Как найти расстояние до светила формула

1. Каким образом греческий учёный Эратосфен определил размеры Земли?

Идея Эратосфена заключается в следующем. На одном и том же географическом меридиане земного шара выберем две точки $O_1$ и $O_2.$ Обозначим длину пути меридиана $O_1O_2$ через $l,$ а её угловое значение через $n$ (в градусах). Тогда длина пути $1°$ меридиана $l_0$ будет равна:

$$l_0=dfrac{l}{n},$$

а длина всей окружности меридиана:

$$L=360°·l_0=dfrac{360°·l}{n}=2pi R,$$

где $R$ — радиус земного шара. Отсюда $R=dfrac{180°·l}{pi n}.$

2. Как определяют длину дуги меридиана триангуляционным методом?

Длина дуги определяется путём вычислений, требующих измерения только сравнительно небольшого расстояния — базиса и ряда углов. По обе стороны дуги $O_1O_2$, длину которой необходимо определить, выбирается несколько точек $A, B, C, …$ на взаимных расстояниях до 50 км с таким расчётом, чтобы из каждой из них были видны по меньшей мере две другие точки.

Длину базиса очень тщательно измеряют специальными мерными лентами. Измеренные углы в треугольниках и длина базиса позволяют по тригонометрическим формулам вычислить стороны треугольников, а по ним — длину дуги $О_1О_2$ с учётом её кривизны.

3. Что понимают под горизонтальным параллаксом?

Определение расстояний до тел Солнечной ситсемы основано на измерении их горизонтальных параллаксов. Горизонтальный параллакс — угол $p,$ под которым со светила виден радиус Земли, перпендикулярный к лучу зрения.

4. Как определить расстояние до светила, зная его горизонтальный параллакс?

Зная горизонтальный параллакс светила, можно определить его расстояние $D.$ Расстояние до светила $D=S=dfrac{R_⊕}{sin p},$ где $R_⊕$ — радиус Земли. Приняв $R_⊕$ за единицу, можно выразить расстояние до светила в земных радиусах.

5. Что такое астрономическая единица?

Для измерения расстояний в пределах Солнечной системы используют астрономическую единицу (а.е.), которая равна среднему расстоянию Земли от Солнца(1 а.е. ≈ 149 600 000 км).

6. В чём состоит радиолокационный метод определения расстояний до небесных тел?

Расстояние до объекта по времени прохождения радиолакационного сигнала можно определить по формуле $S=dfrac{1}{2}ct,$ где $S$ — расстояние до объекта; $c$ — скорость светы; $t$ — время прохождения сигнала до объекта и обратно.

7. на каком расстоянии от Земли находится небесное тело, если его горизонтальный параллакс равен 1′?

Для нахождения расстояния применим формулу:

$$D=dfrac{206265”}{p”}R_⊕.$$

Приняв радиус Земли $6371, км,$ получим $D=1, 314, 114, 315, км,$ или $8.8, а.е.$

8. Определите линейный радиус Луны, если во время наблюдений стало известно, что её горизонтальный параллакс в это время равен 57′ а угловой радиус — 15,5′ Радиус Земли принять равным 6400 км.

Дано:

$p = 57′,$
$ρ = 15.5′,$
$R_З = 6400, км.$

$R – ?$

Решение:

Найдём расстояние $D$ до Луны:

$D=dfrac{R_З}{sin p};$ $D=dfrac{6400}{sin 0.95°} approx 3.86 · 10^5, км.$

Вычислим линейный радиус:

$R=D·sin ρ;$ $R = 3.86 · 10^5 · sin 0.26° approx 1752, км.$

Ответ: $1752, км.$

9. Определите диаметр Меркурия, если при прохождении по диску Солнца его угловой диаметр оказался 11.0″, а горизонтальный параллакс в этот момент равен 14.3″.

Дано:

φ=28°.varphi=28°.

Найти:

aМ−?a_М-?

