Как найти расстояние между параллельными прямыми онлайн

Расстояние между прямыми в пространстве онлайн

С помощю этого онлайн калькулятора можно найти расстояние между прямыми в пространстве. Дается подробное решение с пояснениями. Для вычисления расстояния между прямыми в пространстве, задайте вид уравнения прямых (“канонический” или “параметрический” ), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку “Решить”.

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Расстояние между прямыми в пространстве − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2:

где M1(x1, y1, z1) и M2(x2, y2, z2) − точки, лежащие на прямых L1 и L2, а q1={m1, p1, l1} и q2={m2, p2, l2} − направляющие векторы прямых L1 и L2, соответственно.

Прямые (1) и (2) в пространстве могут совпадать, быть паралленьными, пересекаться, или быть скрещивающимся. Если прямые в пространстве пересекаются или совпадают, то расстояние между ними равно нулю. Мы рассмотрим два случая. Первый − прямые параллельны, и второй − прямые скрещиваются. Остальные являются частыми случаями. Если при вычислении расстояния между параллельными прямыми мы получим расстояние равным нулю, то это значит, что эти прямые совпадают. Если же расстояние между скрещивающимися прямыми равно нулю, то эти прямые пересекаются.

1. Расстояние между параллельными прямыми в пространстве

Рассмотрим два метода вычисления расстояния между прямыми.

Метод 1. От точки M1 прямой L1 проводим плоскость α, перпендикулярно прямой L2. Находим точку M3(x3, y3, y3) пересечения плоскости α и прямой L3. По сути мы находим проекцию точки M1 на прямую L2. Как найти проекцию точки на прямую посмотрите здесь. Далее вычисляем расстояние между точками M1(x1, y1, z1) и M3(x3, y3, z3):

которое и является расстоянием между прямыми L1 и L2 (Рис.1).

Пример 1. Найти расстояние между прямыми L1 и L2:

Решение. Прямая L1 проходит через точку M1(x1, y1, z1)=M1(1, 2, 1) и имеет направляющий вектор

Прямая L2 проходит через точку M2(x2, y2, z2)=M2(8, 4, 1) и имеет направляющий вектор

Найдем проекцию точки M1 на прямую L2. Для этого построим плоскость α, проходящей через точку M1 и перпендикулярной прямойL2.

Для того, чтобы плоскость α было перепендикулярна прямой L2, нормальный вектор плоскости α должен быть коллинеарным направляющему вектору прямой L2, т.е. в качестве нормального вектора плоскости α можно взять направляющий вектор прямой L2. Тогда уравнение искомой плоскости, проходящей через точку M1(x1, y1, z1) имеет следующий вид:

Подставляя значения m2, p2, l2, x1, y1, z1 в (5) получим :

После упрощения получим уравнение плоскости, проходящей через точку M1 и перпендикулярной прямой L2:

Найдем точку пересечения прямой L2 и плоскости α, для этого построим параметрическое уравнение прямой L2.

Выразив переменные x, y, z через параметр t, получим параметрическое уравнение прямой L2:

Чтобы найти точку пересечения прямой L2 и плоскости α, подставим значения переменных x, y, z из (7) в (6):

Решив уравнение получим:

Подставляя полученное значение t в (7), получим точку пересеченияпрямой L2 и плоскости α:

Остается найти расстояние между точками M1 и M3:

Ответ: Расстояние между прямыми L1 и L2 равно d=7.2506.

Метод 2. Найдем расстояние между прямыми L1 и L2 (уравнения (1) и (2)). Во первых, проверяем параллельность прямых L1 и L2. Если направляющие векторы прямых L1 и L2 коллинеарны, т.е. если существует такое число λ, что выполнено равенство q1=λq2, то прямые L1 и L2 параллельны.

Данный метод вычисления расстояния между параллельными векторами основана на понятии векторного произведения векторов. Известно, что норма векторного произведения векторов и q1 дает площадь параллелограмма, образованного этими векторами (Рис.2). Узнав площадь параллелограмма, можно найти вершину параллелограмма d, разделив площадь на основание q1 параллелограмма.

