Как найти расстояние между прямыми пример

Нахождение кратчайшего расстояния между прямыми в пространстве

Содержание:

  • Что такое расстояние между прямыми в пространстве
  • Метод координат для определения расстояния
  • Примеры задач с решением

    • Задача 1
    • Задача 2

Что такое расстояние между прямыми в пространстве

Для начала дадим определение этому понятию.

Определение

Расстояние между прямыми в пространстве — это отрезок, который соединяет две прямые линии по самому короткому пути. Иными словами, он перпендикулярен обеим этим прямым.

Расстояние между прямыми

Источник: resolventa.ru

Но не всегда две линии могут быть параллельны друг другу.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Определение

Расстояние между двумя скрещивающимися прямыми в пространстве — это расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через вторую прямую параллельно первой.

Расстояние между скрещивающимися прямыми

Источник: shkolkovo.net

Таким образом, чтобы найти расстояние между этими скрещивающимися прямыми, нужно от одной из прямых провести перпендикуляр на плоскость, в которой лежит другая прямая.

Между параллельными прямыми расстояние одинаково на протяжении всей их длины: перпендикуляр, опущенный из любой точки одной из этих линий, всегда будет одной и той же величины.

Метод координат для определения расстояния

Разберем пошагово способ определения расстояния между двумя скрещивающимися прямыми с помощью метода координат.

  1. Определить координаты точек (М_1) и (М_2), лежащих соответственно на прямых a и b.
  2. Найти x, y и z направляющих векторов для прямых a и b.
  3. Найти вектор-нормаль для плоскости, в которой лежит прямая b с помощью векторного произведения (overrightarrow a) и (overrightarrow b).
  4. Записать общее уравнение плоскости: (A(x-x_0)+B(y-y_0)+C(z-z_0)=0) и потом записать к нормированному виду уравнения плоскости, которое выглядит так: (xtimescosleft(alpharight)+ytimescosleft(betaright)+ztimescosleft(gammaright)-p=0), где p — свободный член (число, которое равно расстоянию точки начала координат до плоскости), а (cosleft(alpharight),;cosleft(betaright)) и (cosleft(gammaright))координаты единичного нормального вектора плоскости.
  5. Далее, для определения расстояния от точки M до искомой плоскости, воспользуемся следующим уравнением: (M_1H_1=left|x_1timescosleft(alpharight)+y_1timescosleft(betaright)+z_1cosleft(gammaright)-pright|), где (x_1), (y_1) и (z_1) — координаты точки (M_1), лежащей на прямой a, а (H_1) — точка, лежащая на искомой плоскости.

Примеры задач с решением

Задача 1

Куб

Источник: shkolkovo.net

Дан куб (ABCDA_1B_1C_1D_1) с ребром равным (sqrt{32}) см. Найти расстояние между прямыми (DB_1) и (CC_1).

Решение

Расстояние между скрещивающимися прямыми будем искать в качестве расстояния между прямой (CC_1) и плоскостью, проходящей через (DB_1) параллельно (CC_1). Так как (DD_1parallel CC_1), плоскость ((B_1D_1D)) параллельна (СС_1).

Сначала нужно доказать, что (CO) — перпендикуляр, проведенный к этой плоскости. (COperp BD) (как диагонали квадрата) и (COperp DD_1) (так как ребро (DD_1) перпендикулярно всей плоскости ((ABC))). Получается, (CO) перпендикулярен двум пересекающимся прямым из плоскости. Значит, (COperp(B_1D_1D)).

(AC) — диагонально квадрата — равна (ABsqrt2), то есть (AC=sqrt{32}timessqrt2=sqrt{64}=8) см. Следовательно, (CO=frac12times AC=4) см.

Ответ: 4 см.

Задача 2

В трехмерном пространстве в прямоугольной системе координат Oxyz заданы две скрещивающиеся прямые a и b. Прямую a определяют параметрические уравнения прямой в пространстве:

(left{begin{array}{l}x=-2\y=1+2timeslambda\z=4-3timeslambdaend{array}right.)

А прямую b канонические уравнения прямой в пространстве:

(frac x1=frac{y-1}{-2}=frac{z+4}6).

Вычислить расстояние между заданными прямыми.

Решение

Прямая a проходит через точку (M_1(-2, 1, 4)) и имеет направляющий вектор (overrightarrow a=(0, 2, -3)). Прямая b проходит через точку (M_2 (0, 1, -4)), а  ее направляющий вектором является вектор (overrightarrow b=(1, -2, 6)).

Найдем векторное произведение векторов( overrightarrow a=(0, 2, -3)) и (overrightarrow b=(1, -2, 6): left[overrightarrow atimesoverrightarrow bright]=begin{vmatrix}overrightarrow i&overrightarrow j&overrightarrow k\0&2&-3\1&-2&6end{vmatrix}=6timesoverrightarrow i-3timesoverrightarrow j-2timesoverrightarrow k).

Так, (overrightarrow n=left[overrightarrow atimesoverrightarrow bright]) плоскости X, проходящей через прямую b параллельно прямой a, имеет координаты (6, -3, -2).

Таким образом, уравнение плоскости X есть уравнение плоскости, проходящей через точку (M_2(0, 1, -4)) и имеющей нормальный вектор (overrightarrow n=(6, -3, -2)):

(6times(x-0)-3times(y-1)-2times(z-(-4))=0;leftrightarrow6x-3y-2z-5=0)

Нормирующий множитель для общего уравнения плоскости (6x-3y-2z-5=0) равен (frac1{sqrt{6^2+{(-3)}^2+{(-2)}^2}}=frac17). Значит, нормальное уравнение этой плоскости выглядит как (frac67x-frac37y-frac27z-frac57=0).

