Как найти расстояние между прямыми в пространстве

Нахождение кратчайшего расстояния между прямыми в пространстве

Содержание:

  • Что такое расстояние между прямыми в пространстве
  • Метод координат для определения расстояния
  • Примеры задач с решением

    • Задача 1
    • Задача 2

Что такое расстояние между прямыми в пространстве

Для начала дадим определение этому понятию.

Определение

Расстояние между прямыми в пространстве — это отрезок, который соединяет две прямые линии по самому короткому пути. Иными словами, он перпендикулярен обеим этим прямым.

Расстояние между прямыми

Источник: resolventa.ru

Но не всегда две линии могут быть параллельны друг другу.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Определение

Расстояние между двумя скрещивающимися прямыми в пространстве — это расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через вторую прямую параллельно первой.

Расстояние между скрещивающимися прямыми

Источник: shkolkovo.net

Таким образом, чтобы найти расстояние между этими скрещивающимися прямыми, нужно от одной из прямых провести перпендикуляр на плоскость, в которой лежит другая прямая.

Между параллельными прямыми расстояние одинаково на протяжении всей их длины: перпендикуляр, опущенный из любой точки одной из этих линий, всегда будет одной и той же величины.

Метод координат для определения расстояния

Разберем пошагово способ определения расстояния между двумя скрещивающимися прямыми с помощью метода координат.

  1. Определить координаты точек (М_1) и (М_2), лежащих соответственно на прямых a и b.
  2. Найти x, y и z направляющих векторов для прямых a и b.
  3. Найти вектор-нормаль для плоскости, в которой лежит прямая b с помощью векторного произведения (overrightarrow a) и (overrightarrow b).
  4. Записать общее уравнение плоскости: (A(x-x_0)+B(y-y_0)+C(z-z_0)=0) и потом записать к нормированному виду уравнения плоскости, которое выглядит так: (xtimescosleft(alpharight)+ytimescosleft(betaright)+ztimescosleft(gammaright)-p=0), где p — свободный член (число, которое равно расстоянию точки начала координат до плоскости), а (cosleft(alpharight),;cosleft(betaright)) и (cosleft(gammaright))координаты единичного нормального вектора плоскости.
  5. Далее, для определения расстояния от точки M до искомой плоскости, воспользуемся следующим уравнением: (M_1H_1=left|x_1timescosleft(alpharight)+y_1timescosleft(betaright)+z_1cosleft(gammaright)-pright|), где (x_1), (y_1) и (z_1) — координаты точки (M_1), лежащей на прямой a, а (H_1) — точка, лежащая на искомой плоскости.

Примеры задач с решением

Задача 1

Куб

Источник: shkolkovo.net

Дан куб (ABCDA_1B_1C_1D_1) с ребром равным (sqrt{32}) см. Найти расстояние между прямыми (DB_1) и (CC_1).

Решение

Расстояние между скрещивающимися прямыми будем искать в качестве расстояния между прямой (CC_1) и плоскостью, проходящей через (DB_1) параллельно (CC_1). Так как (DD_1parallel CC_1), плоскость ((B_1D_1D)) параллельна (СС_1).

Сначала нужно доказать, что (CO) — перпендикуляр, проведенный к этой плоскости. (COperp BD) (как диагонали квадрата) и (COperp DD_1) (так как ребро (DD_1) перпендикулярно всей плоскости ((ABC))). Получается, (CO) перпендикулярен двум пересекающимся прямым из плоскости. Значит, (COperp(B_1D_1D)).

(AC) — диагонально квадрата — равна (ABsqrt2), то есть (AC=sqrt{32}timessqrt2=sqrt{64}=8) см. Следовательно, (CO=frac12times AC=4) см.

Ответ: 4 см.

Задача 2

В трехмерном пространстве в прямоугольной системе координат Oxyz заданы две скрещивающиеся прямые a и b. Прямую a определяют параметрические уравнения прямой в пространстве:

(left{begin{array}{l}x=-2\y=1+2timeslambda\z=4-3timeslambdaend{array}right.)

А прямую b канонические уравнения прямой в пространстве:

(frac x1=frac{y-1}{-2}=frac{z+4}6).

Вычислить расстояние между заданными прямыми.

