Как найти расстояние хорды от центра окружности

Рассмотрим, как найти расстояние от центра окружности до хорды.

Расстояние от точки до прямой измеряется длиной перпендикуляра,  опущенного из этой точки на данную прямую. Значит, расстояние от центра окружности до хорды равно длине перпендикуляра, проведённого из центра окружности к этой хорде.

rasstoyanie-ot-centra-okruzhnosti-do-hordy

Например, расстояние от точки O — центра окружности — до хорды AB  равно длине перпендикуляра OF:

    [OF bot AB]

Задача.

Отрезки AB и CD являются хордами окружности. Найти расстояние от центра окружности до хорды CD, если AB=24, CD=10,  а расстояние от центра окружности до хорды AB равно 5.

rasstoyanie-ot-centra-do-hordyДано: окружность (O; R), AB и CD — хорды,

    [OF bot AB,OK bot CD]

AB=24, CD=10, OF=5

Найти: OK

Решение:

rasstoyanie-do-hordy1) Соединим центр окружности с концами хорд.

2) Треугольники AOB и COD — равнобедренные с основаниями AB и CD (AO=BO=CO=DO как радиусы).

Значит, их высоты OF и OK являются также медианами. Следовательно,

    [ {rm{AF = }}frac{1}{2}AB = 12,CK = frac{1}{2}CD = 5. ]

3) Рассмотрим треугольник AOF, где ∠AFO=90 º.

По теореме Пифагора

    [A{O^2} = A{F^2} + O{F^2},]

    [A{O^2} = {12^2} + {5^2} = 169,AO = 13 = R.]

4) Рассмотрим треугольник COK, где ∠CKO=90 º.

По теореме Пифагора

    [O{K^2} = C{O^2} - C{K^2},]

    [ OK^2 = 13^2 - 5^2 = 144, Rightarrow OK = 12. ]

Ответ: 12.

Содержание:

Окружность:

Определение: Кривой второго порядка называется линия, описываемая уравнением Окружность - определение и вычисление с примерами решения

Замечание: Если коэффициенты Окружность - определение и вычисление с примерами решения

При определенных значениях параметров, входящих в это уравнение, оно дает канонические у равнения окружности, эллипса (не путать с овалом), гиперболы и параболы. Рассмотрим эти кривые второго порядка в указанной последовательности.

Определение: Окружностью называется геометрическое место точек равноудаленных от выделенной точки Окружность - определение и вычисление с примерами решения называемой центром окружности, на расстояние R, которое называется радиусом окружности.

Получим уравнение окружности (Рис. 27). Пусть точка М(х;у) лежит на окружности:

Окружность - определение и вычисление с примерами решения

Рис. 27. Вывод уравнения окружности.

Из рисунка видно, что по теореме Пифагора Окружность - определение и вычисление с примерами решения которое определяет уравнение окружности (Рис. 28): Окружность - определение и вычисление с примерами решения

Рис. 28. Окружность. Окружность - определение и вычисление с примерами решения

Если Окружность - определение и вычисление с примерами решения то уравнение принимает вид Окружность - определение и вычисление с примерами решения который называется каноническим уравнением окружности.

Пример:

Составить уравнение окружности, центр которой совпадает с точкой М (2; 1), прямая линия Окружность - определение и вычисление с примерами решения является касательной к окружности.

Окружность - определение и вычисление с примерами решения

Решение:

Радиус окружности равен расстоянию от центра окружности точки М (2; 1) до прямой l, т.е.

Окружность - определение и вычисление с примерами решения

В уравнении окружности Окружность - определение и вычисление с примерами решения таким образом оно имеет вид: Окружность - определение и вычисление с примерами решения

Пример:

Составить уравнение окружности, касающейся двух параллельных прямых Окружность - определение и вычисление с примерами решения причем одной из них в т. А (1; 2).

Окружность - определение и вычисление с примерами решения

Решение:

Прежде всего определим, на какой из прямых Окружность - определение и вычисление с примерами решения или Окружность - определение и вычисление с примерами решениялежит точка A(1; 2). Для этого подставим ее координаты в уравнения прямых Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения следовательно, точка A(1; 2) принадлежит линии Окружность - определение и вычисление с примерами решения(в сокращенной форме это предложение пишут так: Окружность - определение и вычисление с примерами решения где значок Окружность - определение и вычисление с примерами решения означает “принадлежит”. Таким образом, диаметр окружности D равен расстоянию от точки A(1; 2) до прямой Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

а радиус окружности Окружность - определение и вычисление с примерами решения Найдём координаты центра окружности точки Окружность - определение и вычисление с примерами решения которая делит отрезок АВ пополам. Вначале составим уравнение прямой (АВ) и вычислим координаты точки Окружность - определение и вычисление с примерами решения перейдем от общего уравнения прямой Окружность - определение и вычисление с примерами решения к уравнению прямой с угловым коэффициентом Окружность - определение и вычисление с примерами решения Так как прямаяОкружность - определение и вычисление с примерами решениято её угловой коэффициент Окружность - определение и вычисление с примерами решения Прямая (АВ) проходит через известную точку A(1;2), следовательно, Окружность - определение и вычисление с примерами решения Отсюда находим Окружность - определение и вычисление с примерами решения Таким образом,уравнение прямой (АВ):Окружность - определение и вычисление с примерами решения

Найдем координаты точки B, которая является пересечением прямых Окружность - определение и вычисление с примерами решения и (АВ), т.е. решим систему линейных алгебраических уравнений, составленную из уравнений прямых Окружность - определение и вычисление с примерами решения и (АВ): (В): Окружность - определение и вычисление с примерами решения Подставим выражение для переменной у из второго у равнения в первое, получим Окружность - определение и вычисление с примерами решения Подставив это значение во второе уравнение системы, найдем Окружность - определение и вычисление с примерами решения т.е. Окружность - определение и вычисление с примерами решения

Для вычисления координат точки О применим формулы деления отрезка пополам (О): Окружность - определение и вычисление с примерами решения в этой формуле Окружность - определение и вычисление с примерами решения (координаты точки О), Окружность - определение и вычисление с примерами решения (координаты точки А), Окружность - определение и вычисление с примерами решения (координаты точки В), следовательно, Окружность - определение и вычисление с примерами решения т.е. координаты точки О Окружность - определение и вычисление с примерами решения

Таким образом, уравнение искомой окружности имеет вид: Окружность - определение и вычисление с примерами решения

Окружность в высшей математике

Рассмотрим уравнение

Окружность - определение и вычисление с примерами решения

которое получается из уравнения (I), если положить Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения.

Если в формулу, выражающую расстояние между двумя точками, подставить Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения, то получим Окружность - определение и вычисление с примерами решения Из уравнения (1) находим, что Окружность - определение и вычисление с примерами решения, т. е. Окружность - определение и вычисление с примерами решения. Это значит, что все точки Окружность - определение и вычисление с примерами решения, координаты которых удовлетворяют уравнению (1), находятся на расстоянии Окружность - определение и вычисление с примерами решения от начала координат. Следовательно, геометрическое место точек, координаты которых удовлетворяют уравнению (1), есть окружность радиуса Окружность - определение и вычисление с примерами решения с центром в начале координат. Аналогично получаем, что уравнение Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения определяет окружность радиуса Окружность - определение и вычисление с примерами решения с центром в точке Окружность - определение и вычисление с примерами решения.

Пример:

Найдем уравнение окружности с центром в точке Окружность - определение и вычисление с примерами решения и радиусом, равным 10.

