когда произведен расчет по каждой группе потребителей, мы с Вами переходим на самую последнюю итоговую строку, чтобы узнать расчетные показатели в нашей системе электроснабжения.
Руст.общ – Установленная мощность общая, (кВт) – это сумма мощностей всех групп электроснабжения. Например:
Руст.суммарная = Руст.гр1+Руст.гр2+Руст.гр3+Руст.гр4+Руст.гр5
Кс.общ – Коэффициент спроса общий- среднее значение суммы всех Кс групп электроснабжения.
Например: Кс.общ = (Кс.гр1+Кс.гр2+Кс.гр3+Кс.гр4+Кс.гр5)/5
сosφ.общ – Коэффициент мощности общий – среднее значение суммы всех cosφ групп электроснабжения
Например: сosφ.общ = сosφ.общ= ΣPрасч/ ΣS
tg φ.общ – Расчетный коэффициент общий- среднее значение суммы всех tg φ групп электроснабжения
Например: tg φ = (tg φ.гр1+tg φ.гр2+tg φ.гр3+tg φ.гр4+tg φ.гр5)/5
Рр.общ – расчетная (активная) мощность общая, кВт – рассчитывается как:
Рр.общ = Руст.общ*Cosφ.общ
Qр.общ – расчетная (реактивная) мощность общая, квар – рассчитывается как: Qр.общ = Рр.общ*tg φ.общ
Sпол.общ = полная мощность общая, кВА – рассчитывается как:
Sпол.общ = √(Рр.общ² + Qр.общ²)
Для определения полного расчетного тока нам необходимо значение номинального напряжения в сети и как в предыдущем случае рассчитывается как:
Формула расчета однофазного тока:
Iр.пол = Рр.пол*1000/(220*cosφ.пол)
Формула расчета трёхфазного тока:
Iр.пол = Рр.пол*1000/(1,731*380*cosφ.пол)
3. Работа с полученными значениями.
Осуществив полный расчет всех нагрузок и тока сети мы делаем следующие действия:
– Распределяем отходящие группы по фазам, таким образом, чтобы неравномерность по расчетной нагрузке или расчетному току не превышала между самой перегруженной и самой менее загруженной фазой 15% в соответствии с требованиями СП31.110-2003. В случае если изначальное распределение не дало необходимых показателей, мы перераспределяем нагрузку по фазам до необходимых нам параметров.
– В соответствии с полученными значениями тока, по каждой группе осуществляем выбор номинала коммутационного оборудования. Главное правило – расчетный ток группы не должен превышать номинальный ток коммутационного аппарата. Чаще данное значение необходимо даже брать с запасом. Например при расчетном токе 15,6А лучше выбрать автоматический выключатель на номинал 20А, при расчетном токе 10-14А можно выбирать номинал 16А.
– Когда мы закончили подбор номинальных значений коммутационных аппаратов мы приступаем к выбору сечения кабеля для нашей группы. Например для 1-фазного автоматического выключателя на 10А достаточно медного кабеля сечением 3х1,5мм2
Главное в подборе сечения придеживаться правила, что пропускная токовая способность кабеля должна быть выше, чем пропускная токовая способность автоматического выключателя умноженная на значение 1,25
т.е Iк>Iавт.выкл*1,25
Например: мы выбрали однофазный автоматический выключатель на 16А, для него подойдет медный кабель сечением 3х2,5 пропускная способность которого 27А.
Теперь проверим это выражение: 27>16*1,25 = 27>20 – Равенство верное. Расчет кабеля выполнен верно.
– Завершаем наши расчеты подбором вводного выключателя. Значение его номинала должно быть в соответствии с значением мощности выделенной на данный объект. Например: для 15кВт выделенной мощности на квартиру/дом и напряжении 380В – равен трехфазный автоматический выключатель номиналом 25А. Из этого следует, что отходящие однофазные выключатели на группы не должны превышать значения 20А, также как и трехфазные автоматические выключатели. При таких условиях полностью выполняется селективность управления нагрузкой.
Все расчетные показатели, такие как: Руст, Рр, сosφ, Кс, Sр, Iр. – необходимо в обязательном порядке отобразить в однолинейной схеме распределительного щита. Также распределение нагрузок по фазам в процентном отношении тоже необходимо отобразить в однолинейной схеме.
4. Последствия неправильного расчета электрических нагрузок.
Теперь давайте обсудим заключительный вопрос нашей темы – какие следуют последствия при неверных расчетах?
-При неравномерной нагрузке по фазам некоторое оборудование может работать с отклонением от заданных номинальных параметрах, что приводит к их значительному снижению ресурса и ранней поломке. Например этому более подвержены трехфазные электродвигатели.
-При неправленом подборе номинала автоматического выключателя, потребитель может работать с постоянными перерывами, или вовсе не осуществлять запуск. Также мы не разобрали вопрос подбора характеристик автоматического выключателя, об этом мы поговорим в следующих статьях, это отдельная тема требующая внимания.
-При неправильном подборе сечения кабеля (например токовая пропускная способность сечения меньше чем токовая пропускная способность коммутационного аппарата) есть риски его выхода из строя, а также поломке коммутационно аппарата, т.к такой кабель будет подвержен постоянному нагреву, которое проявляется больше всего в месте соединения с коммутационным аппаратом. При этом не исключается возможность дальнейшего возгорания с переходом в пожар.
– При неправильной селективности коммутационных аппаратов возможна некорректная работа электроснабжения. Например при перегрузке или коротком замыкании будет выключаться не групповой автоматический выключатель, а вводной, тем самым обесточивая все отходящие группы.
Уважаемые читатели возможно какие-то моменты по ходу разбора я упустил, какие-то требуют отдельного внимания и разбора, прошу не судить строго. К вопросам проектирования и монтажа систем электроснабжения необходимо относиться с огромной ответственностью.
В следующей статье мы постараемся разобрать не менее важные вопросы расчетов, монтажа и проектирования электроснабжения.