Решение

Прямая a проходит через точку (M_1(-2, 1, 4)) и имеет направляющий вектор (overrightarrow a=(0, 2, -3)). Прямая b проходит через точку (M_2 (0, 1, -4)), а  ее направляющий вектором является вектор (overrightarrow b=(1, -2, 6)).

Найдем векторное произведение векторов( overrightarrow a=(0, 2, -3)) и (overrightarrow b=(1, -2, 6): left[overrightarrow atimesoverrightarrow bright]=begin{vmatrix}overrightarrow i&overrightarrow j&overrightarrow k\0&2&-3\1&-2&6end{vmatrix}=6timesoverrightarrow i-3timesoverrightarrow j-2timesoverrightarrow k).

Так, (overrightarrow n=left[overrightarrow atimesoverrightarrow bright]) плоскости X, проходящей через прямую b параллельно прямой a, имеет координаты (6, -3, -2).

Таким образом, уравнение плоскости X есть уравнение плоскости, проходящей через точку (M_2(0, 1, -4)) и имеющей нормальный вектор (overrightarrow n=(6, -3, -2)):

(6times(x-0)-3times(y-1)-2times(z-(-4))=0;leftrightarrow6x-3y-2z-5=0)

Нормирующий множитель для общего уравнения плоскости (6x-3y-2z-5=0) равен (frac1{sqrt{6^2+{(-3)}^2+{(-2)}^2}}=frac17). Значит, нормальное уравнение этой плоскости выглядит как (frac67x-frac37y-frac27z-frac57=0).

Воспользуемся формулой для вычисления расстояния от точки (M_1(-2, 1, 4)) до плоскости (frac67x-frac37y-frac27z-frac57=0: left|M_1H_1right|=left|frac67times(-2)-frac37times1-frac27times4-frac57right|=left|frac{-28}7right|=4) см.

Ответ: 4 см.

Автор статьи

Анна Кирпиченкова

Эксперт по предмету «Геометрия»

Задать вопрос автору статьи

Очень часто на практике необходимо найти расстояние между точкой и некой прямой линией или между двумя прямыми линиями в пространстве, например, иногда определять расстояние между двумя линиями приходится и в реальной жизни. Хорошая иллюстрация такого примера — это знак, который вешают на мосты для грузовиков, указывающий максимальную высоту грузовика, которая может проехать под данным мостом.

Расстояние от верхней грани грузовика и нижней грани в данном случае определяют как расстояние между двумя прямыми.

Расстояние между 2 прямыми в пространстве — это отрезок, соединяющий две прямые линии по наикратчайшему расстоянию между ними, то есть перпендикулярный к обеим прямым.

Определение 1

Расстояние между двумя скрещивающимися прямыми в пространстве — это расстояние между одной заданной прямой и плоскостью, в которой лежит вторая прямая.

Чтобы было чуть проще понять, что это такое, давайте повторим определение скрещивающихся прямых:

Определение 2

Скрещивающиеся прямые — это две прямые, которые не лежат в одной плоскости и не имеют каких-либо совместных друг для друга точек.

Соответственно, для того чтобы найти расстояние между скрещивающимися прямыми в пространстве, необходимо от одной из прямых опустить перпендикуляр на плоскость, в которой лежит другая прямая.

Расстояние же между двумя параллельными прямыми в пространстве является одинаковым на протяжении всей длины параллельных прямых, то есть перпендикуляр, опущенный из одной параллельной прямой на другую, всегда будет одной и той же длины вне зависимости от того, из какой именно точки его опустили.

Метод координат для определения расстояния между скрещивающимися прямыми

Расстояние между скрещивающимися прямыми в пространстве можно найти используя метод координат, для этого необходимо:

«Расстояние между 2 прямыми в пространстве» 👇

  1. Найти координаты точек $M_1$ и $M_2$, лежащих на прямых $a$ и $b$ соответственно.
  2. Вычислить икс, игрек и зет направляющих векторов для прямых $a$ и $b$.
  3. С помощью векторного произведения векторов $overline{a}$ и $overline{b}$ нужно найти вектор-нормаль для плоскости, в которой лежит прямая $b$. Затем необходимо записать общее уравнение плоскости: $A (x – x_0) + B(y – y_0) + C(z – z_0) = 0$, и от него перейти к нормированному виду уравнения плоскости следующего вида: $ x cdot cos α + y cdot cos β + z cdot cos{γ} – p = 0$, где $cos α, cos β$ и $cos γ$ — координаты единичного нормального вектора плоскости, а $p$ — свободный член, это число равно расстоянию от точки начала координат до плоскости.
  4. Для вычисления расстояния от точки $M$ до искомой плоскости, нужно воспользоваться следующим уравнением:
    $M_1H_1 = |x_1 cdot cos α + y_1 cdot cos β + z_1 cdot cos{γ} – p|$, где $x_1, y_1, z_1$ – координаты точки $M_1$, лежащей на прямой $a$, а $H_1$ — точка, лежащая на искомой плоскости.

Пример 1

Найти расстояние между двумя скрещивающимися прямыми, заданными уравнениями:
$d_1$:
$frac {x-2}{2} = frac {y + 1}{-3} = frac{z}{-1}$

и $d_2$: $begin{cases} frac{x + 1}{1} = frac{y}{-2} \ z – 1 = 0 end{cases}$

Расстояние между двумя скрещивающимися прямыми в пространстве

Рисунок 1. Расстояние между двумя скрещивающимися прямыми в пространстве

Для этого воспользуемся следующей формулой:

$ ρ(d_1d_2) = frac{| overline{p_1} cdot overline{p_2} cdot overline{M_1M_2}|}{[overline{p_1} × overline{p_2}]}$

Сначала найдём смешанное произведение векторов. Для этого найдём точки, лежащие на данных прямых, и их направляющие вектора:

$d_1$: $frac {x-2}{2} = frac {y + 1}{-3} = frac{z}{-1}$, точка, лежащая на прямой — $M_1$ с координатами $(2;-1;0)$, а направляющий вектор — $overline{p_1}$ с координатами $(2; -3; -1)$

$d_2$: $begin{cases} frac{x + 1}{1} = frac{y}{-2} \ z – 1 = 0 end{cases}$, точка, лежающая на прямой — $M_2$ с координатами $(-1; 0; 1)$,

а её направляющий вектор — $overline{p_2}$ с координатами $(1; -2; 0)$

Теперь найдём вектор $overline{M_1M_2}$:

$overline{M_1M_2} = (-1-2;0-(-1);1-0) = (-3; 1; 1)$

Найдём смешанное произведение векторов:

$overline{p_1} cdot overline{p_2} cdot overline{M_1M_2} = begin{array}{|ccc|} 2& 1 & -3 \ -3& -2 & 1 \ -1 & 0 & 1 \ end{array} = – begin{array}{|cc|} 1 & -3 \ -2 & 1 \ end{array} + begin{array}{|cc|} 2 & 1 \ -3 & -2 \ end{array} = -(1 – 6) + (4 + 3) = 4$

Теперь найдём векторное произведение векторов:

$[|overline{p_1} × overline{p_2}|] = begin{array}{|ccc|} i& j & k \ 2 & -3 & -1 \ 1 & -2 & 0 end{array} = begin{array}{|cc|} -3 & -1 \ -2 & 0 end{array} cdot overline{i} – begin{array}{|cc|} 2 & -1 \ 1 & 0 end{array} cdot overline{j} + begin{array}{|cc|} 2 & -3 \ 1 & -2 end{array} cdot overline{k}$

$[|overline{p_1} × overline{p_2} |]= -2 overline{i} – overline{j} – overline{k}$

Длина этого векторного произведения составит:

$overline{p_1} × overline{p_2} = sqrt{(-2)^2 + (-1)^2 + (-1)^2} = sqrt{6}$

Соответственно, длина между скрещивающимися прямыми составит:

$ ρ(d_1d_2) = frac{|4|}{sqrt{6}} ≈ 1,63$

Пример 2

Даны две параллельные несовпадающие прямые $g$ и $m$, ниже приведены уравнения для них. Определить расстояние между ними.

$g$: $frac{x-1}{4} = frac{y + 1}{6}= frac{z+3}{8}$

$m$: $frac{x+1}{2} = frac{y – 1}{3}= frac{z – 3}{4}$

Расстояние в этом случае для них вычисляется по следующей формуле:

$ρ(m;g) =frac{|[overline{r_2} – overline{r_1} × overline{s_1}]|}{|overline{s_1}|}$, где

$overline{r_2}, overline{r_1}$ — радиус-векторы для каждой прямой, а $s_1$ — направляющий вектор.