Решение:

ПолагаяОкружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения получим Окружность - определение и вычисление с примерами решения.

Разрешим это уравнение относительно Окружность - определение и вычисление с примерами решения, будем иметь

Окружность - определение и вычисление с примерами решения

и

Окружность - определение и вычисление с примерами решения

Первое из этих уравнений есть уравнение верхней половины окружности, второе—нижней.

Центральный угол. Градусная мера дуги

Дуга окружности. Если отметить на окружности точки Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения, то окружность разделится на две дуги: большую дугу (мажорная дуга) и меньшую дугу (минорная дуга). Если точка Окружность - определение и вычисление с примерами решения является какой-либо точкой дуги Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения. Если точки Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения являются концами диаметра, го каждая дуга является полуокружностью.

Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

Центральный угол. Угол, вершина которого находится в центре окружности, называется центральным углом. Дугу окружности можно измерять в градусах. Градусная мера дуги равна градусной мере соответствующего центрального угла: Окружность - определение и вычисление с примерами решения

Сумма всех центральных углов окружности, не имеющих общую внутреннюю точку, равна Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Дуги окружности и их величины

Окружность - определение и вычисление с примерами решения

Пример: Окружность - определение и вычисление с примерами решения минорная дуга: Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения мажорная дуга: Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения

Конгруэнтные дуги

В окружности конгруэнтным центральным углам соответствуют конгруэнтные дуги и наоборот.

Если Окружность - определение и вычисление с примерами решения

Если Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Длина дуги

Какую часть составляет центральный угол от всей окружности, такую же часть длина дуги составляет от длины всей окружности.

Длина дуги в Окружность - определение и вычисление с примерами решения равна Окружность - определение и вычисление с примерами решения части длины окружности.

Длина дуги, соответствующей центральному углу с градусной мерой Окружность - определение и вычисление с примерами решения, составляет Окружность - определение и вычисление с примерами решения части длины окружности: Окружность - определение и вычисление с примерами решения

Длина дуги выражается единицами измерения длины (мм, см, м, и т.д.)

Окружность - определение и вычисление с примерами решения

Пример №1

Длина окружности равна 72 см. Найдите длину дуги, соответствующей центральному углу Окружность - определение и вычисление с примерами решения.

Решение:

Так как центральный угол Окружность - определение и вычисление с примерами решения составляет Окружность - определение и вычисление с примерами решения часть полного угла, то длина искомой дуги: Окружность - определение и вычисление с примерами решения

Пример №2

Найдите длину дуги, соответствующей центральному углу Окружность - определение и вычисление с примерами решения в окружности радиусом 15 см.

Решение: подставляя значения Окружность - определение и вычисление с примерами решения в формулу длины дуги находим: Окружность - определение и вычисление с примерами решения

Окружность и хорда

Теорема о конгруэнтных хордах

Теорема 1. Хорды, стягивающие конгруэнтные дуги окружности, конгруэнтны.

Обратная теорема 1. Дуги, стягиваемые конгруэнтными хордами окружности, конгруэнтны.

1)Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения

2)Если Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Доказательство теоремы 1:

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Теорема о серединном перпендикуляре хорд

Теорема 2.

Диаметр, перпендикулярный хорде, делит хорду и соответствующую дугу пополам.

Если Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Доказательство теоремы 2.

Дано: Окружность - определение и вычисление с примерами решения– центральный угол, Окружность - определение и вычисление с примерами решения

Докажите: Окружность - определение и вычисление с примерами решения

Начертите радиусы Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения окружности.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Следствие 1. Прямая, проходящая через центр окружности и перпендикулярная хорде, делит хорду и ее дугу пополам.

Следствие 2. Центр окружности расположен на серединном перпендикуляре хорды. Серединный перпендикуляр хорды проходит через центр окружности.

Пример: Найдите расстояние от центра до хорды длиной 30 единиц в окружности радиусом 17 единиц. Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения. Из Окружность - определение и вычисление с примерами решения по теореме Пифагора имеем: Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Теорема о хордах, находящихся на одинаковом расстоянии от центра окружности

Теорема 3.

Конгруэнтные хорды окружности находятся на одинаковом расстоянии от центра окружности.

Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения

Обратная теорема 3. Хорды, находящиеся на одинаковом расстоянии от центра окружности, конгруэнтны.

Окружность - определение и вычисление с примерами решения

Доказательство теоремы 3

Дано: Окружность с центром Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Докажите: Окружность - определение и вычисление с примерами решения

Доказательство (текстовое): Прямая, проходящая через центр окружности и перпендикулярная хорде, делит хорду и стягивающую ее дугу пополам. Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения – серединные перпендикуляры конгруэнтных хорд Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения. Окружность - определение и вычисление с примерами решения, так как они являются половиной конгруэнтных хорд. Начертим радиусы окружности Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения: Окружность - определение и вычисление с примерами решения. Прямоугольные треугольники, Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения конгруэнтны (по катету и гипотенузе). Так как Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения являются соответствующими сторонами данных треугольников, то они конгруэнтны: Окружность - определение и вычисление с примерами решения. Теорема доказана.

Задача. Хорды Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения находятся на одинаковом расстоянии от центра окружности. Окружность - определение и вычисление с примерами решения. Если радиус окружности равен 41 единице, то найдите Окружность - определение и вычисление с примерами решения.

Решение: Так как хорды Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения находятся на одинаковом расстоянии от центра, то они конгруэнтны: Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения Соединим точки Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения с точкой Окружность - определение и вычисление с примерами решения В прямоугольном треугольнике Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения; Окружность - определение и вычисление с примерами решения; Окружность - определение и вычисление с примерами решения; Окружность - определение и вычисление с примерами решения

Так как Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Угол, вписанный в окружность

Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется углом вписанным в окружность. Дуга, соответствующая углу, вписанному в окружность, называется дугой, на которую опирается этот угол.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения является углом вписанным в окружность с центром Окружность - определение и вычисление с примерами решения, а Окружность - определение и вычисление с примерами решения дуга, на которую опирается этот угол. Ниже показаны три разных угла, вписанных в окружность.

Окружность - определение и вычисление с примерами решения

Угол, вписанный в окружность:

Теорема 1. Градусная мера угла, вписанного в окружность, равна половине градусной меры дуги, на которую он опирается. Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Доказательство (текстовое): Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения радиусы окружности и Окружность - определение и вычисление с примерами решения равнобедренный треугольник. Значит, Окружность - определение и вычисление с примерами решения Так как Окружность - определение и вычисление с примерами решения является внешним углом Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения Если примем, что Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения Так как градусные меры центрального угла и опирающейся на него дуги равны, то Окружность - определение и вычисление с примерами решения Следовательно, Окружность - определение и вычисление с примерами решения.

Окружность - определение и вычисление с примерами решения

Следствие 1. Угол, вписанный в окружность, равен половине соответствующего центрального угла.

Следствие 2. Угол, вписанный в окружность и опирающийся на диаметр (полуокружность), является прямым углом.

Окружность - определение и вычисление с примерами решения

Конгруэнтные углы, вписанные в окружность

Следствие 3. Вписанные углы, опирающиеся на одну и ту же дугу, конгруэнтны. Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения.

Следствие 4. Вписанные углы, опирающиеся на конгруэнтные дуги, конгруэнтны. Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения.

Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

Касательная к окружности

Касательная. Признак касательной

Прямая, имеющая одну общую точку с окружностью, называется касательной. Теорема 1. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Окружность - определение и вычисление с примерами решения

Прямая Окружность - определение и вычисление с примерами решения является касательной к окружности. Значит, Окружность - определение и вычисление с примерами решения Обратная теорема (признак касательной): Прямая, проходящая через точку окружности и перпендикулярная радиусу, проведенному в эту точку, является касательной окружности.