Решение:

sin⁡φ=aМaЗ.sin varphi=dfrac{a_М}{a_З}.

aМ=a⊕⋅sin⁡(28°)=0.4694…≈=0.47 а. е.a_М=a_opluscdot sin(28°)=0.4694…approx=0.47text{ а. е.}

Ответ: aМ=0.47 а. е.a_М=0.47text{ а. е.}

Присоединяйтесь к Telegram-группе @superresheba_11,
делитесь своими решениями и пользуйтесь материалами, которые присылают другие участники группы!

1. Определение размеров Земли. Первый известный науке метод определения размеров Земли применил греческий учёный Эратосфен. Он выбрал два города, лежащих на одном и том же географическом меридиане земного шара, — Александрию (01) и Сиену (02) (рис. 41). Из рисунка видно, что если обозначить длину дуги меридиана 0102 через l, а её угловое значение через n (в градусах), то длина дуги 1° меридиана l0 будет равна:

а длина всей окружности меридиана:

где R — радиус земного шара. Отсюда

Длина дуги меридиана между выбранными на земной поверхности точками 01 и 02 в градусах равна разности географических широт этих точек, т. е. n = Δφ = φ1 — φ2.

Рисунок 41 — Вычисление радиуса Земли

Длина дуги l — расстояние между Александрией и Сиеной — была хорошо известна. Угол n Эратосфен измерил, используя то обстоятельство, что Сиена лежит на тропике Рака и в день летнего солнцестояния Солнце в полдень здесь наблюдалось в зените. А в Александрии Солнце до зенита не доходило и шест, врытый перпендикулярно в землю, отбрасывал тень. Измерив длину этой тени, Эратосфен получил значение n = 7,2° и длину окружности L примерно 45 тыс. км (современное значение 40 тыс. км).

Современная геодезия располагает точными методами для измерения расстояний на земной поверхности. Определение расстояния l между точками 01 и 02 (см. рис. 41) затруднено из-за естественных препятствий (гор, рек, лесов и т. п.).

Рисунок 42 — Метод триангуляции

Поэтому длина дуги l определяется путём вычислений, требующих измерения только сравнительно небольшого расстояния — базиса и ряда углов.

Этот метод разработан в геодезии и называется триангуляцией (лат. triangulum — треугольник).

Суть его состоит в следующем. По обе стороны дуги O1О2, длину которой необходимо определить, выбирается несколько точек А, В, С, … на взаимных расстояниях до 50 км с таким расчётом, чтобы из каждой точки были видны по меньшей мере две другие точки (рис. 42).

Геодезическая вышка. На ее вершине укреплен цилиндр, на который при измерениях наводят теодолит для измерения углов.

Длину базиса очень тщательно измеряют специальными мерными лентами. Измеренные углы в треугольниках и длина базиса позволяют по тригонометрическим формулам вычислить стороны треугольников, а по ним — длину дуги O1О2 с учётом её кривизны.

В России с 1816 по 1855 г. под руководством В. Я. Струве была измерена дуга меридиана длиной 2800 км. В 30-е гг. ХХ в. высокоточные градусные измерения были проведены в СССР под руководством профессора Ф. Н. Красовского.

Триангуляционные измерения показали, что длина дуги 1° меридиана не одинакова под разными широтами: около экватора она равна 110,6 км, а около полюсов — 111,7 км, т. е. увеличивается к полюсам.
Истинная форма Земли не может быть представлена ни одним из известных геометрических тел. Поэтому в геодезии и гравиметрии форму Земли считают геоидом, т. е. телом с поверхностью, близкой к поверхности спокойного океана и продолженной под материками.

В настоящее время созданы триангуляционные сети со сложной радиолокационной аппаратурой, установленной на наземных пунктах, и с отражателями на геодезических искусственных спутниках Земли, что позволяет точно вычислять расстояния между пунктами. Значительный вклад в развитие космической геодезии внёс уроженец Беларуси — известный геодезист, гидрограф и астроном И. Д. Жонголович. На основе изучения динамики движения искусственных спутников Земли он уточнил сжатие нашей планеты и несимметричность Северного и Южного полушарий.