Радиус-вектор для первой прямой будет $r_1={1; -1; -3}$, а направляющий вектор $s_1 = {4; 6; 8}$.

Радиус-вектор для второй прямой будет $r_2={-1; 1; 3}$, а направляющий вектор $s_2 = {2; 3; 4}$.

Найдём векторную разность радиус-векторов:

$overline{r_2} – overline{r_1} = {-1; 1; 3} – {1; -1; -3} = {-2;0;0}$

Теперь найдём её произведение с направляющим вектором для первой прямой:

$[overline{r_2} – overline{r_1} × overline{s_1}] = begin{array}{|ccc|} i & j & k \ -2 & 0 & 0 \ 4 & 6 & 8 \ end{array} = – 16j – 12k = {0;-16;-12}$

$|[overline{r_2} – overline{r_1} × overline{s_1}]| = sqrt{(-16)^2 + (-12)^2} = 20$

$|overline{s_1}| = sqrt{4^2 + 6^2 +8^2} = 2sqrt{29}$

$ρ(m;g) = frac{20}{2sqrt{29}} = frac{10}{sqrt{29}} ≈ 1.85$

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

План урока:

Понятие перпендикуляра

Расстояния между плоскостями и прямыми

Теорема о трех перпендикулярах

Угол между прямой и плоскостью

Задачи на перпендикуляры, наклонные, расстояния

Понятие перпендикуляра

Пусть есть некоторая плоскость α и точка М в пространстве, не лежащая на α. Проведем через М прямую, перпендикулярную α. Она пересечет α в какой-нибудь точке К. Отрезок МК именуют перпендикуляром к плоскости α.

1 rasstoyaniya v stereometrii

Если через М мы проведем ещё одну прямую, пересекающую α, то она пересечет α в какой-нибудь точке Н. В результате мы получим прямоугольный ∆МНК:

2 rasstoyaniya v stereometrii

Запомним некоторые геометрические термины. В таком построении:

  • отрезок МН – это наклонная;
  • отрезок НК – это проекция наклонной, или просто проекция;
  • К – основание перпендикуляра;
  • Н – основание наклонной.

Заметим, что в ∆МНК отрезок МН – это гипотенуза, а МК – это катет. Напомним, что катет всегда меньше гипотенузы. Отсюда вытекает вывод – длина перпендикуляра всегда меньше длины наклонной (конечно, если они проведены из одной точки).

Это значит, что из всех отрезков, которыми можно соединить точку и плоскость, именно перпендикуляр будет кратчайшим. Поэтому его называют расстоянием между точкой и плоскостью.

3 rasstoyaniya v stereometrii

Расстояния между плоскостями и прямыми

Докажем довольно очевидный факт:

4 rasstoyaniya v stereometrii

Действительно, пусть α и β – параллельные плоскости. Выберем на α произвольные точки М и Р, а далее опустим перпендикуляры из точек М и Р на β, которые пересекут β в точках Н и К соответственно:

5 rasstoyaniya v stereometrii

Так как МН и РК перпендикулярны плоскости α, то они параллельны. Но также и α||β. Тогда, по теореме 12 из этого урока, отрезки МН и РК одинаковы, ч. т. д.

Этот факт позволяет ввести понятия расстояния между параллельными плоскостями.

6 rasstoyaniya v stereometrii

Уточним, что если плоскости пересекаются, то расстояние между ними не может быть определено.

Далее рассмотрим случай с плоскостью α и параллельной ей прямой m. Оказывается, и в этом случае точки прямой равноудалены от плоскости.

7 rasstoyaniya v stereometrii

Действительно, отметим на m произвольную точку К. Далее через K проведем такую плоскость β, что α||β. Так как точки β равноудалены от α, то нам достаточно показать, что m будет полностью принадлежать β:

8 rasstoyaniya v stereometrii

Так как m и β уже имеют общую точку K, то они m либо пересекает β, либо лежит в ней. Будем рассуждать от противного и предположим, что m и β пересекаются. Так как m||α, то в α можно построить прямую n, параллельную m. Если m пересекает β, то и nтакже должна ее пересекать (по теореме 3 из этого урока). Но если n пересекает β, то точка их пересечения будет одновременно принадлежать и β, и α. То есть у этих плоскостей будет общая точка. Но α и β параллельны и потому не могут иметь общих точек. Значит, на самом деле m и β НЕ пересекаются. Остается один вариант – m принадлежит β, ч. т. д.