Прямая, касающаяся обеих окружностей, называется общей касательной этих окружностей. Окружности, касаясь друг друга изнутри или извне, могут иметь общую касательную в одной точке. Также окружности могут касаться одной касательной в разных точках.

Окружность - определение и вычисление с примерами решения

Две окружности могут иметь несколько общих касательных или вообще не иметь общих касательных.

Окружность - определение и вычисление с примерами решения

Доказательство теоремы 1. Если прямая Окружность - определение и вычисление с примерами решения – касательная к окружности, значит, она имеет единственную общую точку с окружностью. Допустим, что прямая Окружность - определение и вычисление с примерами решения не перпендикулярна радиусу Окружность - определение и вычисление с примерами решения Проведем Окружность - определение и вычисление с примерами решения и на прямой Окружность - определение и вычисление с примерами решения выделим отрезок Окружность - определение и вычисление с примерами решения Тогда Окружность - определение и вычисление с примерами решения так как Окружность - определение и вычисление с примерами решения Значит, точка Окружность - определение и вычисление с примерами решения также находится на окружности. То есть прямая Окружность - определение и вычисление с примерами решения имеет с окружностью две общие точки, что противоречит условию. Значит, Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Свойства касательных, проведенных к окружности из одной точки

Теорема 2. Отрезки касательных к окружности, проведенных из одной точки, конгруэнтны, и центр окружности находится на биссектрисе угла, образованного касательными.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения касательные, проведенные из точки Окружность - определение и вычисление с примерами решения к окружности с центром Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения

Углы, образованные секущими и касательными

Прямая, имеющая две общие точки с окружностью, называется секущей окружности.

Углы между двумя секущими

Вершина угла находится внутри окружности

Теорема. Если вершина угла, образованного двумя секущими, находится внутри окружности, то градусная мера угла равна полусумме величин дуг на которые опирается этот угол и угол вертикальный данному. Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

Углы между касательной и секущей

Вершина угла находится на окружности

Теорема. Если вершина угла, образованного касательной и секущей, находится на окружности, то градусная мера угла равна половине градусной меры дуги, на которую он опирается.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Углы, образованные касательной и секущей

Вершина угла находится вне окружности

Теорема 1.

Градусная мера угла, образованного секущей и касательной, двумя касательными, двумя секущими окружности (если вершина угла находится вне окружности), равна половине разности градусных мер дуг, находящихся между сторонами угла.

Окружность - определение и вычисление с примерами решения

Отрезки секущих и касательных

Длина отрезков, секущих окружность

Теорема 1. При пересечении двух хорд, произведение отрезков одной хорды, полученных точкой пересечения, равно произведению отрезков второй хорды.

Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения

Теорема 2. Если из точки Окружность - определение и вычисление с примерами решения провести две прямые, пересекающие окружность соответственно в точках Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения то верно равенство Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Теорема 3. Если из точки Окружность - определение и вычисление с примерами решения проведены прямая, которая пересекает окружность в точках Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения и касательная к окружности в точке Окружность - определение и вычисление с примерами решения то верно равенство: Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Уравнение окружности

Используя формулу расстояния между двумя точками, можно написать уравнение окружности с радиусом Окружность - определение и вычисление с примерами решения и с центром в начале координат. Расстояние между центром окружности Окружность - определение и вычисление с примерами решения и ее любой точкой Окружность - определение и вычисление с примерами решения равно радиусу Окружность - определение и вычисление с примерами решения окружности.

Окружность - определение и вычисление с примерами решения Расстояние между двумя точками

Окружность - определение и вычисление с примерами решения Упрощение

Окружность - определение и вычисление с примерами решения Возведение обеих частей в квадрат

Окружность - определение и вычисление с примерами решения

Уравнение окружности с центром в начале координат и радиусом Окружность - определение и вычисление с примерами решения: Окружность - определение и вычисление с примерами решения

Например, уравнение окружности с центром в начале координат Окружность - определение и вычисление с примерами решения и радиусом 2 имеет вид: Окружность - определение и вычисление с примерами решения

По формуле расстояния между центром окружности Окружность - определение и вычисление с примерами решения и точки Окружность - определение и вычисление с примерами решения на окружности радиуса Окружность - определение и вычисление с примерами решения имеем Окружность - определение и вычисление с примерами решенияВозведя в квадрат обе части, получаем уравнение окружности с центром в точке Окружность - определение и вычисление с примерами решения и радиусом Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Например, уравнение окружности с центром в точке Окружность - определение и вычисление с примерами решения и радиусом 4 имеет вид: Окружность - определение и вычисление с примерами решения

Пример №3

Постройте на координатной плоскости окружность, заданную уравнением Окружность - определение и вычисление с примерами решения

Решение: Напишем уравнение в виде Окружность - определение и вычисление с примерами решения Как видно, Окружность - определение и вычисление с примерами решения

Отметим 4 точки, находящиеся на расстоянии 5 единиц от начала координат. Например, Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения Проведем окружность через эти точки.

Окружность - определение и вычисление с примерами решения

Пример №4

Точка Окружность - определение и вычисление с примерами решения находится на окружности, центром которой является начало координат. Напишите уравнение этой окружности.

Решение: Записав координаты точки Окружность - определение и вычисление с примерами решения в уравнении Окружность - определение и вычисление с примерами решения, получим: Окружность - определение и вычисление с примерами решения Уравнение этой окружности: Окружность - определение и вычисление с примерами решения

Пример №5

Найдем центр и радиус окружности, заданной уравнением Окружность - определение и вычисление с примерами решения

Решение: Окружность - определение и вычисление с примерами решения

Центр окружности точка Окружность - определение и вычисление с примерами решения Радиус Окружность - определение и вычисление с примерами решения

Пример №6

Мобильные телефоны работают с помощью передачи сигналов посредством спутников из одной передающей станции в другую. Компания мобильного оператора старается расположить передающую станцию так, чтобы обслуживать больше пользователей. Представим, что три больших города находятся в точках Окружность - определение и вычисление с примерами решения На координатной плоскости 1 единица равна расстоянию в 100 км. Передающая станция должна быть расположена в точке, находящейся на одинаковом расстоянии от этих городов. Напишите координаты этой точки и уравнение соответствующей окружности.

Решение: Сначала соединим эти точки и найдем точку пересечения серединных перпендикуляров сторон полученного треугольника. Эта точка Окружность - определение и вычисление с примерами решения Эта точка, являясь центром окружности, показывает месторасположение станции. Расстояние между центром и любой из заданных точек является радиусом окружности, Окружность - определение и вычисление с примерами решения

Уравнение окружности: Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Заметка. Определив линейные уравнения, соответствующие серединным перпендикулярам, можно найти координаты центра окружности решением системы уравнений.

Координаты точек, находящихся на окружности, и тригонометрические отношения

Если точка Окружность - определение и вычисление с примерами решения при повороте радиуса Окружность - определение и вычисление с примерами решения вокруг точки Окружность - определение и вычисление с примерами решения против движения часовой стрелки на угол Окружность - определение и вычисление с примерами решения преобразуется в точку Окружность - определение и вычисление с примерами решения то Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Для координат точки Окружность - определение и вычисление с примерами решения соответствующей углу поворота Окружность - определение и вычисление с примерами решения на окружности, верны формулы Окружность - определение и вычисление с примерами решения В этих формулах Окружность - определение и вычисление с примерами решения – угол, отсчитываемый от положительной оси Окружность - определение и вычисление с примерами решенияпротив движения часовой стрелки. Если точка Окружность - определение и вычисление с примерами решения не находится на оси ординат, то Окружность - определение и вычисление с примерами решения.