Воспользуемся формулой для вычисления расстояния от точки (M_1(-2, 1, 4)) до плоскости (frac67x-frac37y-frac27z-frac57=0: left|M_1H_1right|=left|frac67times(-2)-frac37times1-frac27times4-frac57right|=left|frac{-28}7right|=4) см.

Ответ: 4 см.

В материале этой статьи разберем вопрос нахождения расстояния между двумя параллельными прямыми, в частности, при помощи метода координат. Разбор типовых примеров поможет закрепить полученные теоретические знания.

Расстояние между двумя параллельными прямыми: определение

Определение 1

Расстояние между двумя параллельными прямыми – это расстояние от некоторой произвольной точки одной из параллельных прямых до другой прямой.

Приведем иллюстрацию для наглядности: Расстояние между двумя параллельными прямыми: определение

На чертеже изображены две параллельные прямые a и b. Точка М1 принадлежит прямой a, из нее опущен перпендикуляр на прямую b. Полученный отрезок М1Н1 и есть расстояние между двумя параллельными прямыми a и b.

Указанное определение расстояния между двумя параллельными прямыми справедливо как на плоскости, так и для прямых в трехмерном пространстве. Кроме того, данное определение взаимосвязано со следующей теоремой.

Теорема

Когда две прямые параллельны, все точки одной из них равноудалены от другой прямой.

Доказательство

Пусть нам заданы две параллельные прямые a и b. Зададим на прямой а точки М1 и М2, опустим из них перпендикуляры на прямую b, обозначив их основания соответственно как Н1 и Н2. М1Н1 – это расстояние между двумя параллельными прямыми по определению, и нам необходимо доказать, что |М1Н1|=|М2Н2|.

Расстояние между двумя параллельными прямыми: определение

Пусть будет также существовать некоторая секущая, которая пересекает две заданные параллельные прямые. Условие параллельности прямых, рассмотренное в соответствующей статье, дает нам право утверждать, что в данном случае внутренние накрест лежащие углы, образованные при пересечении секущей заданных прямых, являются равными: ∠M2M1H2=∠H1H2M1. Прямая М2Н2 перпендикулярна прямой b по построению, и, конечно, перпендикулярна прямой a. Получившиеся треугольники М1Н1Н2 и М2М1Н2 являются прямоугольными и равными друг другу по гипотенузе и острому углу: М1Н2 – общая гипотенуза, ∠M2M1H2=∠H1H2M1. Опираясь на равенство треугольников, мы можем говорить о равенстве их сторон, т.е.: |М1Н1| = |М2Н2|. Теорема доказана.

Отметим, что расстояние между двумя параллельными прямыми – наименьшее из расстояний от точек одной прямой до точек другой.

Нахождение расстояния между параллельными прямыми

Мы уже выяснили, что, по сути, чтобы найти расстояние между двумя параллельными прямыми, необходимо определить длину перпендикуляра, опущенного из некой точки одной прямой на другую. Способов, как это сделать, несколько. В каких-то задачах удобно воспользоваться теоремой Пифагора; другие предполагают использование признаков равенства или подобия треугольников и т.п. В случаях, когда прямые заданы в прямоугольной системе координат, возможно вычислить расстояние между двумя параллельными прямыми, используя метод координат. Рассмотрим его подробнее.

Зададим условия. Допустим, зафиксирована прямоугольная система координат, в которой заданы две параллельные прямые a и b. Необходимо определить расстояние между заданными прямыми.

Решение задачи построим на определении расстояния между параллельными прямыми: для нахождения расстояния между двумя заданными параллельными прямыми необходимо:

– найти координаты некоторой точки М1, принадлежащей одной из заданных прямых;

– произвести вычисление расстояния от точки М1 до заданной прямой, которой эта точка не принадлежит.

Опираясь на навыки работы с уравнениями прямой на плоскости или в пространстве, определить координаты точки М1 просто. При нахождении расстояния от точки М1 до прямой пригодится материал статьи о нахождении расстояния от точки до прямой.

Вернемся к примеру. Пусть прямая a описывается общим уравнением Ax+By+C1=0, а прямая b – уравнением Ax+By+C2=0. Тогда расстояние между двумя заданными параллельными прямыми возможно вычислить, используя формулу:

M1H1=C2-C1A2+B2

Выведем эту формулу.

Используем некоторую точку М1 (x1, y1), принадлежащую прямой a. В таком случае координаты точки М1 будут удовлетворять уравнению Ax1+By1+C1=0. Таким образом, справедливым является равенство: Ax1+By1+C1=0; из него получим: Ax1+By1=-C1.

Когда С2<0, нормальное уравнение прямой b будет иметь вид:

AA2+B2x+BA2+B2y+C2A2+B2=0

При С2≥0 нормальное уравнение прямой b будет выглядеть так:

AA2+B2x+BA2+B2y-C2A2+B2=0

И тогда для случаев, когда С2<0, применима формула: M1H1=AA2+B2x1+BA2+B2y1+C2A2+B2.