Вычислим координаты вектора :

Вычислим векторное произведение векторов и q1:

Вычисляя определители второго порядка находим координаты вектора c:

Далее находим площадь параллелограмма:

Расстояние между прямыми L1 и L2 равно:

где

Пример 2. Решим пример 1 методом 2. Найти расстояние между прямыми

и

Решение. Прямая L1 проходит через точку M1(x1, y1, z1)=M1(1, 2, 1) и имеет направляющий вектор

Прямая L2 проходит через точку M2(x2, y2, z2)=M2(8, 4, 1) и имеет направляющий вектор

Векторы q1 и q2 коллинеарны. Следовательно прямые L1 и L2 параллельны. Для вычисления расстояния между параллельными прямыми воспользуемся векторным произведением векторов.

Построим вектор ={x2x1, y2y1, z2z1}={7, 2, 0}.

Вычислим векторное произведение векторов и q1. Для этого составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов и q1:

Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов и q1:

Таким образом, результатом векторного произведения векторов и q1 будет вектор:

Поскольку векторное произведение векторов и q1 дает плошадь параллелограмма образованным этими векторами, то расстояние между прямыми L1 и L2 равно :

Ответ: Расстояние между прямыми L1 и L2 равно d=7.25061.

2. Расстояние между скрещивающимися прямыми в пространстве

Пусть задана декартова прямоугольная симтема координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2 (уравнения (1) и (2)).

Пусть прямые L1 и L2 не параллельны (паралельные прямые мы расстотрели в предыдущем параграфе). Чтобы найти расстояние между прямыми L1 и L2 нужно построить параллельные плоскости α1 и α2 так, чтобы прямая L1 лежал на плоскости α1 а прямая L2 − на плоскости α2. Тогда расстояние между прямыми L1 и L2 равно расстоянию между плоскостями L1 и L2 (Рис. 3).

Поскольку плоскость α1, проходит через прямую L1, то он проходит также через M1(x1, y1, z1). Следовательно справедливо следующее равенство:

где n1={A1, B1, C1} − нормальный вектор плоскости α1. Для того, чтобы плоскость α1 проходила через прямую L1, нормальный вектор n1 должен быть ортогональным направляющему вектору q1 прямой L1, т.е. скалярное произведение этих векторов должен быть равным нулю:

Так как плоскость α1 должна быть параллельной прямой L2, то должна выполнятся условие:

Решая систему линейных уравнений (27)−(29), с тремя уравнениями и четыремя неизвестными A1, B1, C1, D1, и подставляя в уравнение

получим уравнение плоскости α1. (Как построить уравнение плоскости, проходящей через прямую, параллельно другой прямой подробно изложено здесь).

Аналогичным образом находим уравнение плоскости α2:

Плоскости α1 и α2 параллельны, следовательно полученные нормальные векторыn1={A1, B1, C1} и n2={A2, B2, C2} этих плоскостей коллинеарны. Если эти векторы не равны, то можно умножить (31) на некторое число так, чтобы полученный нормальный вектор n2 совпадал с нормальным вектором уравнения (30).

Тогда расстояние между параллельными плоскостями вычисляется формулой:

Полученное расстояние между плоскостями α1 и α2 является также расстоянием между прямыми L1 и L2.

Пример 3. Найти расстояние между прямыми

и

Решение. Прямая L1 проходит через точку M1(x1, y1, z1)=M1(2, 1, 4) и имеет направляющий вектор q1={m1, p1, l1}={1, 3, −2}.

Прямая L2 проходит через точку M2(x2, y2, z2)=M2(6, −1, 2) и имеет направляющий вектор q2={m2, p2, l2}={2, −3, 7}.

Шаг 1.

Построим плоскость α1, проходящую через прямую L1, параллельно прямой L2.

Поскольку плоскость α1 проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(2, 1, 4) и нормальный вектор n1={m1, p1, l1} плоскости α1 перпендикулярна направляющему вектору q1 прямой L1. Тогда уравнение плоскости должна удовлетворять условию:

а условие параллельности прямой L1 и искомой плоскости α1 представляется следующим условием:

Так как плоскость α1 должна быть параллельной прямой L2, то должна выполнятся условие:

Таким образом мы должны решить систему трех уравнений с четырьмя неизвестными (34)−(36). Подставим значения x1, y1, z1, m1, p1, l1, m2, p2, l2 в (27)−(29):

Представим эти уравнения в матричном виде:

Решим систему линейных уравнений (40) отностительно A1, B1, C1, D1:

Искомая плоскость может быть представлена формулой:

Подставляя значения A1, B1, C1, D1 в (42), получим:

Упростим уравнение, умножив на число 17.

Шаг 2.

Построим плоскость α2, проходящую через прямую L2, параллельно прямой L1.