Синусы смежных углов равны, а косинусы взаимно противоположны.

Окружность - определение и вычисление с примерами решения

Из этих формул при Окружность - определение и вычисление с примерами решения почленным делением получаем:

Окружность - определение и вычисление с примерами решения

С помощью формул, приведенных выше, вычисление синуса, косинуса, тангенса для тупого угла можно свести к вычислению синуса, косинуса, тангенса острого угла, соответственно.

Сектор и сегмент

Сектор часть круга, ограниченная центральным углом, образованным двумя радиусами и соответствующей этому углу дугой. Площадь сектора, соответствующего центральному углу, составляет ту часть площади круга, которую составляет центральный угол от полного угла.

Окружность - определение и вычисление с примерами решения

Например, часть круга, соответствующая центральному углу Окружность - определение и вычисление с примерами решения, составляет Окружность - определение и вычисление с примерами решения часть всего круга. Так как площадь круга Окружность - определение и вычисление с примерами решения, то площадь этого сектора будет Окружность - определение и вычисление с примерами решения Сегмент часть круга, ограниченная хордой и соответствующей дугой.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Площадь сектора

Площадь сектора: Окружность - определение и вычисление с примерами решения

Площадь сегмента: Окружность - определение и вычисление с примерами решения

Указание: При нахождении площади сегмента, соответствующего большей дуге, к площади соответствующего сектора прибавляется площадь Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

  • Эллипс
  • Гипербола
  • Парабола
  • Многогранник
  • Сфера в геометрии
  • Шар в геометрии
  • Правильные многогранники в геометрии
  • Многогранники

Окружность есть такая плоская кривая, у которой все точки находятся на равном расстоянии от одной точки, лежащей внутри ее и называемой центром.

Круг. Кругом называется часть плоскости, ограниченная окружностью.

Радиус. Радиусом называется отрезок, соединяющий центр с какой-нибудь точкой окружности. Радиус есть расстояние точки окружности от центра.

Из самого определения окружности следует, что все ее радиусы равны.

Окружность и ее радиусы

На чертеже 86 кривая линия BCDAEB есть окружность, O ее центр, отрезки OA, OB, OC — радиусы. Эти отрезки равны

OA = OB = OC.

Диаметр. Отрезок, проходящий через центр от одной точки окружности до другой, называется диаметром.

Всякий диаметр состоит из двух радиусов, а так как все радиусы равны, то следовательно и все диаметры равны.

Дуга есть часть окружности.

Слово дуга иногда обозначают знаком ◡, так что дугу BC изображают письменно: ◡BC.

Хорда. Отрезок, соединяющий две какие-нибудь точки окружности, называется хордой. Хорда есть прямая, стягивающая две точки дуги.

На чертеже 86 линия AB есть диаметр, часть окружности BC есть дуга, прямая CD есть хорда.

Сегмент есть часть плоскости, содержащийся между дугой и хордой.

Сектор есть часть плоскости, содержащийся между двумя радиусами и дугой круга.

На чертеже 86 площадь COB есть сектор, а CKD сегмент.

Касательная есть прямая, имеющая с окружностью только одну общую точку, которая называется точкой касания.

Углом при центре называется угол, имеющий вершину в центре. На чертеже 86 прямая FG есть касательная, а E точка касания.

Теорема 55. Прямая может пересечь окружность только в двух точках.

Доказательство. Если бы прямая AB кроме двух точек M и N (черт. 87) имела бы еще третью точку пересечения L, то три точки окружности M, N, L, по свойству окружности, были бы на равном расстоянии от центра O, следовательно, три отрезка MO, NO, LO были бы равны: MO = NO = LO.

Прямая пересекает окружность только в двух точках

Если же NO = LO, то вышло бы, что равные наклонные находятся на неравных расстояниях от перпендикуляра OQ, что противоречит свойству косвенных, следовательно, третьей точки пересечения быть не может (ЧТД).

Теорема 56. Диаметр делит окружность и круг на две равные части.

Доказательство. Перегнем верхнюю часть круга около диаметра CD (черт. 87) до совпадения ее с нижней частью, тогда все точки верхней совпадут с точками нижней части окружности, ибо в противном случае не все точки окружности находились бы на равном расстоянии от центра.

Зависимость между углами, дугами и хордами

Теорема 57. В двух равных кругах равным углам при центре соответствуют равные дуги.

Дано. Две окружности описаны (черт. 88) одними и теми же радиусами и углы при центре равны:

∠AOB = ∠A’O’B’.

Требуется доказать, что ◡AB = ◡A’B’.

Равные углы и равные дуги

Доказательство. Наложим круг O’ на круг O так, чтобы центр O’ совпал с центром O и сторона OA со стороною O’A’. Точка A’ по равенству радиусов совпадает с точкой A. По равенству углов A’O’B’ и AOB отрезок O’B’ пойдет по отрезку OB и по равенству радиусов точка B’ упадет в точку B. Две крайние точки дуги A’B’ совпадут с двумя крайними точками дуги AB, следовательно, и все промежуточные точки дуги A’B’ совпадут с промежуточными точками дуги AB, так как окружность O’ совпадает с окружностью O, ибо они описаны равными радиусами.

Теорема 58 (обратная 57). Равным дугам соответствуют равные углы.

Дано. Дуги AB и A’B’ равны (◡AB = ◡A’B’) (черт. 88).

Требуется доказать, что ∠AOB = ∠A’O’B’.

Доказательство. Наложим сектор A’O’B’ на сектор AOB так, чтобы отрезок O’A’ совпал с отрезком OA. Дуга A’B’ упадет на дугу AB и B’ упадет в B. Отрезок B’O’ совпадет с отрезком BO и угол AOB совпадет с углом A’O’B’, следовательно,

∠AOB = ∠A’O’B’ (ЧТД).

Теорема 59. Диаметр больше всякой хорды.

Даны диаметр CD и хорда MN (черт. 87).

Требуется доказать, что CD > MN.

Доказательство. Проведем радиусы MO и NO. Ломаная линия MON больше прямой MN

MON > MN или MO + ON > MN

Так как MO = CO, NO = OD, то заменяя MO и NO равными им величинами, получим неравенства:

CO + OD > MN или CD > MN (ЧТД).

Теорема 60. Равные хорды стягивают равные дуги.

Даны равные хорды AB и CD (черт. 89) (AB = CD).

Требуется доказать, что ◡AB = ◡CD.

Равные хорды

Доказательство. Соединив точки A, B, C, D с центром, имеем

∆AOB = COD, ибо

OA = OC и OB = OD как радиусы, AB = CD по условию.

Следовательно, ∠AOB = ∠COD, откуда ◡AB = ◡CD (ЧТД).

Теорема 61 (обратная 60). Равные дуги стягиваются равными хордами.

Дано. Дуги AB и CD равны (черт. 89) (◡AB = ◡CD).

Требуется доказать, что AB = CD.

Доказательство. Два треугольника AOB и COD равны, ибо OA = OC и OB = OD как радиусы, ∠AOB = ∠COD ибо по условию дуги AB и CD равны, а потому и углы равны (теорема 58). Следовательно, AB = CD (ЧТД).

Теорема 62. Если дуги меньше полуокружности, то против большей дуги лежит большая хорда.