Из этой теоремы вытекает понятие расстояния между прямой и плоскостью.

9 rasstoyaniya v stereometrii

Уточним, что если плоскость и прямая не параллельны, то расстояние между ними определить нельзя.

Осталось понять, как определять расстояние между прямыми в пространстве. Для параллельных прямых определение расстояния известно ещё из курса планиметрии. Естественно, что для пересекающихся прямых расстояние определить невозможно. Остается только случай скрещивающихся прямых.

Пусть прямые m и n скрещиваются. Тогда через n можно построить плоскость α, параллельную m. И наоборот, через m возможно провести плоскость β, параллельную n:

10 rasstoyaniya v stereometrii

Далее опустим из какой-нибудь точки m перпендикуляр на α. Обозначим этот перпендикуляр как р. Тогда через пересекающиеся прямые m и р можно провести единственную плоскость γ:

11 rasstoyaniya v stereometrii

Заметим, что плоскости α и γ обязательно пересекутся по некоторой прямой m’, причем m’||m. Действительно, m’ и m не могут скрещиваться, ведь они находятся в одной плоскости γ. Не могут они и пересекаться, ведь в противном случае точка их пересечения была бы общей для m и α, а они параллельны и общих точек не имеют.

Также заметим, что прямые n и m’ пересекаются, ведь они располагаются в одной плоскости α. Параллельными они быть не могут, ведь тогда по свойству транзитивности параллельности получилось бы, что и n||m, а это не так. Обозначим точку пересечения n и m’ буквой K.

Далее через K в плоскости γ проведем прямую р’, параллельную р:

12 rasstoyaniya v stereometrii

Теперь начнем рассуждения. Если р⊥α, то также р⊥m’. Так как р’||р, то и р’⊥m’, ведь прямая, перпендикулярная одной из параллельных прямых, будет перпендикулярна и второй прямой. По этому же правилу из того факта, что m’||m и р’⊥m’ вытекает, что и m⊥р’. Наконец, если р⊥α, то р⊥n. Для ясности отметим все найденные нами прямые углы на рисунке:

13 rasstoyaniya v stereometrii

В итоге получилось, что отрезок HK перпендикулярен и n, и m. По этой причине его называют общим перпендикуляром к прямым n и m. Именно он и считается расстоянием между скрещивающимися прямыми m и n.

Отдельно отметим, что HK – это ещё и общий перпендикуляр к α и β. Понятно, что так как р⊥α и р’||р, то и р’⊥α, то есть HK – перпендикуляр к α.

Теперь через точку H проведем прямую n’, параллельную n. Так как β||n, то n’ будет находиться в β (по теор. 6 в этом уроке).

14 rasstoyaniya v stereometrii

Раз n||n’ и р’⊥n, то и р’⊥n’. Тогда получается, что в β есть сразу две пересекающихся прямых (это m и n’), которые перпендикулярны р’. Поэтому можно утверждать, что р’⊥β, то есть HK– перпендикуляр к β.

Отсюда сразу вытекает ещё один важный вывод – плоскости α и β параллельны, так как имеют общий перпендикуляр.

Итак, мы показали, что общий перпендикуляр можно построить для любых двух скрещивающихся прямых. Но можно построить ещё один такой перпендикуляр? Нельзя, и это можно показать.

Сначала заметим, что второй перпендикуляр нельзя провести через точку К, ведь в таком случае получалось бы, что к m проведены два различных перпендикуляра из одной и той же точки, что невозможно. Аналогично перпендикуляр не может проходить и через Н.