Рисунок 43 — Горизонтальный параллакс светила

2. Определение расстояний методом горизонтального параллакса. Кажущееся смещение светила, обусловленное перемещением наблюдателя, называется параллактическим смещением или параллаксом светила. Параллактические смещения светила тем больше, чем ближе оно к наблюдателю и чем больше перемещение наблюдателя.

Определение расстояний до тел Солнечной системы основано на измерении их горизонтальных параллаксов. Угол р, под которым со светила виден радиус Земли, перпендикулярный к лучу зрения, называется горизонтальным параллаксом (рис. 43). Чем больше расстояние до светила, тем меньше угол р.

Зная горизонтальный параллакс светила, можно определить его расстояние D = SO от центра Земли. Расстояние до светила

( D=frac{R_oplus}{sin p} ), где RЕ — радиус Земли. Приняв RЕ за единицу, можно выразить расстояние до светила в земных радиусах.

Например, параллакс Солнца р¤ = 8,794″. Параллаксу Солнца соответствует среднее расстояние от Земли до Солнца, примерно равное 149,6 млн км. Это расстояние принимается за одну астрономическую единицу (1 а. е.). В астрономических единицах удобно измерять расстояния между телами Солнечной системы.

При малых углах sin p » p, если угол р выражен в радианах. Если угол р выражен в секундах дуги, то вводится множитель

где 206 265 — число секунд в одном радиане. Тогда

Эта формула значительно упрощает вычисление расстояния D до светила по известному параллаксу p.

3. Радиолокационный метод. Для определения расстояний до тел Солнечной системы используются наиболее точные методы измерений — радиолокационные измерения. Измерив время t, необходимое для того, чтобы радиолокационный импульс достиг небесного тела, отразился и вернулся на Землю, вычисляют расстояние D до этого тела по формуле:

где с — скорость света, равная примерно 3·108 м/с.

С помощью радиолокации определены наиболее точные значения расстояний до тел Солнечной системы, уточнены расстояния между материками Земли, более точно определена астрономическая единица (1 а. е. = 149 597 870 ± 2 км).

Методы лазерной локации (использующие, например, специальные уголковые отражатели, доставленные на Луну) позволили измерить расстояния от Земли до Луны с точностью до нескольких сантиметров.

Рисунок 44 — Определение линейных размеров тел Солнечной системы

4. Определение размеров тел Солнечной системы. При наблюдениях небесных тел Солнечной системы можно измерить угол, под которым они видны наблюдателю с Земли. Зная угловой радиус светила р (рис. 44) и расстояние D до светила, можно вычислить линейный радиус R этого светила по формуле R = D ⋅ sin ρ.

По определению горизонтального параллакса, радиус Земли RÅ виден со светила под углом р, тогда получим:

Так как значения углов r и р малы, окончательно имеем:

Определение размеров небесных тел таким способом возможно только тогда, когда видны их диски.

Главные выводы

1. В основу метода определения размеров Земли положены градусные измерения (триангуляция) длин дуг на её поверхности.
2. Определение расстояний до тел Солнечной системы основано на измерении малых углов (параллаксов). В настоящее время для этого используются методы лазерной локации и радиолокации.
3. Для измерения расстояний между телами Солнечной системы используется астрономическая единица (1 а. е.), равная примерно 149,6 млн км.
4. Определение размеров тел Солнечной системы основано на измерении угловых радиусов и расстояний до них.

Контрольные вопросы и задания
1. Каким образом греческий ученый Эратосфен определил размеры Земли?
2. Как определяют длину дуги меридиана триангуляционным методом?
3. Что понимают под горизонтальным параллаксом?
4. Как определить расстояние до светила, зная его горизонтальный параллакс?
5. Что такое астрономическая единица?
6. В чем состоит радиолокационный метод определения расстояний до небесных тел?
7. На каком расстоянии от Земли находится небесное тело, если его горизонтальный параллакс равен 1ʹ?
8. Определите линейный радиус Луны, если в ходе наблюдений стало известно, что ее горизонтальный параллакс в это время равен 57’, а угловой радиус — 15,5ʹ. Радиус Земли принять равным 6400 км.
9. Оцените расстояние от Солнца до Меркурия, если его наибольшая элонгация равна 28°.
10. Определите диаметр Меркурия, если при прохождении по диску Солнца его угловой диаметр оказался 11,0″, а горизонтальный параллакс в этот момент равен 14,3″.

