Как найти распределительные свойства

Распределительное свойство умножения

Краткое описание

Используемый в школе распределительный закон умножения позволяет ученикам максимально быстро выполнить все необходимые вычисления. Знание определенных нюансов поможет решить сложные уравнения и различные задачи. Процесс умножения представляет собой сокращенный процесс сложения. А это означает, что первый множитель выступает в роли числа, которое складывается само с собой определенное количество раз, соответствующее второму множителю. Пример: 4 * 8 = 4+4+4+4+4+4+4+4 = 32.

Распределительный закон умножения

Элементарное математическое умножение было изобретено в то время, когда у человечества возникла необходимость выполнять большие вычисления, которые просто неудобно записывать в виде элементарного сложения. Всем хорошо известно, что можно 8 раз сложить число 4, а можно 4 раза сложить число 8, но итоговый результат от этого не поменяется. Именно в этом и состоит смысл переместительного умножения всех задействованных элементов. Умножение позволило человеку решить довольно много проблем, но вместе с этим в алгебру пришло и деление, но уже как противоположная математическая операция.

Ключевые особенности

Чтобы даже на начальном этапе ученик мог выполнить умножение суммы некоторых чисел, необходимо просто умножить каждое слагаемое по отдельности и сложить полученный результат. К примеру: (j + d) * s = sj + sd либо s * (j + d) = sj + sd. Чтобы немного упростить способ решения задачи, описанное правило можно использовать в обратном порядке: s * j + s * d = s * (j + d). В этом случае общий множитель выносится за пределы скобок.

Если попробовать задействовать многофункциональное распределительное свойство сложения, то в итоге можно будет решить следующие математические примеры:

Ученик выполняет умножение

  • Классическая задача: 35 * 6. Следует представить число 35 как сумму двух чисел 30 и 5, которую просто нужно перемножить на 6: (30 + 5) * 6. Все вычисления выполняются элементарно: 30 * 6 + 5 * 6 = 210.
  • Еще один пример: 4 * (20 + 13). Для решения нужно умножить число 4 на каждое задействованное слагаемое: 4 * 20 + 4 * 13. Сложение примет следующий вид: 80 + 52 = 132.
  • Также следует рассмотреть более сложный пример: 8 * (45 — 3). Необходимо перемножить на число 9 уменьшаемое 45, а также вычитаемое 3. Пример: 8 * 45 — 8 * 3. Если все сделать верно, то итоговый результат примет следующий вид: 360 — 24 = 336.

Умелое применение распределительного свойства умножения поможет избежать распространенных ошибок. Так, основное правило актуально не только по отношению к сумме, но и к разности двух и более выражений. Для укрепления полученных навыков можно попробовать самостоятельно придумать задачу.

Основные математические возможности

Чтобы можно было выполнить определенные арифметические действия по отношению к числу, необходимо поочередно умножить его на каждое слагаемое и в итоге сложить полученные произведения. А это значит, что для любых частных чисел l, r, w верным будет следующее равенство: w * (l + r) = w * l + w * r. Этот пример отлично выражает распределительный закон сложения и последующего умножения. Так как число и сумма являются множителями, то после смены их места расположения, задействовав для этого переместительное свойство, можно будет сформировать наиболее подходящее свойство.

Всего специалисты выделяют три свойства распределительного умножения:

  • Элементарное сочетательное. Именно это свойство применяется для тех примеров, где используется минимум 3 множителя. Основная мысль сочетательного свойства в том, что можно легко перемножить первые два множителя, а только потом умножить результат на третий множитель. Стоит учесть, что порядок перемножения может быть абсолютно любым.
  • Переместительное. Произведение не меняется от перемены мест множителя. Для примера из двух множителей это свойство не является критичным, но для заданий с тремя и более множителями это направление может сэкономить много свободного времени.
  • Распределительное. В математике это свойство получило большой спрос для умножения числа на сумму либо разность. Распределительный подход сокращает время решения задачи при правильном подходе. Суть свойства в том, что во время умножения числа на разность либо конкретную сумму можно каждое слагаемое умножить на основное число, а уже потом выполнить сложение.

Законы умножения

Все перечисленные направления имеют свои особенности и правила использования на практике, которые обязательно нужно учесть для лучшего усвоения этой темы.