А для С2≥0 искомое расстояние определяется по формуле M1H1=-AA2+B2x1-BA2+B2y1-C2A2+B2==AA2+B2x1+BA2+B2y1+C2A2+B2

Таким образом, при любом значении числа С2 длина отрезка |М1Н1| (от точки М1 до прямой b) вычисляется по формуле: M1H1=AA2+B2x1+BA2+B2y1+C2A2+B2

Выше мы получили: Ax1+By1=-C1, тогда можем преобразовать формулу: M1H1=-C1A2+B2+C2A2+B2=C2-C1A2+B2. Так мы, собственно, получили формулу, указанную  в алгоритме метода координат.

Разберем теорию на примерах.

Пример 1

Заданы две параллельные прямые y=23x-1 и x=4+3·λy=-5+2·λ. Необходимо определить расстояние между ними.

Решение

Исходные параметрические уравнения дают возможность задать координаты точки, через которую проходит прямая, описываемая параметрическими уравнениями. Таким образом, получаем точку М1 (4, -5). Требуемое расстояние – это расстояние между точкой М1(4, -5) до прямой y=23x-1, произведем его вычисление.

Заданное уравнение прямой с угловым коэффициентом y=23x-1 преобразуем в нормальное уравнение прямой. С этой целью сначала осуществим переход к общему уравнению прямой:

y=23x-1⇔23x-y-1=0⇔2x-3y-3=0

Вычислим нормирующий множитель: 122+(-3)2=113. Умножим на него обе части последнего уравнения и, наконец, получим возможность записать нормальное уравнение прямой: 113·2x-3y-3=113·0⇔213x-313y-313=0.

При x=4, а y=-5 вычислим искомое расстояние как модуль значения крайнего равенства:

213·4-313·-5-313=2013

Ответ: 2013.

Пример 2

В фиксированной прямоугольной системе координат Oxy заданы две параллельные прямые, определяемые уравнениями x-3=0 и x+50=y-11. Необходимо найти расстояние между заданными параллельными прямыми.

Решение

Условиями задачи определено одно общее уравнение, задаваемое одну из исходных прямых: x-3=0. Преобразуем исходное каноническое уравнение в общее: x+50=y-11⇔x+5=0. При переменной x коэффициенты в обоих уравнениях равны (также равны и при y – нулю), а потому имеем возможность применить формулу для нахождения расстояния между параллельными прямыми:

M1H1=C2-C1A2+B2=5-(-3)12+02=8

Ответ: 8.

Напоследок рассмотрим задачу на нахождение расстояния между двумя параллельными прямыми в трехмерном пространстве.

Пример 3

В прямоугольной системе координат Oxyz заданы две параллельные прямые, описываемые каноническими уравнениями прямой в пространстве: x-31=y-1=z+24 и x+51=y-1-1=z-24. Необходимо найти расстояние между этими прямыми.

Решение

Из уравнения x-31=y-1=z+24 легко определются координаты точки, через которую проходит прямая, описываемая этим уравнением: М1(3, 0, -2). Произведем вычисление расстояния |М1Н1| от точки М1 до прямой x+51=y-1-1=z-24.

Прямая x+51=y-1-1=z-24 проходит через точку М2(-5, 1, 2). Запишем направляющий вектор прямой x+51=y-1-1=z-24 как b→ с координатами (1, -1, 4). Определим координаты вектора M2M→: 

M2M1→=3-(-5, 0-1, -2-2)⇔M2M1→=8, -1, -4

Вычислим векторное произведение векторов :

b→×M2M1→=i→j→k→1-148-1-4=8·i→+36·j→+7·k→⇒b→×M2M1→=(8, 36, 7)

Применим формулу расчета расстояния от точки до прямой в пространстве:

M1H1=b→×M2M1→b→=82+362+7212+(-1)2+42=140932

Ответ: 140932.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Автор статьи

Анна Кирпиченкова

Эксперт по предмету «Геометрия»

Задать вопрос автору статьи

Очень часто на практике необходимо найти расстояние между точкой и некой прямой линией или между двумя прямыми линиями в пространстве, например, иногда определять расстояние между двумя линиями приходится и в реальной жизни. Хорошая иллюстрация такого примера — это знак, который вешают на мосты для грузовиков, указывающий максимальную высоту грузовика, которая может проехать под данным мостом.

Расстояние от верхней грани грузовика и нижней грани в данном случае определяют как расстояние между двумя прямыми.

Расстояние между 2 прямыми в пространстве — это отрезок, соединяющий две прямые линии по наикратчайшему расстоянию между ними, то есть перпендикулярный к обеим прямым.

Определение 1

Расстояние между двумя скрещивающимися прямыми в пространстве — это расстояние между одной заданной прямой и плоскостью, в которой лежит вторая прямая.

Чтобы было чуть проще понять, что это такое, давайте повторим определение скрещивающихся прямых:

Определение 2

Скрещивающиеся прямые — это две прямые, которые не лежат в одной плоскости и не имеют каких-либо совместных друг для друга точек.

Соответственно, для того чтобы найти расстояние между скрещивающимися прямыми в пространстве, необходимо от одной из прямых опустить перпендикуляр на плоскость, в которой лежит другая прямая.

Расстояние же между двумя параллельными прямыми в пространстве является одинаковым на протяжении всей длины параллельных прямых, то есть перпендикуляр, опущенный из одной параллельной прямой на другую, всегда будет одной и той же длины вне зависимости от того, из какой именно точки его опустили.

