Как найти расстояние диагонали в квадрате

Квадрат принадлежит к рангу правильных многоугольников, то есть это равносторонний четырехугольник. Являясь синтезом ромба и прямоугольника, каждый из которых в свою очередь представляет собой производную фигуру от, параллелограмма, квадрат объединяет в себе все свойства вышеперечисленных фигур.

Как это поможет найти диагональ квадрата? Рассмотрим два его основных свойства:
– Все стороны квадрата равны (от ромба)
– Все углы квадрата являются прямыми, то есть равны 90 градусам (от прямоугольника)

Если провести диагональ квадрата, то она образует с его сторонами не просто прямоугольный треугольник (как в прямоугольнике), но равнобедренный прямоугольный треугольник, который по теореме Пифагора будет связывать всего два параметра – диагональ квадрата и его сторону. Стороны квадрата будут катетами для треугольника, а диагональ гипотенузой.

a2+b2=c2
a2+b2=d2
2a2=d2

Чтобы из данного тождества вывести формулу диагонали, нужно поместить удвоенный квадрат стороны под квадратный корень, и так как сторона квадрата также возведена во вторую степень, ее можно будет сразу вынести из под корня. В итоге формула диагонали квадрата через сторону будет выглядеть как сторона квадрата, умноженная на корень из двух:

d=√(2a2)
d=a√2

Данная формула применима ко всем случаям, когда необходимо найти диагональ квадрата. При этом в задаче может быть дан не сам квадрат, а форма квадрата как осевое сечение цилиндра, например, тогда длина диагонали квадрата равна диагонали сечения.

Следует также учитывать, что точка пересечения диагоналей делит их на две равные части (свойство параллелограмма), соответственно каждый отрезок, полученный в результате пересечения диагоналей, будет равен половине диагонали квадрата.

Формулы диагонали квадрата через площадь, периметр


Автор:

Roger Morrison


Дата создания:

19 Сентябрь 2021


Дата обновления:

16 Май 2023


как найти диагональ.

Видео: как найти диагональ.

Диагональ квадрата – это линия, проведенная от угла к переднему углу и на противоположной стороне квадрата. Длина указанной диагонали равна квадратному корню из суммы квадратов ее длины и ширины.Квадрат – это прямоугольник со сторонами равной длины, поэтому длина диагонали – это квадратный корень, в два раза превышающий квадрат одной стороны, что упрощает квадратный корень из двух, умноженный на длину одной стороны. Вы можете вычислить длину диагонали, просто умножив длину одной стороны на эту константу.

Введите число «2» в научном калькуляторе.

Нажмите клавишу «квадратный корень», на которой обычно есть радикальный символ.

Умножьте на длину одной стороны квадрата. Например, если сторона имеет длину 9, нажмите «умножить» на калькуляторе, введите «9» и нажмите «равно». Ответ 12,73.

Consejos

Квадратный корень из 2 составляет 1,414. Вы можете быстро рассчитать длину диагонали, умножив 1414 на длину одной стороны. В этом примере у вас 1,414 * 9 = 12,73.

В тригонометрии число 1414 равно секущему и косекансу 45 градусов. Диагональ квадрата образует угол 45 градусов со всех сторон квадрата. Вы можете рассчитать длину диагонали, умножив длину одной стороны на секущую или косеканцию.

Из школьного курса математики мы знаем, что квадрат — это четырёхугольник у которого все углы прямые, а все стороны равны.

Диагональ — отрезок, соединяющий две противоположные вершины квадрата. Задача нахождения диагонали квадрата может встретиться и после окончания школы. К примеру, при постройке дома у которого фундамент должен быть квадратным. Когда размечается фундамент, мало убедиться, что все 4 стороны равны. Ведь у ромба тоже все стороны равны. И получить ромбовидный фундамент вряд ли кто захочет.

В этом случае, чтобы убедиться в том, что фундамент действительно представляет собой квадрат, вычисляют диагональ квадрата и измеряют обе диагонали фундамента. Если все 4 стороны равны между собой и две диагонали также имеют одинаковую длину — фундамент точно будет квадратным. Для вычисления длины диагонали квадрата достаточно знать длину его стороны и простую формулу.

Как найти диагональ квадрата

d=a cdot sqrt{2}

d — диагональ квадрата

a — сторона квадрата

Достаточно подставить в формулу длину стороны квадрата вместо a.

А можно воспользоваться нашим калькулятором. Просто введите длину стороны и тут же получите длину диагонали квадрата. У нас также можно найти диагональ прямоугольника.

Диагональ квадрата онлайн

Примеры нахождения диагонали квадрата

Найдем диагональ квадрата со стороной 3 см.

Подставим в формулу вместо a число 3 и получим d=3 cdot sqrt{2} = sqrt{3^2 cdot 2} = sqrt{18} = 4,24264


Найдем диагональ квадрата со сторонами 2 на 2 см.

Подставим в формулу вместо a число 3 и получим d=2 cdot sqrt{2} = sqrt{2^2 cdot 2} = sqrt{8} = 2,828427

Ваша оценка

[Оценок: 288 Средняя: 2.9]

Диагональ квадрата формула и расчет Автор admin средний рейтинг 2.9/5 288 рейтинги пользователей

Укажите размеры:

Диагональ:

Решение:

Скопировать

Ссылка на страницу с результатом:

# Теория

Квадрат – это четырёхугольник у которого все стороны равны и все углы прямые.

Диагональ квадрата – это прямой отрезок соединяющий противоположные вершины квадрата. Поскольку у квадрата все стороны равны, диагональ делит квадрат на два равных прямоугольных треугольника.