Проверь себя

Выбор тем

Определение расстояний методом горизонтального параллакса

Кажущееся смещение светила, обусловленное перемещением наблюдателя, называется параллактическим смещением или параллаксом светила. Параллактические смещения светила тем больше, чем ближе оно к наблюдателю и чем больше перемещение наблюдателя.

Определение расстояний до тел Солнечной системы основано на измерении их горизонтальных параллаксов. Угол (p), под которым со светила виден радиус Земли, перпендикулярный к лучу зрения, называется горизонтальным параллаксом. Чем больше расстояние до светила, тем меньше угол (p).

Зная горизонтальный параллакс светила, можно определить его расстояние (D = SO) от центра Земли. Расстояние до светила (D = frac{R_{oplus}}{sin p}) — радиус Земли. Приняв (R_{oplus}) за единицу, можно выразить расстояние до светила в земных радиусах.

Например, параллакс Солнца (p_{odot} = {8,794}”). Параллаксу Солнца соответствует среднее расстояние от Земли до Солнца, примерно равное 149,6 млн км. Это расстояние принимается за одну астрономическую единицу (1 а. е.). В астрономических единицах удобно измерять расстояния между телами Солнечной системы.

При малых углах (sin p approx p), если угол (p) выражен в радианах. Если (p) выражен в секундах дуги, то вводится множитель [{sin 1}” = frac{1}{206:265},] где 206 265 — число секунд в одном радиане. Тогда [{sin p}” = {p}”{sin 1}” = frac{{p}”}{{206:265}”}] и [D = frac{{206:265}”}{{p}”}R_{oplus}.]

Эта формула значительно упрощает вычисление расстояния (D) до светила по известному параллаксу (p).

Читать далее

Решебник по астрономии 11 класс на урок №10 (рабочая тетрадь) – Определение расстояний до небесных тел в Солнечной системе и их размеров

1. Закончите предложения.

Для измерения расстояний в пределах Солнечной системы используют астрономическую единицу (а. е.), которая равна среднему расстоянию от Земли до Солнца.

1 а.е. = 149 600 000 км

Расстояние до объекта по времени прохождения радиолокационного сигнала можно определить по формуле , где S = 1/2·ct, где S — расстояние до объекта, c — скорость света, t — время прохождения светила.

2. Дайте определения понятиям «параллакс» и «базис»; на рисунке 10.1 покажите эти величины.

Параллакс — угол p, под которым из недоступного места (точка C) будет виден отрезок AB, называемый базисом.

Базис — тщательно измеренное расстояние от точки A (наблюдатель) до какой-либо достигнутой для наблюдения точки B.

3. Как с помощью понятий параллакса и базиса определить расстояние до удаленного недоступного объекта С (рис. 10.1)?

По величине базиса и прилегающим к нему углам треугольника ABC найти расстояние AC. При измерениях на Земле этот метод называют триангуляцией.

4. Угол, под которым со светила S виден радиус Земли, перпендикулярный лучу зрения, называется горизонтальным параллаксом p (рис, 10.2). Определите расстояния: а) до Луны, если ее горизонтальный параллакс p = 57′; б) до Солнца, горизонтальный параллакс которого p = 8,8″.

Решение.

5. Дополните рисунок 10.3 необходимыми построениями и выведите формулу, позволяющую определить радиус небесного светила (в радиусах Земли), если известны угловой радиус светила p и его горизонтальный параллакс p.

r = D · sin(ρ); R = D · sin(ρ)/sin(p) · R; r = ρ»/p» · R.

6. Решите следующие задачи (при расчетах считайте, что c = 3 · 105 км/с, R3 = 6370 км).

Вариант 1.

1. Радиолокатор зафиксировал отраженный сигнал от пролетающего вблизи Земли астероида через t — 0,667 с. На каком расстоянии от Земли находился в это время астероид?