Метод координат для определения расстояния между скрещивающимися прямыми

Расстояние между скрещивающимися прямыми в пространстве можно найти используя метод координат, для этого необходимо:

«Расстояние между 2 прямыми в пространстве» 👇

  1. Найти координаты точек $M_1$ и $M_2$, лежащих на прямых $a$ и $b$ соответственно.
  2. Вычислить икс, игрек и зет направляющих векторов для прямых $a$ и $b$.
  3. С помощью векторного произведения векторов $overline{a}$ и $overline{b}$ нужно найти вектор-нормаль для плоскости, в которой лежит прямая $b$. Затем необходимо записать общее уравнение плоскости: $A (x – x_0) + B(y – y_0) + C(z – z_0) = 0$, и от него перейти к нормированному виду уравнения плоскости следующего вида: $ x cdot cos α + y cdot cos β + z cdot cos{γ} – p = 0$, где $cos α, cos β$ и $cos γ$ — координаты единичного нормального вектора плоскости, а $p$ — свободный член, это число равно расстоянию от точки начала координат до плоскости.
  4. Для вычисления расстояния от точки $M$ до искомой плоскости, нужно воспользоваться следующим уравнением:
    $M_1H_1 = |x_1 cdot cos α + y_1 cdot cos β + z_1 cdot cos{γ} – p|$, где $x_1, y_1, z_1$ – координаты точки $M_1$, лежащей на прямой $a$, а $H_1$ — точка, лежащая на искомой плоскости.

Пример 1

Найти расстояние между двумя скрещивающимися прямыми, заданными уравнениями:
$d_1$:
$frac {x-2}{2} = frac {y + 1}{-3} = frac{z}{-1}$

и $d_2$: $begin{cases} frac{x + 1}{1} = frac{y}{-2} \ z – 1 = 0 end{cases}$

Расстояние между двумя скрещивающимися прямыми в пространстве

Рисунок 1. Расстояние между двумя скрещивающимися прямыми в пространстве

Для этого воспользуемся следующей формулой:

$ ρ(d_1d_2) = frac{| overline{p_1} cdot overline{p_2} cdot overline{M_1M_2}|}{[overline{p_1} × overline{p_2}]}$

Сначала найдём смешанное произведение векторов. Для этого найдём точки, лежащие на данных прямых, и их направляющие вектора:

$d_1$: $frac {x-2}{2} = frac {y + 1}{-3} = frac{z}{-1}$, точка, лежащая на прямой — $M_1$ с координатами $(2;-1;0)$, а направляющий вектор — $overline{p_1}$ с координатами $(2; -3; -1)$

$d_2$: $begin{cases} frac{x + 1}{1} = frac{y}{-2} \ z – 1 = 0 end{cases}$, точка, лежающая на прямой — $M_2$ с координатами $(-1; 0; 1)$,

а её направляющий вектор — $overline{p_2}$ с координатами $(1; -2; 0)$

Теперь найдём вектор $overline{M_1M_2}$:

$overline{M_1M_2} = (-1-2;0-(-1);1-0) = (-3; 1; 1)$

Найдём смешанное произведение векторов:

$overline{p_1} cdot overline{p_2} cdot overline{M_1M_2} = begin{array}{|ccc|} 2& 1 & -3 \ -3& -2 & 1 \ -1 & 0 & 1 \ end{array} = – begin{array}{|cc|} 1 & -3 \ -2 & 1 \ end{array} + begin{array}{|cc|} 2 & 1 \ -3 & -2 \ end{array} = -(1 – 6) + (4 + 3) = 4$

Теперь найдём векторное произведение векторов:

$[|overline{p_1} × overline{p_2}|] = begin{array}{|ccc|} i& j & k \ 2 & -3 & -1 \ 1 & -2 & 0 end{array} = begin{array}{|cc|} -3 & -1 \ -2 & 0 end{array} cdot overline{i} – begin{array}{|cc|} 2 & -1 \ 1 & 0 end{array} cdot overline{j} + begin{array}{|cc|} 2 & -3 \ 1 & -2 end{array} cdot overline{k}$

$[|overline{p_1} × overline{p_2} |]= -2 overline{i} – overline{j} – overline{k}$

Длина этого векторного произведения составит:

$overline{p_1} × overline{p_2} = sqrt{(-2)^2 + (-1)^2 + (-1)^2} = sqrt{6}$

Соответственно, длина между скрещивающимися прямыми составит:

$ ρ(d_1d_2) = frac{|4|}{sqrt{6}} ≈ 1,63$

Пример 2

Даны две параллельные несовпадающие прямые $g$ и $m$, ниже приведены уравнения для них. Определить расстояние между ними.

$g$: $frac{x-1}{4} = frac{y + 1}{6}= frac{z+3}{8}$

$m$: $frac{x+1}{2} = frac{y – 1}{3}= frac{z – 3}{4}$

Расстояние в этом случае для них вычисляется по следующей формуле:

$ρ(m;g) =frac{|[overline{r_2} – overline{r_1} × overline{s_1}]|}{|overline{s_1}|}$, где

$overline{r_2}, overline{r_1}$ — радиус-векторы для каждой прямой, а $s_1$ — направляющий вектор.

Радиус-вектор для первой прямой будет $r_1={1; -1; -3}$, а направляющий вектор $s_1 = {4; 6; 8}$.

Радиус-вектор для второй прямой будет $r_2={-1; 1; 3}$, а направляющий вектор $s_2 = {2; 3; 4}$.