Правила вычитания

Умножение и последующее вычитание натуральных чисел обязательно связывается распределительным свойством. Учащимся обязательно нужно запомнить формулировку этого правила: умножить определенную разность двух рациональных чисел на конкретное число — это вычитание из произведения уменьшаемого числа произведения данного или неизвестного вычитаемого числа. Все математические примеры записываются при помощи обычных букв: (s — r)* n = s * n — r * n. Задействованными символами могут называться определенные рациональные целые и дробные числа.

Умножение и последующее вычитание натуральных чисел

Элементарные примеры распределительного свойства умножения позволяют ученикам освоить технику решения распространенных математических задач. Если необходимо убедиться в равенстве уравнения 5 * (8 — 3) = 5 * 8 — 5 * 3, тогда нужно выполнить несколько арифметических действий. Так как пример 8 − 3 всегда равен 5, то произведение 5 * (8 — 3) всегда будет иметь следующий результат: 5 * 5 = 5+5+5+5+5=25. Теперь нужно вычислить разность между 5 * 8 и 5 * 3. Решение выглядит следующим образом: 5 * 8 − 5 * 3 = (5+5+5+5+5+5+5+5) — (5+5+5) = 40 — 15 = 25. Это значит, что равенство 5 * (8 − 3) = 5 * 8 − 5 * 3.

Использование двух и более слагаемых

Распространенное в алгебре распределительное свойство элементарного умножения активно применяется не только по отношению к двум слагаемым, но и для неограниченного количества арифметических элементов. Этот подход можно применить для всех форм дробей, что очень удобно. Стандартная формула имеет следующий вид:

  • d x (e + t + h) = d x e + d x t + d x h .
  • d x (e — t — h) = dxe — dxt — dxh.

Распределительное свойство элементарного умножения

В качестве примера следует рассмотреть следующее уравнение: 678 * 4. Чтобы понять все нюансы, надо представить число 678 как сумму трех чисел: 600, 70 и 8. Если это сделать, то в итоге можно получить следующее решение: (600 + 70 + 8) * 4 = 600 * 4 + 70 * 4 + 8 * 4 = 2400 + 280 + 32 = 2712. Для более быстрого решения задачи нужно упростить несколько выражений, используя для этого упомянутое ранее свойство.

Если в качестве примера взять уравнение 8 * (4х + 3у), тогда первым делом раскрывают имеющиеся скобки, применяя для этого распределительный закон умножения: 8 * 4х + 8 * 3у = 32х + 24у. Конечно, полученный результат сложить просто невозможно, так как заявленные слагаемые не являются подобными, к тому же они имеют разную буквенную часть. Именно поэтому ответ будет выглядеть следующим образом: 32х + 24у.

Если ученик научится использовать при решении различных примеров универсальное распределительное свойство сложения и умножения, то в итоге он сможет легко решать даже самые сложные математические примеры, так как многие ситуации можно свести к устному счету. Также будет существенно экономиться время при решении многоуровневых задач. Благодаря полученным знаниям, можно будет с легкостью упростить выражения. Эксперты рекомендуют дважды проверять выполненную работу, так как только в этом случае можно будет избежать ошибок.

Умножение нуля

Несмотря на то что ноль не относится к категории естественных чисел, этому направлению тоже нужно уделить повышенное внимание. Это связано с тем, что такое свойство используется во время умножения натуральных чисел столбиком. Если строго соблюдать смысл умножения, тогда произведение 0 * х, где х выступает в роли произвольного естественного числа больше единицы, представляет собой сумму х слагаемых. В такой ситуации актуальной является следующая формула: 0 * х = 0+0+0+0+….+0. Свойства математического сложения позволяют специалистам утверждать, что последняя сумма неизбежно будет равна нулю.

Чтобы иметь возможность сохранить справедливость элементарного умножения используемого числа на единицу, можно считать верным следующее равенство: 0 * 1 = 0. Это значит, что для любого естественного числа х выполняется равенство 0 * х = 0. Чтобы оставалось актуальным переместительное свойство умножения, нужно помнить о справедливости равенства х * 0 = 0 для всех натуральных чисел х.