2. Определите расстояние от Земли до Марса во время великого противостояния, когда его горизонтальный параллакс p = 23,2″.

3. При наблюдении прохождения Меркурия по диску Солнца определили, что его угловой радиус p = 5,5″, а горизонтальный параллакс p = 14,4″. Определите линейный радиус Меркурия.

Вариант 2.

1. Сигнал, посланный радиолокатором к Венере, возвратился назад через t — 4 мин 36 с. На каком расстоянии в это время находилась Венера в своем нижнем соединении?

Ответ: 41 млн км.

2. На какое расстояние к Земле подлетал астероид Икар, если его горизонтальный параллакс в это время был p = 18,0″?

Ответ: 1,22 млн км.

3. С помощью наблюдений определили, что угловой радиус Марса p = 9,0″, а горизонтальный параллакс p = 16,9″. Определите линейный радиус Марса.

Ответ: 3390 км.

Наше Солнце справедливо называют типичной звездой. Но среди
большого и разнообразного числа звёзд есть немало таких, которые значительно
отличаются от него по своим физическим характеристикам и химическому составу.
Поэтому полное представление о звёздах даст такое определение:

Звезда — это массивный газовый шар, излучающий свет и
удерживаемый в состоянии равновесия силами собственной гравитации и внутренним
давлением, в недрах которого происходят (или происходили ранее) реакции
термоядерного синтеза.

Мысли о том, что звёзды — это далёкие солнца, высказывались
ещё в глубокой древности. Но из-за колоссальных расстояний до них диски звёзд
не видны даже в самые мощные телескопы. Поэтому, чтобы найти возможность
сравнивать звёзды между собой и с Солнцем, необходимо было придумать способы
определения расстояний до них.

Ещё Аристотель предполагал, что если Земля движется вокруг
Солнца, то, наблюдая за звездой из двух диаметрально противоположных точек
земной орбиты, можно заметить изменение направления на звезду — её параллактическое
(то есть кажущееся) смещение.

Такая же идея измерения расстояний была предложена и Николаем
Коперником после опубликования им гелиоцентрической системы мироустройства.
Однако ни Копернику, ни тем более Аристотелю не удалось обнаружить это
смещение.

Лишь к середине XIX века, когда на телескопы стали ставить оборудование для
точного измерения углов, удалось измерить такое смещение у ближайших звёзд. Как
удалось установить, кажущееся перемещение более близкой звезды на фоне очень
далёких звёзд происходит по эллипсу с периодом в один год и отражает движение
наблюдателя вместе с Землёй вокруг Солнца. Этот небольшой эллипс, который
описывает звезда, называется параллактическим эллипсом.

В угловой мере его большая полуось равна величине угла, под
которым со звезды видна большая полуось земной орбиты, перпендикулярная
направлению на звезду. Этот угол называется годичным параллаксом и
обозначается греческой буквой π или латинской буквой р.

Зная годичное параллактическое смещение звезды, можно легко
определить расстояние до неё:

В записанной формуле а — это
средний радиус земной орбиты.

Если учесть, что годичные параллаксы звёзд измеряются десятитысячными
долями секунды, а большая полуось земной орбиты равна одной астрономической
единице, то можно получить формулу для вычисления расстояния до звезды в
астрономических единицах:

Первые надёжные измерения годичного параллакса были
осуществлены почти одновременно в Германии, России и Англии в 1837 году.

В России первые измерения годичного параллакса были проведены
Василием Яковлевичем Струве для яркой звезды Северного полушария Веги. Давайте
по его данным определим расстояние до этой звезды.

Согласитесь, что для измерения расстояний до звёзд
астрономическая единица слишком мала. Даже ближайшая к нам звезда —
альфа-Центавра — расположена более чем в 273,5 тысячах а. е. Поэтому для
удобства определения расстояний до звёзд в астрономии применяется специальная
единица длины — парсек (сокращённо пк), название
которой происходит от двух слов — «параллакс» и «секунда».

Парсек — это расстояние, с которого средний радиус
земной орбиты, перпендикулярный лучу зрения, виден под углом в одну угловую
секунду:

1 пк
= 206 265 а. е. =30,8586 трлн км.