Дано. Дуга BD больше дуги AC (черт. 90) (◡BD > ◡AC).

Требуется доказать, что BD > AC.

Против большей дуги лежит большая хорда

Доказательство. Соединим точки A, C, B, D с центром O. В двух треугольниках AOC и BOD OA = OB и OC = OD как радиусы, BOD > AOC. Следовательно, BD > AC (теорема 23) (ЧТД).

Теорема 63 (обратная 62). Против большей хорды лежит большая дуга.

Дано. Хорда BD больше хорды AC (черт. 90) (BD > AC).

Требуется доказать, что ◡BD > ◡AC.

Доказательство. В двух треугольниках AOC и BOD OA = OB и OC = OD как радиусы, BD > AC по условию. Поэтому ∠BOD > ∠AOC (теорема 24). Следовательно, ◡BD > ◡AC (ЧТД).

Взаимное отношение хорд и их расстояний от центров

Теорема 64. Радиус, перпендикулярный к хорде, делит как хорду так и дугу пополам.

Радиус OC перпендикулярен к хорде AB (черт. 91).

CO AB.

Требуется доказать, что AD = BD и ◡AC = ◡CB.

Радиус, перпендикулярный к хорде

Доказательство. Соединим точки A и B с центром O. Равные наклонны OA и OB находятся на равных расстояниях от перпендикуляра OC, следовательно, AD = DB.

Если же перпендикуляр CD восставлен из середины отрезка AB, то его точка C находится на равном расстоянии от концов перпендикуляра, поэтому хорды AC и CB равны, а следовательно,

◡AC = ◡CB

т. е. дуга AB делится перпендикуляром OC пополам (ЧТД).

Следствие. Перпендикуляр, восставленный из середины хорды, проходит через центр.

Доказательство. Так как центр находится на равном расстоянии от концов хорды, то он находится на перпендикуляре, восставленном из середины хорды.

Теорема 65. Равные хорды находятся на равном расстоянии от центра.

Дано. Хорды AB и CD равны: AB = CD (черт. 92).

Требуется доказать, что их расстояния от центра равны, т. е.

OE = OF

Расстояние от центра до равных хорд

Доказательство. Соединив точки A и C с центром O, имеем два равных прямоугольных треугольника AEO и COF, ибо OA = OC как радиусы, AE = CF как половины равных хорд (теорема 64). Следовательно,

OE = OF (ЧТД).

Теорема 66 (обратная 65). На равных расстояниях от центра находятся равные хорды.

Дано. Расстояния хорд AB и CD от центра равны, т. е.

OE = OF (черт. 92).

Требуется доказать, что AB = CD.

Доказательство. Два прямоугольных треугольника AEO и COF равны, ибо имеют по равной гипотенузе и равному катету. Действительно, OE = OF по условию, OA = OC как радиусы, следовательно, AE = CF или ½AB = ½CD, откуда

AB = CD (ЧТД).

Теорема 67. Большая хорда к центру ближе меньшей.

Дано. Хорда AB больше хорды AC (черт. 93), т. е. AB > AC.

Требуется доказать, что OD < OE.

Чем больше хорда, тем ближе она к центру окружности

Доказательство. Линия OD перпендикулярна к AB, а линия OF наклонна, следовательно, OD < OF. Так как OF < OE, то и подавно OD < OE (ЧТД).

Свойства касательной

Прямая называется секущей, если она пересекает окружность в двух точках, и касательной, если она имеет с окружностью только одну общую точку. Эта точка называется точкой касания.

Теорема 68. Прямая, проведенная через в конец радиуса, перпендикулярно к нему, будет касательной к окружности.

Дано. Прямая AF перпендикулярно к радиусу AO в конце радиуса (черт. 94)

AF AO.

Требуется доказать, что AF касательная к окружности.

Касательная в точке касания перпендикулярна радиусу

Доказательство. Всякая другая точка B перпендикуляра AB находится на расстоянии BO большем AO, ибо наклонная больше перпендикуляра, следовательно точка B находится вне окружности. Таким образом прямая AB имеет с окружностью только одну общую точку A, следовательно, она будет касательной (ЧТД).

Теорема 69 (обратная 68). Касательная к окружности, проведенная в конец радиуса, перпендикулярна к радиусу.

Дано. Прямая AF касается окружности в точке A (черт. 94).

Требуется доказать, что AF OA.

Доказательство. Прямая AB как касательная имеет с окружностью только одну общую точку A. Всякая другая точка B лежит вне окружности, следовательно, всякий отрезок OB больше OA. Таким образом, отрезок OA есть кратчайшее расстояние точки O от AB, следовательно, OA AB (ЧТД).

Теорема 70. Между параллельными хордами находятся равные дуги.

Дано. Хорды AB и CD параллельны: AB || CD (черт. 95).

Требуется доказать, что ◡AC = ◡BD.

Равные дуги между параллельными хордами

Доказательство. a) Из центра окружности O опустим перпендикуляр OM на хорду AB, тогла отрезок OM перпендикулярен и к хорде CD.

По теореме 64

◡CM = ◡MD
◡AM = ◡MB

Вычитая второе равенство из первого, получим:

◡CM – ◡AM = ◡MD – ◡MB или
◡AC = ◡BD.

b) Если параллельные хорды AB и EF (черт. 95) лежат по обе стороны центра, то, продолжив прямую OM до пересечения с окружностью в точке G, имеем:

◡MA = ◡MB, ◡GE = ◡GF.

Так как полуокружности MAG и MBG равны

MAG = MBG, то следовательно,
MAG – ◡MA – ◡GE = MBG – ◡MB – ◡GF
или ◡AE = ◡BF (ЧТД).

Относительное положение двух окружностей

Концентрические и эксцентрические круги. Два круга называются концентрическими, когда они имеют один общий центр, и эксцентрическими, когда из центры не совпадают.

На чертеже 96 представлены круги концентрические и на чертежах 97, 98, 99, 100 и 101 круги эксцентрические.

Концентрические и эксцентрические круги

Внешние и внутренние круги. Круги называются внешними, когда все точки одного лежат вне площади другого круга, и внутренними, когда все точки одного лежат внутри площади другого круга.

На чертежах 97 и 99 изображены круги внешние, на чертежах 96, 98 и 100 круги внутренние.

Касательные окружности. Окружности называются касательными, когда они имеют одну общую точку.

Касательные окружности

Общая точка двух касательных окружностей называется их точкой соприкосновения. Соприкосновение называется внешним, когда два круга, имея общую точку, лежат один вне другого, и внутренним, когда один круг лежит внутри другого. На черт. 99 имеем случай внешнего, а на чертеже 100 случай внутреннего соприкосновения.

Пересекающиеся окружности. Окружности называются пересекающимися, когда они имеют две общие точки (черт. 101).

Пересекающиеся окружности

Линия центров есть отрезок, соединяющий центры двух кругов.

Теорема 71. Две окружности, имеющие общую точку на линии центров, другой общей точки иметь не могут.

Дано. Две окружности с центрами O и O’ имеют общую точку A (черт. 102).

Требуется доказать, что другой общей точки у них нет.

Общая точка окружностей на линии центров

Доказательство. Положим, существует другая общая точка B, следовательно,

OB = OA и O’B = O’A.

Складывая эти равенства, мы имели бы

OB + O’B = OA + O’A или
OB + O’B = OO’

равенство несообразное, ибо ломаная не может равняться прямой.

Итак, другой общей точки быть не может (ЧТД).

Теорема 72. Две окружности, имеющие одну общую точку вне линии центров, имеют и другую общую точку по другую сторону линии центров.