Найдём векторную разность радиус-векторов:

$overline{r_2} – overline{r_1} = {-1; 1; 3} – {1; -1; -3} = {-2;0;0}$

Теперь найдём её произведение с направляющим вектором для первой прямой:

$[overline{r_2} – overline{r_1} × overline{s_1}] = begin{array}{|ccc|} i & j & k \ -2 & 0 & 0 \ 4 & 6 & 8 \ end{array} = – 16j – 12k = {0;-16;-12}$

$|[overline{r_2} – overline{r_1} × overline{s_1}]| = sqrt{(-16)^2 + (-12)^2} = 20$

$|overline{s_1}| = sqrt{4^2 + 6^2 +8^2} = 2sqrt{29}$

$ρ(m;g) = frac{20}{2sqrt{29}} = frac{10}{sqrt{29}} ≈ 1.85$

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Среди огромного количества стереометрических
задач в учебниках геометрии, в различных
сборниках задач, пособиях по подготовке в ВУЗы
крайне редко встречаются задачи на нахождение
расстояния между скрещивающимися прямыми.
Возможно, это обусловлено как узостью их
практического применения (относительно школьной
программы, в отличие от “выигрышных” задач на
вычисление площадей и объемов), так и сложностью
данной темы.

Практика проведения ЕГЭ показывает, что многие
учащиеся вообще не приступают к выполнению
заданий по геометрии, входящих в экзаменационную
работу. Для обеспечения успешного выполнения
геометрических заданий повышенного уровня
сложности необходимо развивать гибкость
мышления, способность анализировать
предполагаемую конфигурацию и вычленять в ней
части, рассмотрение которых позволяет найти путь
решения задачи.

Школьный курс предполагает изучение четырех
способов решения задач на нахождение расстояния
между скрещивающимися прямыми. Выбор способа
обусловлен, в первую очередь, особенностями
конкретной задачи, предоставленными ею
возможностями для выбора, и, во вторую очередь,
способностями и особенностями
“пространственного мышления” конкретного
учащегося. Каждый из этих способов позволяет
решить самую главную часть задачи – построение
отрезка, перпендикулярного обеим скрещивающимся
прямым (для вычислительной же части задач
деление на способы не требуется).

Основные способы решения задач на нахождение
расстояния между скрещивающимися прямыми

Нахождение длины общего перпендикуляра двух
скрещивающихся прямых, т.е. отрезка с концами на
этих прямых и перпендикулярного каждой из этих
прямых.

Нахождение расстояния от одной из
скрещивающихся прямых до параллельной ей
плоскости, проходящей через другую прямую.

Нахождение расстояния между двумя
параллельными плоскостями, проходящими через
заданные скрещивающиеся прямые.

Нахождение расстояния от точки, являющейся
проекцией одной из скрещивающихся прямых, на
перпендикулярную ей плоскость (так называемый
“экран”) до проекции другой прямой на ту же
самую плоскость.

Проведем демонстрацию всех четырех способов на
следующей простейшей задаче: “В кубе с
ребром а найти расстояние между любым ребром
и диагональю не пересекающей его грани”. Ответ: .

1 способ.

Рисунок 1

hскр перпендикулярна плоскости боковой
грани, содержащей диагональ d и
перпендикулярна ребру, следовательно, hскр
и является расстоянием между ребром а и
диагональю d.

2 способ.

Рисунок 2

Плоскость A параллельна ребру и проходит через
данную диагональ, следовательно, данная hскр
является не только расстоянием от ребра до
плоскости A, но и расстоянием от ребра до данной
диагонали.

3 способ.

Рисунок 3

Плоскости A и B параллельны и проходят через две
данные скрещивающиеся прямые, следовательно,
расстояние между этими плоскостями равно
расстоянию между двумя скрещивающимися прямыми.

4 способ.

Рисунок 4

Плоскость A перпендикулярна ребру куба. При
проекции на A диагонали d данная диагональ
обращается в одну из сторон основания куба.
Данная hскр является расстоянием между
прямой, содержащей ребро, и проекцией диагонали
на плоскость C, а значит и между прямой,
содержащей ребро, и диагональю.

Остановимся подробнее на применении каждого
способа для изучаемых в школе многогранников.

СПОСОБ I.

Применение первого способа достаточно
ограничено: он хорошо применяется лишь в
некоторых задачах, так как достаточно сложно
определить и обосновать в простейших задачах
точное, а в сложных – ориентировочное
местоположение общего перпендикуляра двух
скрещивающихся прямых. Кроме того, при
нахождении длины этого перпендикуляра в сложных
задачах можно столкнуться с непреодолимыми
трудностями.

Примеры

Задача 1. В прямоугольном параллелепипеде с
размерами a, b, h найти расстояние между
боковым ребром и не пересекающейся с ним
диагональю основания.

Рисунок 5

Пусть AHBD.
Так как А1А перпендикулярна плоскости АВСD ,
то А1А
AH.

AH перпендикулярна обеим из двух скрещивающихся
прямых, следовательно AH?- расстояние между
прямыми А1А и BD. В прямоугольном
треугольнике ABD, зная длины катетов AB и AD, находим
высоту AH, используя формулы для вычисления
площади прямоугольного треугольника. Ответ:

Задача 2. В правильной 4-угольной пирамиде с
боковым ребром L и стороной основания a
найти расстояние между апофемой и стороной
основания, пересекающей боковую грань,
содержащую эту апофему.