Умножение нуля

Произведение естественного числа и нуля равно нулю 0 * х = 0, а также х * 0 = 0. Используемый x представляет собой произвольное натуральное число. Экспертами было доказано, что последнее утверждение играет важную роль формулировки свойства умножения ранее полученного числа и нуля. К примеру, произведение чисел 87 и 0 равно нулю. Если попробовать умножить 0 на 897689, то в итоге тоже получим ноль.

Распределительное свойство относительно разности

Правильное решение математических уравнений возможно только в том случае, если ученик предварительно хорошо изучил теоретическую часть этой темы. Чтобы выполнить элементарное умножение разности на число, необходимо предварительно умножить на него уменьшаемое, а только после этого — вычитаемое, и выполнить вычисление полученных результатов. Пример: g x (y — u) = g x y — g x u или (y — u) x g = g x y — g x u .

Понять все нюансы помогут следующие три примера:

Решение математических уравнений

  • Для решения уравнения 78 * (12 — 5) принято использовать распределительный закон. Первым делом умножают 78 на оба числа: 78 * 12 — 78 * 5. Необходимо отыскать разность полученных значений: 936 — 390 = 546 и записать полученный результат. Ответ: 546.
  • Следующий пример: 78 * 5. Нужно найти значение математического выражения, используя для этого ранее изученные свойства. Следует представить 78 как разность двух чисел 83 и 5. Решение будет выглядеть следующим образом: 78 * 5 = (83 − 5) * 5 = 83 * 5 − 5 * 5 = 390.
  • Еще один арифметический пример: 9 * (2 + 30). Решение этого уравнения довольно простое: 9 * 2 + 9 * 30 = 18 + 270 = 288.

Решать такие задачи элементарно и быстро, но для этого нужно хорошо усвоить все правила, а также рекомендации специалистов, так как только в этом случае можно будет избежать грубых ошибок.

Манипуляции с натуральным числом

Этот раздел связан с умножением единицы на конкретное число. Если следовать смыслу умножения, то в итоге произведение изучаемого арифметического выражения х будет равно сумме х слагаемых, каждое из которых тоже равно единице. Действует элементарная формула: 1 * х = 1+1+1+….+1 = х. Пример: произведение чисел 1 и 78 равно 78, а результатом умножения 1 и 456 есть число 456.

Умножением единицы на конкретное число

Произведение х * 1 лишено какого-либо смысла, так как это арифметическое выражение представляет собой сумму одного слагаемого, которое равно число х, но сложение определяют для двух и более слагаемых. Чтобы сохранить справедливое переместительное свойство поэтапного умножения, нужно считать верным равенство х * 1 = х.

Опытные математики утверждают, что произведение двух разных чисел, одно из которых приравнивается к нулю, равно другому числу. Это утверждение выступает в качестве официальной формулировки умножения единицы и определенного числа. При помощи букв это свойство записывается так: 1 * х = х * 1 = х. За основу могут использоваться любые натуральные числа.

Многим может показаться, что сегодня нет необходимости разбираться во всех свойствах распределительного умножения, так как под рукой всегда есть калькулятор. Но даже у программ существуют свои ограничения, что просто недопустимо в банковской отрасли и правительственных отраслях. Именно поэтому бухгалтеры в обязательном порядке изучают все особенности применения распределительного закона умножения.

Распределительное свойство умножения


Распределительное свойство умножения

4.2

Средняя оценка: 4.2

Всего получено оценок: 223.

4.2

Средняя оценка: 4.2

Всего получено оценок: 223.

Свойства умножения – это, прежде всего, возможность быстро произвести вычисление. Знание распределительного свойства поможет вам без проблем посчитать сложный пример или решить уравнение. Рассмотрим в в подробностях применение распределительного свойства умножения.

Умножение

Умножение – это сокращенный процесс сложения. Что это значит? Первый множитель это число, которое складывается само с собой число раз, равное второму множителю.

3*6=3+3+3+3+3+3=18 – вот как это выглядит на практике. Умножение было изобретено во время, когда потребовались большие вычисления, которые неудобно записывать в виде сложения.

Можно 3 раза сложить число 6, а можно 6 раз сложить число 3. Результат от этого не поменяется, в этом заключается смысл переместительного свойства умножения.

Умножение позволило решить достаточно много проблем, но вместе с ним в математику пришло и деление, как противоположная операция.