Дано. Две окружности, центры которых O и O’, имеют общую точку A вне отрезка OO’ (черт. 103), соединяющей центры.

Требуется доказать, что существует и другая общая точка по другую сторону центров.

Общие точки окружностей

Доказательство. Из точки A опустим на линию центров перпендикуляр AG и на продолжении его отложим отрезок BG, равный AG.

Докажем, что точка B будет другая общая точка. Точка B лежит на окружности O, ибо AO = BO как равные наклонные, находящиеся на равных расстояниях AG и BG от перпендикуляра OO’. Точка B лежит на окружности O’, ибо AO’ = BO’ как равные наклонные, находящиеся на равных расстояниях AG и BG от перпендикуляра OO’, следовательно, точка B есть другая общая точка (ЧТД).

Теорема 73. Если две окружности пересекаются в двух точках, то линия центров перпендикулярна и делит пополам хорду, соединяющую точки пересечения.

Дано. Точки A и B есть точки пересечения (черт. 104) двух окружностей.

Требуется доказать, что AG = BG и AB OO’.

Хорда между точками пересечения окружностей

Доказательство. Треугольники OAO’ и OBO’ равны, ибо OO’ сторона общая.

OA = OB как радиусы окружности O.

O’A = O’B как радиусы окружности O’.

Следовательно,

∠AOO’ = ∠BOO’

Треугольники AOG и BOG равны, ибо OG сторона общая, AO = BO как радиусы, ∠AOG = ∠BOG по доказанному. Следовательно, AG = BG (хорда AB делится линией центров пополам), ∠AGO = ∠BGO (хорда AB перпендикулярна к линии центров).

Таким образом, хорда AB делится пополам и перпендикулярна к линии центров OO’ (ЧТД).

Расстояние между центрами окружностей

1. Если две окружности пересекаются в двух точках, расстояние центров меньше суммы и больше разности радиусов.

Действительно, с одной стороны (черт. 104)

OO’ < AO + AO’

с другой

AO + OO’ > AO’

следовательно,

OO’ > AO’ – AO

2. Если две окружности касаются, расстояние центров равно сумме радиусов, если соприкосновение внешнее, и разности радиусов, если соприкосновение внутреннее.

Расстояние центров соприкасающихся окружностей

Из чертежа 105 видно, что

OO’ = AO + AO’

а из чертежа 106

OO’ = AO – AO’.

3. Если одна окружность лежит вне другой, расстояние центров больше суммы радиусов.

Из чертежа 107 видно, что

OO’ > AO + BO’

4. Если окружность лежит одна внутри другой, расстояние центров меньше разности радиусов.

Действительно, из чертежа 108 видно, что

OO’ < AO – BO’.

Расстояние между центрами окружностей

Измерение углов

Центральные углы. Углы, имеющие вершину при центре, называются центральными углами.

Относительно этих углов имеют место следующие теоремы.

Теорема 74. Равным центральным углам в одной и той же окружности соответствуют равные дуги.

Дано. Углы AOB и COD равны (черт. 109).

Требуется доказать, что ◡AB = ◡CD.

Равные центральные углы и равные дуги окружности

Доказательство. Проведем хорды AB и CD и соединим точки A, B, C, D с центром. Два треугольника AOB и COD равны, ибо AO = CO и BO = DO как радиусы, ∠AOB = ∠COD по условию. Следовательно, хорды AB и CD равны.

Против равных хорд лежат равные дуги, следовательно и дуги AB и CD равны: ◡AB = ◡CD (ЧТД).

Теорема 75 (обратная 74). Равным дугам в одной и той же окружности соответствуют равные углы.

Дано. Дуги AB и CD равны (черт. 109).

Требуется доказать, что ∠AOB = ∠COD.

Доказательство. Из того, что дуги AB и CD равны, следует, что и хорды AB и CD тоже равны (теорема 61).

Два треугольника AOB и COD равны, ибо AB = CD как равные хорды, AO = CO и BO = DO как радиусы. Следовательно, ∠AOB = ∠COD (ЧТД).

Теорема 76. Отношение центральных углов равно отношению соответствующих им дуг.

Даны два центральные угла AOB и COD (черт. 110).

Требуется доказать, что

AOB/COD = AB/CD.

Отношение центральных углов и дуг

Доказательство. Здесь имеют место два случая:

1) Когда дуги AB и CD соизмеримы и 2) когда они несоизмеримы.

1-й случай. Дуги AB и CD соизмеримы.

Пусть дуга AE будет их общей мерой. Положим, что она p раз содержится в дуге AB и q раз в дуге CD. Разделив дугу AB на p, а CD на q равных частей и соединив точки деления дуг с центром O, мы разделим угол AOB на p, а угол COD на q равных углов, из которых каждый равен углу AOE.

Из равенств

AB = pAE, CD = qAE
AOB = pAOE, COD = qAOE

получаем

AOB/COD = p/q, AB/CD = p/q, откуда
AOB/COD = AB/CD (ЧТД).

2-й случай. Дуги AB и CD несоизмеримы.

Отложим дугу AF равную CD и соединим F с O. Углы AOF и COD равны.

Требуется доказать, что

AOB/AOF = AB/AF

Доказательство. A) Положим

AOB/AOF > AB/AF (1).

Для того, чтобы имело место равенство, нужно дробь во второй части неравенства (1) увеличить. Для этого следует ее знаменатель уменьшить.

Положим, мы нашли, что имеет место равенство

AOB/AOF = AB/AG (a)

Разделим дугу AB на равное число таких частей, чтобы каждая часть была менее GF; тогда одна из точек деления i упадет в промежутке между G и F. Дуги AB и Ai соизмеримы, следовательно,

AOB/AOi = AB/Ai (b).

Разделив равенства (b) на (a), находим

AOF/AOi = AG/Ai

равенство несообразное, ибо первая часть его больше, а вторая меньше 1, следовательно, допущение (1) не имеет места.

B) Допустим, что

AOB/AOF < AB/AF (2)

Тогда вторую часть этого неравенства нужно уменьшить для того, чтобы имело место равенство. Для этого нужно знаменатель дроби AB/AF увеличить. Положим, мы нашли такую точку H, чтобы удовлетворялось равенство

AOB/AOF = AB/AH (c)

Разделив дугу AB на такие равные части, чтобы каждая часть была меньше FH, мы найдем, что одна из точек деления J упадет в промежуток между F и H. Дуги AB и AJ будут соизмеримы, следовательно,

AOB/AOJ = AB/AJ (d)

Разделив равенство (d) на (c) найдем

AOF/AOJ = AH/AJ

Это равенство несообразно, ибо первое отношение меньше, а второе больше единицы, следовательно, и допущение (2) тоже не имеет места, откуда видно, что справедливо только равенство AOB/AOF = AB/AF (ЧТД).

Зная, что отношение углов равно отношению дуг, описанных равными радиусами, мы в пропорции (черт. 111)

AOB/COD = AB/CD

можем принять за единицу любую дугу. В этом случае должны принять за единицу и соответствующий ей угол.

Отношение дуг и углов

Принимая дугу CD, а следовательно, и угол COD за 1, имеем равенство

AOB/1 = AB/1

или отношение угла к своей единице равно отношению дуги к своей соответствующей единице, откуда

∠AOB = ◡AB.

Это равенство означает, что

числовая величина угла равна числовой величине дуги, или что угол измеряется дугой, описанной из его вершины, как из центра.

Мера углов и дуг

За единицу угла обыкновенно принимают прямой угол.