Поскольку плоскость α2 проходит через прямую L2 , то она проходит также через точку M2(x2, y2, z2)=M2(6, −1, 2) и нормальный вектор n2={m2, p2, l2} плоскости α2 перпендикулярна направляющему вектору q2 прямой L2. Тогда уравнение плоскости должна удовлетворять условию:

а условие параллельности прямой L2 и искомой плоскости α2 представляется следующим условием:

Так как плоскость α2 должна быть параллельной прямой L1, то должна выполнятся условие:

Таким образом мы должны решить систему трех уравнений с четырьмя неизвестными (37)−(39). Подставим значения x2, y2, z2, m2, p2, l2, m1, p1, l1 в (37)−(39):

Представим эти уравнения в матричном виде:

Решим систему линейных уравнений (50) отностительно A2, B2, C2, D2:

Искомая плоскость может быть представлена формулой:

Подставляя значения A2, B2, C2, D2 в (52), получим:

Упростим уравнение, умножив на число −83.

Шаг 3.

Расстояние между построенными плоскостями (43) и (53) будет расстоянием между прямыми (1) и (2).

Запишем формулы уравнений плоскостей α1 и α2 :

где n1={A1, B1, C1}={15, −11, −9} и n2={A2, B2, C2}={15, −11, −9} − нормальные векторы плоскостей α1 и α2, соответственно, а свободные члены равны D1=17, D2=−83, соответственно.

Поскольку нормальные векторы плоскостей α1 и α2 совпадают, то можно найти расстояние между плоскостями α1 и α2, используя следующую формулу:

Подставим значения A1, B1, C1, D1, D2 в (54):

Упростим и решим:

Расстояние между прямыми равно: d=4.839339

Shortest Distance Between Two Lines Calculator

Online space geometric calculator to find the shortest distance between given two lines in space, each passing through a point and parallel to a vector.

Online space geometric calculator to find the shortest distance between given two lines in space, each passing through a point and parallel to a vector.

Code to add this calci to your website Expand embed code Minimize embed code

Formula

Shortest distance between two lines calculation is much useful in the field of space geometry.

В материале этой статьи разберем вопрос нахождения расстояния между двумя параллельными прямыми, в частности, при помощи метода координат. Разбор типовых примеров поможет закрепить полученные теоретические знания.

Расстояние между двумя параллельными прямыми: определение

Определение 1

Расстояние между двумя параллельными прямыми – это расстояние от некоторой произвольной точки одной из параллельных прямых до другой прямой.

Приведем иллюстрацию для наглядности: Расстояние между двумя параллельными прямыми: определение

На чертеже изображены две параллельные прямые a и b. Точка М1 принадлежит прямой a, из нее опущен перпендикуляр на прямую b. Полученный отрезок М1Н1 и есть расстояние между двумя параллельными прямыми a и b.

Указанное определение расстояния между двумя параллельными прямыми справедливо как на плоскости, так и для прямых в трехмерном пространстве. Кроме того, данное определение взаимосвязано со следующей теоремой.

Теорема

Когда две прямые параллельны, все точки одной из них равноудалены от другой прямой.

Доказательство

Пусть нам заданы две параллельные прямые a и b. Зададим на прямой а точки М1 и М2, опустим из них перпендикуляры на прямую b, обозначив их основания соответственно как Н1 и Н2. М1Н1 – это расстояние между двумя параллельными прямыми по определению, и нам необходимо доказать, что |М1Н1|=|М2Н2|.

Расстояние между двумя параллельными прямыми: определение

Пусть будет также существовать некоторая секущая, которая пересекает две заданные параллельные прямые. Условие параллельности прямых, рассмотренное в соответствующей статье, дает нам право утверждать, что в данном случае внутренние накрест лежащие углы, образованные при пересечении секущей заданных прямых, являются равными: ∠M2M1H2=∠H1H2M1. Прямая М2Н2 перпендикулярна прямой b по построению, и, конечно, перпендикулярна прямой a. Получившиеся треугольники М1Н1Н2 и М2М1Н2 являются прямоугольными и равными друг другу по гипотенузе и острому углу: М1Н2 – общая гипотенуза, ∠M2M1H2=∠H1H2M1. Опираясь на равенство треугольников, мы можем говорить о равенстве их сторон, т.е.: |М1Н1| = |М2Н2|. Теорема доказана.