Рисунок 6

SHCD как
апофема, ADCD,
так как ABCD – квадрат. Следовательно, DH –
расстояние между прямыми SH и AD. DH равно половине
стороны CD. Ответ:

СПОСОБ II

Применение этого способа также ограничено в
связи с тем, что если можно быстро построить (или
найти уже готовую) проходящую через одну из
скрещивающихся прямых плоскость, параллельную
другой прямой, то затем построение
перпендикуляра из любой точки второй прямой к
этой плоскости (внутри многогранника) вызывает
трудности. Однако в несложных задачах, где
построение (или отыскивание) указанного
перпендикуляра трудностей не вызывает, данный
способ является самым быстрым и легким, и поэтому
доступен.

Примеры

Задача 2. Решение уже указанной выше задачи
данным способом особых трудностей не вызывает.

Рисунок 7

Плоскость EFM параллельна прямой AD, т. к AD || EF.
Прямая MF лежит в этой плоскости, следовательно,
расстояние между прямой AD и плоскостью EFM равно
расстоянию между прямой AD и прямой MF. Проведем OHAD. OHEF, OHMO,
следовательно, OH(EFM),
следовательно, OH – расстояние между прямой AD и
плоскостью EFM, а значит, и расстояние между прямой
AD и прямой MF. Находим OH из треугольника AOD.

Ответ:

Задача 3. В прямоугольном параллелепипеде с
размерами a,b и h найти расстояние между
боковым ребром и не пересекающейся с ним
диагональю параллелепипеда.

Рисунок 8

Прямая AA1 параллельна плоскости BB1D1D,
B1D принадлежит этой плоскости,
следовательно расстояние от AA1 до
плоскости BB1D1D равно расстоянию между
прямыми AA1 и B1D. Проведем AHBD. Также, AH B1B,
следовательно AH(BB1D1D), следовательно AHB1D, т. е. AH –
искомое расстояние. Находим AH из прямоугольного
треугольника ABD.

Ответ:

Задача 4. В правильной шестиугольной призме
A:F1 c высотой h и стороной основания a
найти расстояние между прямыми:

Рисунок 9 Рисунок 10

а) AA1 и ED1.

Рассмотрим плоскость E1EDD1. A1E1EE1, A1E1E1D1,
следовательно

A1E1 (E1EDD1). Также A1E1 AA1.
Следовательно, A1E1 является
расстоянием от прямой AA1 до плоскости E1EDD1.
ED1(E1EDD1).,
следовательно AE1 – расстояние от прямой AA1
до прямой ED1. Находим A1E1 из
треугольника F1A1E1 по теореме
косинусов. Ответ:

б) AF и диагональю BE1.

Проведем из точки F прямую FH перпендикулярно BE.
EE1FH, FHBE, следовательно
FH(BEE1B1),
следовательно FH является расстоянием между
прямой AF и (BEE1B1), а значит и
расстоянием между прямой AF и диагональю BE1.
Ответ:

СПОСОБ III

Применение этого способа крайне ограничено,
так как плоскость, параллельную одной из прямых
(способ II) строить легче, чем две параллельные
плоскости, однако способ III можно использовать в
призмах, если скрещивающиеся прямые принадлежат
параллельным граням, а также в тех случаях, когда
в многограннике несложно построить параллельные
сечения, содержащие заданные прямые.

Примеры

Задача 4.

Рисунок 11

а) Плоскости BAA1B1 и DEE1D1
параллельны, так как AB || ED и AA1 || EE1. ED1DEE1D1,
AA1(BAA1B1),
следовательно, расстояние между прямыми AA1
и ED1 равно расстоянию между плоскостями BAA1B1
и DEE1D1. A1E1AA1, A1E1A1B1, следовательно, A1E1BAA1B1.
Аналогично доказываем, что A1E1(DEE1D1). Т.о., A1E1
является расстоянием между плоскостями BAA1B1
и DEE1D1, а значит, и между прямыми AA1
и ED1. Находим A1E1 из треугольника
A1F1E1, который является
равнобедренным с углом A1F1E1,
равным .
Ответ:

Рисунок 12

б) Расстояние между AF и диагональю BE1
находится аналогично.

Ответ:.

Задача 5. В кубе с ребром а найти
расстояние между двумя непересекающимися
диагоналями двух смежных граней.

Данная задача рассматривается как
классическая в некоторых пособиях, но, как
правило, ее решение дается способом IV, однако
является вполне доступной для решения с помощью
способа III.

Рисунок 13

Некоторую трудность в данной задаче вызывает
доказательство перпендикулярности диагонали A1C
обеим параллельным плоскостям (AB1D1 ||
BC1D). B1CBC1 и BC1A1B1, следовательно,
прямая BC1 перпендикулярна плоскости A1B1C,
и следовательно, BC1A1C. Также, A1CBD.
Следовательно, прямая A1C перпендикулярна
плоскости BC1D. Вычислительная же часть
задачи особых трудностей не вызывает, так как hскр
= EF находится как разность между диагональю куба
и высотами двух одинаковых правильных пирамид A1AB1D1
и CC1BD.

Ответ:

СПОСОБ IV.

Данный способ имеет достаточно широкое
применение. Для задач средней и повышенной
трудности его можно считать основным. Нет
необходимости применять его только тогда, когда
один из трех предыдущих способов работает проще
и быстрее, так как в таких случаях способ IV может
только усложнить решение задачи, или сделать его
труднодоступным. Данный способ очень выгодно
использовать в случае перпендикулярности
скрещивающихся прямых, так как нет необходимости
построения проекции одной из прямых на “экран”

Примеры.