Углы и дуги измеряют также частями окружности.

Для этого делят окружность на 360 равных частей, называемых градусами, градус на 60 минут, минуту на 60 секунд.

Таким образом, окружность имеет 360 градусов или 360°. Градус имеет 60 минут или 60′. Минута включает 60 секунд или 360”.

Выражение 12°7’16” означает дугу круга, имеющую 12 градусов 7 минут и 16 секунд. Угол, опирающийся на эту дугу, называется также углом в 12°7’16”.

Прямой угол имеет 90°.

Теорема 77. Углы, имеющие вершину на окружности, измеряются половиной дуги, содержащейся между его сторонами.

Здесь может быть несколько случаев (черт. 112).

Первый случай. Угол BAC образуется диаметром AC и хордой AB.

Соединим центр O с точкой B; тогда

∠BOC = ∠ABO + ∠BAO

Так как ∠ABO = ∠BAO как углы равнобедренного треугольника AOB, то

BOC = 2BAO и
BAO = ½ BOC.

Угол BOC измеряется дугой BC, следовательно, угол BAO измеряется дугой ½ BC.

Углы с вершиной на окружности

Второй случай. Угол BAD образуется двумя хордами, лежащими по обе стороны диаметра.

BAD = BAC + CAD
уг. BAD измеряется дугой ½ BC
уг. CAD измеряется дугой ½ CD.

Следовательно, угол BAD измеряется дугой

½ BC + ½ CD = ½ (BC + CD) = ½ BD.

Т. е. угол BAD измеряется половиной дуги, заключающейся между его сторонами (ЧТД).

Третий случай. Угол EAB образуется двумя хордами, лежащими по дну сторону диаметра.

EAB = EAC – BAC
EAC измеряется дугой ½ EC
BAC измеряется дугой ½ BC

следовательно, EAB измеряется дугой

½ EC – ½ BC = ½ (EC – BC) = ½ EB.

Правило остается то же.

Теорема 78. Угол, образуемый касательной и хордой, измеряется половиной дуги, стягиваемой хордой.

Доказательство. Угол FAE (черт. 112) есть угол, образуемой касательной AF и хордой AE. Проведя диаметр AC, мы получим прямой угол FAC.

FAE = FAC – EAC

Прямой угол FAC измеряется дугой ½AC.

Угол EAC измеряется дугой ½EC.

Угол FAE измеряется

½AC – ½EC = ½(AC – EC) = ½AE (ЧТД).

Теорема 79. Угол, имеющий вершину внутри окружности, измеряется полусуммой дуг, заключающихся между его основаниями.

Дан угол ACB, имеющий вершину C внутри окружности (черт. 113).

Требуется доказать, что он измеряется дугой ½(AB + DE).

Угол с вершиной внутри окружности

Доказательство. Из точки B проведем прямую BF параллельную AE, тогда

∠ACB = ∠DBF

Угол DBF измеряется дугой ½DF или

∠DBF = ½ DEF = ½ (DE + EF)

◡AB = ◡EF как дуги, содержащиеся между параллельными сторонами, следовательно,

ACB = ½ (DE + AB) (ЧТД).

Теорема 80. Угол, имеющий вершину вне окружности, измеряется полуразностью дуг, заключающихся между его сторонами.

Дано. Угол ACB имеет вершину вне окружности (черт. 114).

Требуется доказать, что он измеряется дугой ½ (AB – EF).

Величина угла вне окружности

Доказательство. Проведем из точки F прямую FG параллельную AC, тогда

∠C = ∠GFB

Мера угла C равна мере угла GFB = ½ GB

GB = AB – AG

Так как AG = EF, то GB = AB – EF, следовательно, ∠C = ½ (AB – EF) (ЧТД).

Из предложенных теорем вытекают заключения:

1) Все углы, имеющие вершину на окружности и опирающиеся на диаметр, являются прямыми, ибо все они измеряются половиной полуокружности.

2) Все вписанные углы, опирающиеся на одну и туже дугу, равны.

Обратно:

3) Все прямые углы, имеющие вершину на окружности, опираются на концы диаметра.

4) Угол при центре вдвое больше угла вписанного и опирающегося на одну и ту же дугу.

Свойства углов и сторон описанного и вписанного четырехугольника

Теорема 81. Во всяком четырехугольнике, вписанном в окружность, сумма противоположных углов равна двум прямым.

Дано. Вписан четырехугольник ABCD (черт. 115).

Требуется доказать, что A + C = 2d, B + D = 2d.

Вписанный четырехугольник

Доказательство. Угол B измеряется половиной дуги ADC, угол D измеряется половиной дуги ABC, следовательно сумма углов B + D измеряется ½ (ADC + ABC), т. е. полуокружностью.

Полуокружность есть мера двух прямых, следовательно,

B + D = 2d.

Это же заключение справедливо и для суммы углов A и C

A + C = 2d (ЧТД).

Теорема 82. Суммы противоположных сторон описанного четырехугольника равны.

Дан описанный четырехугольник ABCD (черт. 116); a, b, c, d четыре точки прикосновения его сторон с окружностью.

Требуется доказать, что AB + CD = BC + AD.

Стороны описанного четырехугольника

Доказательство. Соединим вершины и точки прикосновения a, b, c, d описанного четырехугольника с центром O.

Из чертежа 116 видно, что

∆OaC = ObC
ObD = OcD
OcA = OdA
OdB = OaB

ибо они, будучи прямоугольными, имеют по равной гипотенузе OC, OD, OA, OB и равным катетам, следовательно,

aC = bC
aB = dB
cA = dA
cD = bD

Сложив эти равенства, получаем:

aC + aB + cA + cD = bC + dB +dA + bD

или

BC + AD = CD + AB (ЧТД).

Всего: 27    1–20 | 21–27

Добавить в вариант

Длина хорды окружности равна 72, а расстояние от центра окружности до этой хорды равно 27. Найдите диаметр окружности.


Радиус окружности с центром в точке O равен 85, длина хорды AB равна 80 (см. рис.). Найдите расстояние от хорды AB до параллельной ей касательной k.


Отрезки AB и CD являются хордами окружности. Найдите длину хорды CD, если AB  =  20, а расстояния от центра окружности до хорд AB и CD равны соответственно 24 и 10.


Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CD, если AB  =  18, CD  =  24, а расстояние от центра окружности до хорды AB равно 12.


Найдите длину хорды окружности радиусом 13 см, если расстояние от центра окружности до хорды равно 5 см. Ответ дайте в см.


Радиус окружности с центром в точке O равен 85, длина хорды AB равна 102 (см. рис.). Найдите расстояние от хорды AB до параллельной ей касательной k.


Радиус окружности с центром в точке O равен 65, длина хорды AB равна 126 (см. рис.). Найдите расстояние от хорды AB до параллельной ей касательной k.


Радиус окружности с центром в точке O равен 82, длина хорды AB равна 36 (см. рис.). Найдите расстояние от хорды AB до параллельной ей касательной k.


Длина хорды окружности равна 96, а расстояние от центра окружности до этой хорды равно 20. Найдите диаметр окружности.


Радиус окружности с центром в точке O равен 50, длина хорды AB равна 96 (см.рисунок). Найдите расстояние от хорды AB до параллельной ей касательной k.


Радиус окружности с центром в точке O равен 90, длина хорды AB равна 144 (см.рисунок). Найдите расстояние от хорды AB до параллельной ей касательной k.


Радиус окружности с центром в точке O равен 10, длина хорды AB равна 16 (см. рис.). Найдите расстояние от хорды AB до параллельной ей касательной k.