Исходя из определения, расстояние в парсеках равно обратной
величине годичного параллакса:

Вернёмся к нашей задаче и определим расстояние до Веги в
парсеках, воспользовавшись полученным нами уравнением.

Также, помимо парсека, в астрономии используется ещё одна
внесистемная единица измерения расстояний — световой год.

Световой год — это расстояние, которое свет,
распространяясь в вакууме, проходит за один год:

1 пк
= 3,26 св. г. = 206 265 а. е. = 3 ∙ 1013 км.

В 1989 году Европейским космическим агентством был запущен
спутник «Гиппаркос». За 37 месяцев своей работы ему удалось
измерить годичные параллаксы более чем миллиона звёзд. При этом точность
измерений для более ста тысяч из них составила одну угловую миллисекунду.

Однако после того, как астрономы научились определять
расстояния до звёзд, возникла ещё одна проблема. Оказалось, что звёзды,
находящиеся примерно на одинаковом расстоянии от Земли, могут отличаться друг
от друга по видимой яркости (блеску). При этом видимый блеск не характеризует
реального излучения звезды. Например, Солнце нам кажется самым ярким объектом
на небе лишь потому, что оно находится гораздо ближе к Земле, чем остальные
звёзды. Поэтому для сравнения истинного блеска звёзд необходимо было определять
их звёздную величину на определённом одинаковом расстоянии от Земли. За такое
одинаковое (или стандартное) расстояние принято 10 пк. Видимая звёздная величина, которую
имела бы звезда, если бы находилась от нас на расстоянии 10 пк,
называется абсолютной звёздной величиной.

Почему в качестве эталонного расстояния было выбрано 10
парсек? Да для простоты расчётов. Итак, предположим, что видимая звёздная
величина звезды на некотором расстоянии D равна т а её блеск — I.

Напомним, что блеск двух источников, звёздные величины
которых отличаются на единицу, отличаются в 2,512 раза. То есть для двух звёзд,
звёздные величины которых равны т1 и т2
соответственно, отношение их блесков выражается соотношением:

Тогда по определению видимая звёздная величина звезды с
расстояния в 10 пк будет равна абсолютной звёздной
величине М. Если обозначить блеск звезды на этом расстоянии через I0, то для
видимой и абсолютной звёздных величин одной и той же звезды предыдущее
уравнение будет выглядеть так:

В тоже время из физики известно, что блеск меняется обратно
пропорционально квадрату расстояния:

Подставим данное выражение в предыдущее уравнение, при этом
учтём, что :

Теперь прологарифмируем полученное выражение:

И упростим его:

Если учесть, что расстояние до звезды обратно пропорционально
её годичному параллаксу, то получим формулу, по которой можно вычислить
абсолютную звёздную величину близко расположенных к нам звёзд

Теперь давайте по полученной формуле рассчитаем абсолютную
звёздную величину нашего Солнца. Для этого учтём, что его видимая звёздная
величина равна–26,8т, а среднее расстояние до него составляет
одну астрономическую единицу

То есть наше Солнце выглядит слабой звёздочкой почти пятой
звёздной величины.

Зная абсолютную звёздную величину звезды, можно вычислить её
действительное общее излучение или светимость.

Светимостью называют полную энергию, излучаемую
звездой за единицу времени. Светимость звезды можно выразить в ваттах, но чаще
её выражают в светимостях Солнца.

Используя формулу Погсона, можно записать соотношение между светимостями
и абсолютными звёздными величинами какой-либо звезды и Солнца:

Данную формулу можно переписать, если учесть, что светимость
Солнца принята за единицу, а его абсолютна звёздная величина равна 4,8m:

По светимости (то есть мощности излучения) звёзды значительно
отличаются друг от друга. Так мощность излучения некоторых звёзд-сверхгигантов
больше мощности излучения Солнца в 330 тыс. А некоторые звёзды-карлики,
обладающие наименьшей светимостью, излучают свет в 480 тыс. раз слабее нашего
Солнца.

Добавить комментарий