Задача 5. Все та же “классическая” задача
(с непересекающимися диагоналями двух смежных
граней куба) перестает казаться сложной, как
только находится “экран” – диагональное
сечение куба.

Рисунок 14

Экран:

Рисунок 15

Рассмотрим плоскость A1B1CD. C1F (A1B1CD),
т. к. C1FB1C
и C1FA1B1.
Тогда проекцией C1D на “экран” будет
являться отрезок DF. Проведем EMDF. Отрезок EM и будет являться расстоянием
между двумя непересекающимися диагоналями двух
смежных граней. Находим EM из прямоугольного
треугольника EDF. Ответ:.

Задача 6. В правильной треугольной пирамиде
найти расстояние и угол между скрещивающимися
прямыми: боковым ребром l и стороной
основания a.

Рисунок 16

В данной и аналогичных ей задачах способ IV
быстрее других способов приводит к решению, так
как построив сечение, играющее роль “экрана”,
перпендикулярно AC (треугольник BDM), видно, что
далее нет необходимости строить проекцию другой
прямой (BM) на этот экран. DH – искомое расстояние. DH
находим из треугольника MDB, используя формулы
площади. Ответ: .

Напомним, что скрещивающимися прямыми называют прямые, не принадлежащие одной плоскости и не имеющие между собой общих точек.

Признак скрещивания прямых: если прямая a пересекается с плоскостью, в которой лежит прямая b и при этом точка пересечения не принадлежит a, то a и b скрещиваются.

В качестве наглядного представления скрещивающихся прямых можно привести транспортную развязку. Верхнюю из дорог следует считать за одну прямую, нижнюю принять за другую.

Теорема 1

Пусть мы имеем две скрещивающиеся в пространстве прямые. Через каждую из них можно провести плоскость, параллельную другой скрещивающейся прямой, причём только одну.

Пересечение прямых на плоскости

Доказательство:

Через точку D у нас получится провести прямую DE, которая будет параллельной AB.

Через CD и DE (смотрите рис. выше) можно провести плоскость α.

В связи с тем, что AB не принадлежит этой плоскости и при этом параллельна DE, то она будет параллельной и плоскости.

Указанная плоскость единственная. Это ясно из того, что любая другая плоскость, которая проходит через CD, неизбежно пересечёт DE и AB, которая ей параллельна.

Доказательство завершено.

Различные определения расстояния между скрещивающимися прямыми

Определения 1 — 5

Расстоянием между скрещивающимися в пространстве прямыми именуют длину промежутка, отделяющего одну из скрещивающихся прямых от параллельной плоскости, которая пересекает другую прямую.


Расстоянием между скрещивающимися прямыми это расстояние между самыми близкими точками этих прямых.


Расстоянием между двумя скрещивающимися прямыми называют расстояние, разделяющее две плоскости, которым они принадлежат.


Расстоянием между двумя скрещивающимися прямыми считают длину, которую имеет их общий перпендикуляр.


Пусть нам даны скрещивающиеся прямые a и b. Произвольно выберем на a некоторую точку M1. На b наложим плоскость χ, которая будет параллельна a. Из точки M1 на указанную плоскость χ проведём перпендикуляр M1H1. Его длина и есть расстояние, разделяющее скрещивающиеся прямые.

Расстояние разделяющее скрещивающиеся прямые

Ка найти расстояние между скрещивающимися прямыми

Главная трудность здесь состоит в построении отрезка равного по своей длине расстоянию, которое нам требуется найти. Если его удалось построить, то используя теорему Пифагора, признаки подобия или равенства треугольников либо иные подобные пути, расстояние получится найти достаточно легко.

Как следует искать расстояние между скрещивающимися прямыми методом координат

Он основан на определении 5 и использовании формулы расстояния от точки M до плоскости α.

r(M, a) = (ax0 + by0 + cz0 + d)/ √(a2 + b2 + c2)

Последовательность действий здесь следующая:

  1. Выясняем, какие координаты имеют точки M1 (x1, y1, z1)и M2(x2, y2,z2) , принадлежащие прямым a и b;
  2. Выясняем координаты (ax,ay,az) и (bx,by,bz), принадлежащие направляющим векторам a и b;
  3. Выясняем, какие координаты (A,B,C) имеет нормальный вектор n плоскости χ, который проходит через b, параллельной a. Проще всего это сделать из равенства

[mathrm{n}=left[begin{array}{llll}
mathrm{a} X mathrm{~b}
end{array}right]=begin{array}{ccc}
i & j & k \
ax & ay & a z \
b x & b y & b z
end{array}]

  1. Записываем общее уравнение плоскости χ как
    [mathrm{A}left(mathrm{x}-mathrm{x}_{1}right)+mathrm{B}left(mathrm{y}-mathrm{y}_{1}right)+mathrm{C}left(mathrm{z}-mathrm{z}_{1}right)=0;]
  2. Приводим полученное уравнение к нормальному виду
    [cos alpha * mathrm{x}+cos beta * mathrm{y}+cos gamma * mathrm{z}-mathrm{p}=0;]
  3. Вычисляем величину промежутка M1H1 от точки M(x1,y1,z1) до плоскости χ по формуле

[mathrm{M}_{1} mathrm{H}_{1}=cos alpha mathrm{x}_{1}+cos beta mathrm{y}_{1}+cos gamma mathrm{z}_{1}-mathrm{p}]

Пример 1

В системе координат заданы скрещивающиеся прямые a и b.