Свойства умножения

Всего у умножения 3 свойства:

  • Переместительное: от перемены мест множителя произведение не меняется. Для произведения в 2 множителя это не критично, но для примеров с 3 и более множителями, это свойство может сэкономить время.
  • Сочетательное свойство. Это свойство так же используется для примеров от 3 и более множителей. Суть свойства в том, что можно перемножить первые два множителя, а потом результат умножить на третий. Причем порядок перемножения может быть любым.
  • Распределительное свойство. Это свойство применяется для умножения числа на сумму или разность. Это свойство сокращает время решения при правильном подходе. Суть свойства в том, что при умножении числа на сумму или разность, то можно каждое слагаемое умножить на число, а потом выполнить сложение.

Распределительное свойство

Распределительно свойство можно использовать для быстрого расчета. Рассмотрим большой пример для 6 класса с применением этого свойства умножения:

$$({3over{4}}-{2over{8}})*(18-16)+{1over{15}}*((13+30)-(16-3))+{16over{17}}*(-34+17)$$
$$-({20over{21}}-{38over{42}})*({7over{3}}+{56over{3}})$$

Обратите внимание, что пример представляет собой сумму слагаемых, каждый из которых представлен произведением. Рассмотрим каждое произведение в отдельности, а потом сложим результаты.

  • $$({3over{4}}-{2over{8}})*(18-16)$$ – Найдем значение дроби в первой скобке, а затем умножим его на уменьшаемое и делитель во второй скобке по распределительному свойству.

$${3over{4}}-{2over{8}}={6over{8}}-{2over{8}}={4over{8}}={1over{2}}$$

$${1over{2}}*18-{1over{2}}*16=9-8=1$$ – такие ответы иногда бывают в сложных на вид примерах.

  • $${1over{15}}*((13+30)-(16-3))$$ – здесь слишком много слагаемых, чтобы использовать распределительное свойство, поэтому просто выполним действия во второй скобке и произведем умножение:

$$(13+30)-(16-3)=43-13=30$$

$${1over{15}}*30=2$$

  • $${16over{17}}*(-34+17)$$ – обратите внимание, в знаменателе дроби стоит число 17, которое является делителем для чисел в скобках. Это признак того, что можно и нужно воспользоваться распределительным свойством умножения.

$${16over{17}}*(-34+17)= {16over{17}}*(-34)+ {16over{17}}*17=-32+16=16$$

  • $$({20over{21}}-{38over{42}})*({7over{3}}+{56over{3}})$$ – если посмотреть на вторую скобку, то видно, что в ней можно выполнить сложение дробей без приведения к общему знаменателю.

$$({7over{3}}+{56over{3}})={63over{3}}=21$$ – теперь воспользуемся распределительным свойством и умножим число 21 на каждое из чисел в скобках:

$$({20over{21}}-{38over{42}})*21=20-{38over{2}}=20-19=1$$

  • Сведем все получившиеся значения в один пример и вычислим результат:

1+2+16-1=18 – вот такой маленький ответ получился в большом примере.

При решении этого примера, важно понять, что не всегда нужно использовать распределительное свойство умножения. Важно понимать, когда лучше им воспользоваться, а когда решить другим путем.

Заключение

Что мы узнали?

Мы узнали, что такое умножение. Поговорили о свойствах умножения и особенно выделили распределительное свойство умножения. Решили большой пример на тему применения этого свойства.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

  • Александр Плотников

    10/10

  • Roman Tazhinov

    8/10

  • Вет Громов

    7/10

Оценка статьи

4.2

Средняя оценка: 4.2

Всего получено оценок: 223.


А какая ваша оценка?

Что такое распределительное свойство умножения?

Илья Маслюков

15 ноября 2018  · 12,4 K

Выпускник экономического вуза, мама двоих детей. Люблю активный отдых и неизведанную…  · 16 нояб 2018

Распределительное свойство умножения выглядит так:

(a+b)*c=ac+bc

(a-b)*c=ac-bc

Для того, чтобы умножить сумму на число, можно каждое слагаемое умножить на это число и полученные произведения сложить.

Для того, чтобы умножить разность на число, можно уменьшаемое и вычитаемое умножить на это число и из первого произведения вычесть второе.

8,0 K

Комментировать ответ…Комментировать…

Чтобы умножить число на сумму двух чисел, можно это число умножить на каждое слагаемое и полученные результаты сложить.