Формула расчёта диагонали квадрата

Если известна длина стороны квадрата, можно использовать теорему Пифагора для вычисления длины диагонали.

a
d

d = a cdot sqrt{2}

  • d – диагональ квадрата
  • a – сторона квадрата

Свойства диагонали квадрата

  • Диагонали квадрата равны (имеют одинаковую длину).
  • Диагональ квадрата разделяет его на два равных треугольника.
  • Диагональ квадрата служит гипотенузой прямоугольного треугольника, образованного двумя его сторонами. Другие две стороны треугольника являются катетами, которые являются сторонами квадрата.
  • Диагональ квадрата является самым длинным отрезком внутри квадрата.
  • Диагональ делит угол квадрата пополам.
  • Диагонали квадрата пересекаются в его центре и образуют прямые углы.
  • Диагональ является диаметром вписанной окружности.
  • Диагональ квадрата делит его на две равные площади. Каждая половина квадрата, образованная диагональю, имеет площадь, равную половине площади всего квадрата.

Похожие калькуляторы:

Войдите чтобы писать комментарии


Загрузить PDF


Загрузить PDF

Диагональ квадрата — это отрезок, который соединяет противолежащие углы квадрата и проходит через его центр. Чтобы вычислить диагональ квадрата, воспользуйтесь формулой d=s{sqrt  {2}}, где s — сторона квадрата. В задачах требуется найти диагональ квадрата по данному значению другой величины, например, периметра или площади. В этих случаях необходимо использовать другие формулы, чтобы сначала вычислить сторону квадрата, а потом – его диагональ.

  1. Изображение с названием Calculate a Diagonal of a Square Step 1

    1

    Найдите длину стороны квадрата. Скорее всего, значение длины стороны квадрата будет дано в условии задачи. Если же вы работаете с реальным предметом, измерьте его сторону при помощи линейки или рулетки. Так как у квадрата все стороны равны, измерьте или найдите длину любой стороны. Если длина стороны квадрата неизвестна, этим методом пользоваться нельзя.

    • Например, дан квадрат со стороной 5 см.
  2. Изображение с названием Calculate a Diagonal of a Square Step 2

    2

  3. Изображение с названием Calculate a Diagonal of a Square Step 3

    3

    Подставьте в формулу значение длины стороны квадрата. То есть данное значение нужно подставить вместо s.

    • Например, если сторона квадрата равна 5 см, формула запишется так:
      d=5{sqrt  {2}}
  4. Изображение с названием Calculate a Diagonal of a Square Step 4

    4

    Умножьте сторону квадрата на {sqrt  {2}}, чтобы найти диагональ квадрата. Вычисление лучше выполнить на калькуляторе, чтобы получить точный ответ. Если калькулятора нет, округлите {sqrt  {2}} до 1,414.

    Реклама

  1. Изображение с названием Calculate a Diagonal of a Square Step 5

    1

  2. Изображение с названием Calculate a Diagonal of a Square Step 6

    2

    Подставьте в формулу значение периметра квадрата. То есть данное значение нужно подставить вместо P.

    • Например, периметр квадрата равен 20 см. Запишите формулу так:
      20=4s
  3. Изображение с названием Calculate a Diagonal of a Square Step 7

    3

    Найдите s. Для этого разделите каждую сторону уравнения на 4. В результате будет вычислена сторона квадрата.

  4. Изображение с названием Calculate a Diagonal of a Square Step 8

    4

  5. Изображение с названием Calculate a Diagonal of a Square Step 9

    5

    Подставьте в формулу значение длины стороны квадрата. То есть данное значение нужно подставить вместо s.

    • Например, если сторона квадрата равна 5 см, формула запишется так:
      d=5{sqrt  {2}}
  6. Изображение с названием Calculate a Diagonal of a Square Step 10

    6

    Умножьте сторону квадрата на {sqrt  {2}}, чтобы найти диагональ квадрата. Вычисление лучше выполнить на калькуляторе, чтобы получить точный ответ. Если калькулятора нет, округлите {sqrt  {2}} до 1,414.

    Реклама

  1. Изображение с названием Calculate a Diagonal of a Square Step 11

    1

  2. Изображение с названием Calculate a Diagonal of a Square Step 12

    2

    В формулу подставьте значение площади квадрата. То есть данное значение нужно подставить вместо A.

    • Например, площадь квадрата равна 25 см2. Запишите формулу так:
      25=s^{{2}}.
  3. Изображение с названием Calculate a Diagonal of a Square Step 13

    3

    Найдите s. Для этого извлеките квадратный корень из значения площади квадрата. В результате будет вычислена сторона квадрата. Воспользуйтесь калькулятором, чтобы извлечь квадратный корень. Если квадратный корень нужно извлечь вручную, прочитайте эту статью.

  4. Изображение с названием Calculate a Diagonal of a Square Step 14

    4

  5. Изображение с названием Calculate a Diagonal of a Square Step 15

    5

    Подставьте в формулу значение длины стороны квадрата. То есть данное значение нужно подставить вместо s.

    • Например, если сторона квадрата равна 5 см, формула запишется так:
      d=5{sqrt  {2}}
  6. Изображение с названием Calculate a Diagonal of a Square Step 16

    6

    Умножьте сторону квадрата на {sqrt  {2}}, чтобы найти диагональ квадрата. Вычисление лучше выполнить на калькуляторе, чтобы получить точный ответ. Если калькулятора нет, округлите {sqrt  {2}} до 1,414.

    Реклама

Что вам понадобится

  • Калькулятор

Об этой статье

Эту страницу просматривали 425 059 раз.

Была ли эта статья полезной?

Добавить комментарий