Первая определена параметрическими уравнениями [mathrm{x}=-2, mathrm{y}=1+2 * lambda, mathrm{z}=4-3^{*} lambda]

Вторая задана каноническим уравнением [mathrm{x} / 1=(mathrm{y}-1) /-2=(mathrm{z}+4) / 6]

Нужно выяснить расстояние между этими прямыми.

Решение: Из уравнений прямых ясно, что первая из них проходит через точку M1(-2, 1,4), а вторая через точку M2(0,1,-4).

Направляющий вектор первой прямой a = (0,2,-3). Второй  –  b = (1,-2,6).

Вычислим векторное произведение указанных векторов.

[mathrm{n}=left[begin{array}{llcc}
a mathrm{X} b
end{array}right]=begin{array}{ccc}
i & j & k \
0 & 2 & -3 \
1 & -2 & 6
end{array}=6 * I-3* mathrm{j}-2* mathrm{k}]

У n будут координаты (6, -3, -2).

Из этого получается, что уравнение плоскости χ является уравнением той плоскости, которой принадлежит точка M2(0,1,-4). Она имеет нормальный вектор n = (6,-3,-2).

6*(x-0) — 3(y-1) – 2(z-(-4)) = 0

6x – 3y – 2z – 5 = 0

Нормирующим множителем выше указанного уравнения плоскости будет

1/ √((62) – (-3)2 – (-22)) = 1/7

Отсюда следует, что у уравнения данной плоскости будет вид

(6/7)*x – (3/7)*y – (2/7)*z – 5/7 = 0

Теперь нам осталось лишь воспользоваться формулой расстояния от точки M1(-2,1,4) до плоскости (6/7)*x – (3/7)*y – (2/7)*z – 5/7 = 0

В результате несложных вычислений мы получаем

M1H1= ((6/7)*(-2) – (3/7)*1 – (2/7)*4 – (5/7) = (-28/7) = 4

Ответ: расстояние между прямыми равно 4.

Нет времени решать самому?

Наши эксперты помогут!

Метод базирующийся на определении 1

Его покажем сразу на решении конкретно задачи. Так будет понятнее и яснее.

Пример 2

Основанием прямоугольной призмы АВСDA1B1C1D1 является квадрат ABCD. Каждая из его сторон равна 4. Высота призмы 2√2. Требуется найти величину промежутка между прямыми DA1 и CD1.

Пересечение прямых пример 1

Решение: Т. к. прямая CD1 принадлежит плоскости CB1D1 . DA1||CB1, прямая DA1 является параллельной плоскости CB1D1. Из сказанного следует, что нужно найти разделяющее их расстояние. Оно и будет ответом на наш вопрос. Упомянутое расстояние, есть расстояние от точки A1 до плоскости CB1D1.

BD1 перпендикулярна плоскости ACC1. Из этого следует, что плоскость ACC1 будет перпендикулярной плоскости CB1D1. Их пересечением является прямая O1C. O и O1 есть центры верхнего и нижнего оснований призмы.

Из точки A1, которая принадлежит плоскости ACC1 опустим перпендикуляр A1H на прямую CO1. Длина A1H будет тем расстоянием, которое мы ищем.

Из прямоугольного треугольника A1HO1, зная, что его гипотенуза AO1 равна 2√2, и

sin(HO1A1) =  √2/2 находим катет HA1 = A1O1sin(HO1A1) = 2.

Ответ: величина промежутка между прямыми DA1 и CD1 равно 2.

Метод объёмов

Он использует вспомогательную пирамиду, высота которой и будет искомым расстоянием, разделяющем скрещивающиеся прямые. Для нахождения упомянутой высоты сначала нужно узнать объём указанной пирамиды. Отсюда и название метода.

Отметим, что данный метод исключает проведение перпендикуляра к скрещивающимся прямым.

Пересечение прямых пример 2

Пример 3

Выясните, чему равна величина промежутка между прямыми A1D и D1C. Сторона квадрата равна 4. Высота призмы 2√2.

Решение: Т. к. DA1||CB1 и CD1||BA1 , то  (BDA1 )||(CB1D1). Расстояние между указанными плоскостями равняется расстоянию от точки C до плоскости A1BD.

Посмотрите на пирамиду BCDA1. H – высота, соединяющая вершину С с основанием BDA1.

Длина высоты равняется расстоянию между DA1 и DC1.

BD = AC = √32 = 4√2. AO = 2√2

Из прямоугольного треугольника легко находим

A1O = CO1 = √(AA12 + AO2) = √(4*2 + 4*2) = 4

Находим объём пирамиды CA1BD. Она имеет основание A1BD и высоту h. Он будет равен

V(1) = (1/3)SABD * h = (1/3)*(1/2)A1O * BD * h = (4 * 4√2)*h/6 = (8√2)*h/3

Вычислим теперь той же самой пирамиды объём, считая её основанием BCD, а высоту AA1.

V{2} = (1/3)SBCD*AA1 = (1/3)*(1/2)*16*2√2 = 16*(√2/3)

Теперь приравняем эти выражения

[(8√2)*h/3] = [16*(√2/3)]

Из этого выражения очень легко найти расстояние между прямыми DA1 и CD1. Упрощаем и получаем, что h = 2.

Ответ: величина промежутка равна 2.

Добавить комментарий