С помощью букв распределительное свойство умножения относительно сложения записывают так:

a*(b+c)=a*b+a*c

либо так:

(b+c)*a=a*b+a*c

2,8 K

Комментировать ответ…Комментировать…

Благодаря знанию распределительного свойства умножения и сложения, можно устно решить сложные, на первый взгляд, примеры. Изучается данное правило на уроках алгебры в 7 классе. Задания с использованием данного правила встречаются на ОГЭ и ЕГЭ по математике.

Распределительное свойство умножения

Для того, чтобы произвести умножение суммы некоторых чисел, можно умножить каждое слагаемое по отдельности и сложить полученные результаты.

Проще говоря, a × (в + с) = ав + ас или (в + с) ×а = ав + ас.

распределительное свойство сложения

Также, для упрощения решения, данное правило действует и в обратном порядке: а×в + а×с = а × (в + с), то есть общий множитель выносится за скобки.

Используя распределительное свойство сложения, можно решить следующие примеры.

  1. Пример 1: 3 × (10 + 11). Умножьте число 3 на каждое слагаемое: 3 × 10 + 3 × 11. Сложите: 30 + 33 = 63 и запишите полученный результат. Ответ: 63.
  2. Пример 2: 28 × 7. Представьте число 28 как сумму двух чисел 20 и 8 и перемножьте на 7, вот так: (20 + 8) × 7. Выполните вычисления: 20 × 7 + 8 × 7 = 140 + 56 = 196. Ответ: 196.
  3. Пример 3. Решите следующее задание: 9 × (20 – 1). Перемножьте на число 9 и уменьшаемое 20, и вычитаемое 1: 9 × 20 – 9 × 1. Вычислите полученные результаты: 180 – 9 = 171. Ответ: 171.

Это же правило действует не только на сумму, но и на разность двух и более выражений.

Распределительное свойство умножения относительно разности

Для того, чтобы выполнить умножение разности на число, следует умножить на него уменьшаемое, а затем вычитаемое и выполнить вычисление полученных результатов.

a × (в – с) = а×в – а×с или (в – с) × а = а×в – а×с.

Пример 1: 14 × (10 – 2). Используя распределительный закон, умножьте 14 на оба числа: 14× 10 -14 × 2. Найдите разность полученных значений: 140 – 28 = 112 и запишите полученный результат. Ответ: 112.

учитель математики

Пример 2: 8 × (1 + 20). Аналогично решается данное задание: 8 × 1 + 8 × 20 = 8 + 160 = 168. Ответ: 168.

Пример 3: 27× 3. Найдите значение выражения, пользуясь изученным свойством. Представьте 27 как разность двух чисел 30 и 3, вот так: 27 × 3 = (30 – 3) × 3 = 30 × 3- 3 × 3 = 90 – 9 = 81. Ответ: 81.

Применение свойства для более двух слагаемых

Распределительное свойство умножения применяется не только для двух слагаемых, а для абсолютно любого количества, в таком случае формула имеет данный вид:

а × (в + с+ d) = a×в +a×с+ a×d.

а × (в – с – d) = a×в – a×с – a×d.

Пример 1: 354×3. Представьте 354 как сумму трех чисел: 300, 50 и 3: (300 + 50 + 3) ×3= 300×3 + 50×3 + 3×3 = 900 + 150 + 9 =1059. Ответ: 1059.

Упростите несколько выражений, используя упомянутое ранее свойство.

ученик на уроке

Пример 2: 5 × (3х + 14у). Раскройте скобки, используя распределительный закон умножения: 5 × 3х + 5 × 14у = 15х + 70у. 15 х и 70у сложить нельзя, так как слагаемые не являются подобными и имеют различную буквенную часть. Ответ: 15х + 70у.

Пример 3: 12 × (4с – 5d). Учитывая правило, умножьте на 12 и 4с и 5d: 12 × 4с – 12 × 5d = 48с – 60d. Ответ: 48с – 60d.

Используя при решении примеров распределительное свойство сложения и умножения:

  • с легкостью решаются сложные примеры, их решение можно свести к устному счету;
  • заметно экономится время при решении сложных, на первый взгляд, задач;
  • благодаря полученным знаниям, можно с легкостью упростить выражения.

Добавить комментарий