Радиус окружности с центром в точке O равен 26, длина хорды AB равна 48 (см. рис.). Найдите расстояние от хорды AB до параллельной ей касательной k.


Радиус окружности с центром в точке O равен 87, длина хорды AB равна 126 (см. рис.). Найдите расстояние от хорды AB до параллельной ей касательной k.


Радиус окружности с центром в точке O равен 61, длина хорды AB равна 22 (см. рис.). Найдите расстояние от хорды AB до параллельной ей касательной k.


Радиус окружности с центром в точке O равен 50, длина хорды AB равна 28 (см. рис.). Найдите расстояние от хорды AB до параллельной ей касательной k.


Радиус окружности с центром в точке O равен 75, длина хорды AB равна 90 (см. рис.). Найдите расстояние от хорды AB до параллельной ей касательной k.


Радиус окружности с центром в точке O равен 50, длина хорды AB равна 80 (см. рис.). Найдите расстояние от хорды AB до параллельной ей касательной k.


Радиус окружности с центром в точке O равен 65, длина хорды AB равна 66 (см. рис.). Найдите расстояние от хорды AB до параллельной ей касательной k.


Радиус окружности с центром в точке O равен 75, длина хорды AB равна 42 (см. рис.). Найдите расстояние от хорды AB до параллельной ей касательной k.

Всего: 27    1–20 | 21–27

Учебный курс Решаем задачи по геометрии 

Определение хорды

Хорда к окружности с обозначенными цветом центральным углом и дугой. Между дугой и хордой находится сегмент окружности
Хорда – это отрезок, который соединяет две точки заданной кривой. Хорда может быть у дуги, окружности, эллипса и т.д. 
На рисунке хорда обозначена как отрезок AB красного цвета. Оба его конца находятся на окружности

Часть кривой, заключенной между двумя точками хорды, называется дугой.
На рисунке дуга хорды AB обозначена зеленым цветом.

Плоская фигура, заключенная между дугой и ее хордой называется сегментом.
Сегмент на рисунке ограничен красным отрезком AB с одной стороны, и зеленой дугой – с другой стороны.

Хорда, проходящая через центр окружности, называется диаметром окружности. Диаметр окружности – самая длинная хорда окружности.

Свойства хорды к окружности

  • Если расстояния от центра окружности до хорд равны, то эти хорды равны. Верно и обратное – если хорды равны, то расстояния от центра окружности до этих хорд равны
  • Если хорда больше, то расстояние от центра окружности до этой хорды меньше. Если хорда меньше, то расстояние от центра окружности до этой хорды больше. Верно и обратное
  • Наибольшая возможная хорда является диаметром
  • Серединный перпендикуляр к хорде проходит через центр окружности
  • Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр перпендикулярен этой хорде. Верно и обратное  – если диаметр перпендикулярен хорде, то этот диаметр делит эту хорду пополам
  • Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр делит дуги, стягиваемые этой хордой, пополам. Верно и обратное – если диаметр делит дугу пополам, то этот диаметр делит пополам хорду, стягивающую эту дугу
  • Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус перпендикулярен этой хорде. Верно и обратное – если радиус перпендикулярен хорде, то этот радиус делит эту хорду пополам
  • Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус делит дугу, стягиваемую этой хордой, пополам. Верно и обратное – если радиус делит дугу пополам, то этот радиус делит пополам хорду, стягивающую эту дугу.
  • Если радиус перпендикулярен хорде, то этот радиус делит дугу, стягиваемую этой хордой, пополам. Верно и обратное – если радиус делит дугу пополам, то этот радиус перпендикулярен хорде, стягивающей эту дугу.

Хорда к окружности вместе с вписанным [1] и центральными углами [2]

Свойства хорды и вписанного угла

На рисунке [1] вписанный угол обозначен обозначен как ACB, хорда окружности – AB

  • Если вписанные углы опираются на одну и ту же хорду и вершины этих углов лежат по одну сторону этой хорды, то эти углы равны.
  • Если пара вписанных углов опирается на одну и ту же хорду и вершины этих углов лежат по разные стороны этой хорды, то сумма этих углов равна 180°.
  • Если вписанный и центральный углы опираются на одну и ту же хорду и вершины этих углов лежат по одну сторону этой хорды, то вписанный угол равен половине центрального угла.
  • Если вписанный угол опирается на диаметр, то этот угол является прямым.

Свойства хорды и центрального угла

На рисунке [2] центральный угол обозначен как AOB, хорда как AB.

  • Если хорды стягивают равные центральные углы, то эти хорды равны.
  • Если хорды равны, то эти хорды стягивают равные центральные углы.
  • Большая хорда стягивает больший центральный угол, меньшая хорда стягивает меньший центральный угол.
  • Больший центральный угол стягивается большей хордой, меньший центральный угол стягивается меньшей хордой.

Формулы нахождения хорды

Обозначения хорды, перпендикуляра, центрального угла и радиуса окружности для использования в формулах
Обозначения в формулах:
l – длина хорды
α – величина центрального угла
R – радиус окружности
d – длина перпендикуляра, проведенного от центра окружности к хорде
Формулы нахождения длины хорды через длину окружности, центрального угла и перпендикуляр к хорде

Длина хорды окружности равна удвоенному радиусу данной окружности, умноженному на синус половины центрального угла.
Сумма квадрата половины длины хорды и квадрата перпендикуляра, проведенного к этой хорде, равна квадрату радиуса окружности. Данная формула следует из теоремы Пифагора.

Решение задач

Примечание. Если Вы не нашли решение подходящей задачи, пишите об этом в форуме. Наверняка, курс геометрии будет дополнен.

Задача.

Хорды АВ и СD пересекаются в точке S, при чем AS:SB = 2:3, DS = 12см, SC = 5см, найти АВ. 

Решение.
Хорды к окружности
Поскольку соотношение AS:SB = 2:3 , то пусть длина AS = 2x, SB = 3x

Согласно свойству хорд AS x SB = CS x SD, тогда

2х * 3х = 5 * 12
2 = 60
х2 = 10
x = √10

Откуда
AB = AS + SB
AB = 2√10 + 3√10= 5√10

Ответ: 5√10

Задача.

Окружность разделена на части, которые относятся как 3,5:5,5:3 и точки деления соединены между собой. Определить величину углов образовавшегося треугольника.  

Решение.
Обозначим коэффициент пропорциональности дуг окружности, как х. Соединим центры окружности с концами дуг. Поскольку центральный угол равен градусной мере дуги, на которую опирается, то соотношение центральных углов окружности будет равно соотношению ее частей (дуг).
Поскольку градусная мера окружности равна 360 градусам, то

3,5х + 5,5х + 3х = 360
12х = 360
х = 30

Откуда градусные величины центральных углов равны:
3 * 30 = 90
3,5 *30 = 105
5,5 *30 = 165

Окружность разделенная на части с образованием треугольника
Углы образовавшегося треугольника являются углами, вписанными в окружность. Вписанный угол равен половине градусной меры дуги, на которую опирается.
Откуда углы треугольника равны:

90 / 2 = 45
105 / 2 = 52,5
165 / 2 = 82,5

Ответ: Величина углов треугольника равна 45 ; 52,5 ; 82,5 ;


0
 

 Задачи про окружность |

Описание курса

| Треугольник (Трикутник) 

Обсудить на форуме
Записаться на курсы
Обратиться к консультанту
Пройти тест
Полный список курсов обучения
Бесплатные видеоуроки
Нужна информация!

Добавить комментарий