Отметим, что расстояние между двумя параллельными прямыми – наименьшее из расстояний от точек одной прямой до точек другой.

Нахождение расстояния между параллельными прямыми

Мы уже выяснили, что, по сути, чтобы найти расстояние между двумя параллельными прямыми, необходимо определить длину перпендикуляра, опущенного из некой точки одной прямой на другую. Способов, как это сделать, несколько. В каких-то задачах удобно воспользоваться теоремой Пифагора; другие предполагают использование признаков равенства или подобия треугольников и т.п. В случаях, когда прямые заданы в прямоугольной системе координат, возможно вычислить расстояние между двумя параллельными прямыми, используя метод координат. Рассмотрим его подробнее.

Зададим условия. Допустим, зафиксирована прямоугольная система координат, в которой заданы две параллельные прямые a и b. Необходимо определить расстояние между заданными прямыми.

Решение задачи построим на определении расстояния между параллельными прямыми: для нахождения расстояния между двумя заданными параллельными прямыми необходимо:

– найти координаты некоторой точки М1, принадлежащей одной из заданных прямых;

– произвести вычисление расстояния от точки М1 до заданной прямой, которой эта точка не принадлежит.

Опираясь на навыки работы с уравнениями прямой на плоскости или в пространстве, определить координаты точки М1 просто. При нахождении расстояния от точки М1 до прямой пригодится материал статьи о нахождении расстояния от точки до прямой.

Вернемся к примеру. Пусть прямая a описывается общим уравнением Ax+By+C1=0, а прямая b – уравнением Ax+By+C2=0. Тогда расстояние между двумя заданными параллельными прямыми возможно вычислить, используя формулу:

M1H1=C2-C1A2+B2

Выведем эту формулу.

Используем некоторую точку М1 (x1, y1), принадлежащую прямой a. В таком случае координаты точки М1 будут удовлетворять уравнению Ax1+By1+C1=0. Таким образом, справедливым является равенство: Ax1+By1+C1=0; из него получим: Ax1+By1=-C1.

Когда С2<0, нормальное уравнение прямой b будет иметь вид:

AA2+B2x+BA2+B2y+C2A2+B2=0

При С2≥0 нормальное уравнение прямой b будет выглядеть так:

AA2+B2x+BA2+B2y-C2A2+B2=0

И тогда для случаев, когда С2<0, применима формула: M1H1=AA2+B2x1+BA2+B2y1+C2A2+B2.

А для С2≥0 искомое расстояние определяется по формуле M1H1=-AA2+B2x1-BA2+B2y1-C2A2+B2==AA2+B2x1+BA2+B2y1+C2A2+B2

Таким образом, при любом значении числа С2 длина отрезка |М1Н1| (от точки М1 до прямой b) вычисляется по формуле: M1H1=AA2+B2x1+BA2+B2y1+C2A2+B2

Выше мы получили: Ax1+By1=-C1, тогда можем преобразовать формулу: M1H1=-C1A2+B2+C2A2+B2=C2-C1A2+B2. Так мы, собственно, получили формулу, указанную  в алгоритме метода координат.

Разберем теорию на примерах.

Пример 1

Заданы две параллельные прямые y=23x-1 и x=4+3·λy=-5+2·λ. Необходимо определить расстояние между ними.

Решение

Исходные параметрические уравнения дают возможность задать координаты точки, через которую проходит прямая, описываемая параметрическими уравнениями. Таким образом, получаем точку М1 (4, -5). Требуемое расстояние – это расстояние между точкой М1(4, -5) до прямой y=23x-1, произведем его вычисление.

Заданное уравнение прямой с угловым коэффициентом y=23x-1 преобразуем в нормальное уравнение прямой. С этой целью сначала осуществим переход к общему уравнению прямой:

y=23x-1⇔23x-y-1=0⇔2x-3y-3=0

Вычислим нормирующий множитель: 122+(-3)2=113. Умножим на него обе части последнего уравнения и, наконец, получим возможность записать нормальное уравнение прямой: 113·2x-3y-3=113·0⇔213x-313y-313=0.

При x=4, а y=-5 вычислим искомое расстояние как модуль значения крайнего равенства:

213·4-313·-5-313=2013

Ответ: 2013.

Пример 2

В фиксированной прямоугольной системе координат Oxy заданы две параллельные прямые, определяемые уравнениями x-3=0 и x+50=y-11. Необходимо найти расстояние между заданными параллельными прямыми.

Решение

Условиями задачи определено одно общее уравнение, задаваемое одну из исходных прямых: x-3=0. Преобразуем исходное каноническое уравнение в общее: x+50=y-11⇔x+5=0. При переменной x коэффициенты в обоих уравнениях равны (также равны и при y – нулю), а потому имеем возможность применить формулу для нахождения расстояния между параллельными прямыми:

M1H1=C2-C1A2+B2=5-(-3)12+02=8

Ответ: 8.

Напоследок рассмотрим задачу на нахождение расстояния между двумя параллельными прямыми в трехмерном пространстве.

Пример 3

В прямоугольной системе координат Oxyz заданы две параллельные прямые, описываемые каноническими уравнениями прямой в пространстве: x-31=y-1=z+24 и x+51=y-1-1=z-24. Необходимо найти расстояние между этими прямыми.

Решение

Из уравнения x-31=y-1=z+24 легко определются координаты точки, через которую проходит прямая, описываемая этим уравнением: М1(3, 0, -2). Произведем вычисление расстояния |М1Н1| от точки М1 до прямой x+51=y-1-1=z-24.

Прямая x+51=y-1-1=z-24 проходит через точку М2(-5, 1, 2). Запишем направляющий вектор прямой x+51=y-1-1=z-24 как b→ с координатами (1, -1, 4). Определим координаты вектора M2M→: 

M2M1→=3-(-5, 0-1, -2-2)⇔M2M1→=8, -1, -4

Вычислим векторное произведение векторов :

b→×M2M1→=i→j→k→1-148-1-4=8·i→+36·j→+7·k→⇒b→×M2M1→=(8, 36, 7)

Применим формулу расчета расстояния от точки до прямой в пространстве:

M1H1=b→×M2M1→b→=82+362+7212+(-1)2+42=140932

Ответ: 140932.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Онлайн калькулятор для расчета расстояния между двумя прямыми в пространстве.

Прямая, проходящая через точку A(a1,b1,c1)
параллельна вектору V1(p1,q1,r1)
Прямая, проходящая через точку B(a2,b2,c2)
параллельна вектору V2(p2,q2,r2)
Наименьшее расстояние (d)

Как пользоваться калькулятором

  1. Введите в соответствующие поля координаты точки, которая лежит на первой прямой — А и координаты направляющего вектора первой прямой V1.
  2. Введите значения для точки на второй прямой — В и координаты вектора второй прямой V2.
  3. Нажмите на красную кнопку «Рассчитать». Программа автоматически рассчитает наименьшее расстояние — d.

Теория

Прямая линия — простая геометрическая фигура, которая бесконечна, не искривляется, не имеет ни начала ни конца.

Прямая в пространстве — линия, которая соединяет две точки в пространстве. Концы линии уходят в бесконечность.

Случаи взаимного расположения двух прямых: пересекаются, параллельны и скрещиваются.

  • При пересечении прямых, расстояние между ними равно 0.
  • Если прямые параллельны, то следует на одной из прямых выбрать точку, от которой провести перпендикуляр к параллельной прямой. Длина отрезка и будет являться расстоянием между параллельными прямыми.

Формула

(x — x1) / p1 = (y — y1) / q1 = (z — z1) / r1.

(x — x2) / p2 = (y — y2) / q2 = (z — z2) / r2.

Где:

x1; y1; z1 — координаты точки лежащей на первой прямой A,

p1; q1; r1 — координаты направляющего вектора первой прямой V1,

x2; y2; z2 — координаты точки лежащей на первой прямой В,

p2; q2; r2 — координаты направляющего вектора первой прямой V2.



2.5.6. Как найти расстояние между параллельными прямыми?

Ответим на этот вопрос конкретной задачей:

Задача 82

Найти расстояние  между двумя параллельными прямыми, заданными в декартовой

системе координат: .

Решение: расстояние между параллельными прямыми найдём как расстояние от точки до прямой. Для этого

достаточно найти одну точку, принадлежащую любой прямой. Из уравнения  легко

усмотреть точку . Вычислим расстояние:

Примечание: последним действием домножили числитель и знаменатель на  – чтобы

избавиться от иррациональности в знаменателе.

Ответ:

Как видите, здесь бесконечно много способов решения.

Едем дальше:

2.5.7. Как найти угол между прямыми?

2.5.5. Как вычислить расстояние от точки до прямой?

| Оглавление |



Автор: Aлeксaндр Eмeлин

Добавить комментарий