Предположим тогда, что второй перпендикуляр проходит через точки С и D, причем С находится на m, а D находится на n. То есть CD⊥m и СD⊥n:

15 rasstoyaniya v stereometrii

Проведем через С прямую n’’, параллельную n. Раз СD⊥n и n||n’’, то и СD⊥n’’. При этом n’’ находится в β (это доказывается также, как и в случае с n’). Тогда получается, что в β есть две прямые, n’’ и m, каждая из которых перпендикулярна СD, и при этом n’’ и m пересекаются. Тогда CD⊥β. Из этого вытекает, что СD и HK параллельны, а потому через них можно провести плоскость δ. Этой плоскости будут принадлежать точки С, H, К и D. Но тогда в этой плоскости должны находиться прямые m и n, ведь они имеют с ней по две общих точки. Но m и n – скрещивающиеся прямые, то есть они никак не могут находиться в одной плоскости. Это противоречие означает, что второй общий перпендикуляр CD не существует.

Итак, из всех наших рассуждений мы можем сделать следующие выводы:

16 rasstoyaniya v stereometrii

Теорема о трех перпендикулярах

Сформулируем важное утверждение, которое называют теоремой о трех перпендикулярах.

17 rasstoyaniya v stereometrii

Проиллюстрируем теорему с помощью картинки:

18 rasstoyaniya v stereometrii

Доказательство этой теоремы очень простое. Так как МК⊥α, то также МК⊥m. Теперь рассмотрим расположение плоскости МНК и прямой m. МК⊥m и HK⊥m. Тогда по признаку перпендикулярности можно утверждать, что m перпендикулярна всей плоскости HM, то есть каждой находящейся в ней прямой. В частности, m⊥HK, ч. т. д.

Оказывается, верно и обратное утверждение (так называемая обратная теорема о трех перпендикулярах):

19 rasstoyaniya v stereometrii

Доказательство аналогично предыдущему. Так как m⊥MH и m⊥MK, то m⊥HMK. Отсюда вытекает, что и m⊥HK.

Угол между прямой и плоскостью

Проекция наклонной позволяет ввести такое понятие, как угол между прямой и плоскостью.

20 rasstoyaniya v stereometrii

Пусть надо определить угол между прямой HM и плоскостью α:

21 rasstoyaniya v stereometrii

Здесь надо просто построить перпендикуляр МК. В результате появится отрезок HK– проекция HM на α. Тогда угол между HM и HK, то есть ∠MHK, как раз и будет углом между HM и α.

Однако не всегда таким образом можно построить проекцию прямой. Проблемы возникнут, если прямая либо параллельна, либо перпендикулярна плоскости. В таких случаях используются такие правила:

22 rasstoyaniya v stereometrii

Задачи на перпендикуляры, наклонные, расстояния

Рассмотрим несколько задач, в каждой из которых рассматривается куб АВСDEFGH. При этом предполагается, что ребро такого куба имеет длину, равную единице.

Задание. В кубе АВСDEFGH найдите расстояние между точкой А и гранью CDHG:

23 rasstoyaniya v stereometrii

Решение. Ребро AD перпендикулярно грани DH (так как AD⊥DH и AD⊥CD). Поэтому как раз АD и является расстоянием между А и СDHG. Значит, оно равно единице.

Ответ: 1.

Примечание. Для решения следующих задач запомним, что ребро DH перпендикулярно грани АВСD. Вообще в кубе все ребра, пересекающиеся с гранями, перпендикулярны таким граням.

Задание. Найдите в кубе расстояние между вершиной А и плоскостью BDH:

24 rasstoyaniya v stereometrii

Решение. Проведем на грани АВСD перпендикуляр АК из А к прямой BD:

25 rasstoyaniya v stereometrii

Докажем, что АК – перпендикуляр в BDH. Для этого надо найти две прямые в BDH, перпендикулярные АК. Первая такая прямая – это BD (мы специально провели АК⊥BD). Вторая такая прямая – это DH. Действительно, DH перпендикулярна всей грани АВСD, а значит, и прямой АК.

Теперь найдем длину АК. Ее можно вычислить из прямоугольного ∆АКD. В нём ∠ADB =45°, ведь это угол между стороной квадрата АВСD и его диагональю.

Найти АК можно с помощью тригонометрии в ∆АКD:

26 rasstoyaniya v stereometrii

Задание. Найдите расстояние от H до плоскости EDG:

27 rasstoyaniya v stereometrii

Решение. Обозначим середину отрезка ЕD буквой М.Далее в ∆МНG опустим высоту из НК на сторону MG:

28 rasstoyaniya v stereometrii

Попытаемся доказать, что HK – это перпендикуляр к EDG. Заметим, что ∆HDG и ∆EHG равны, ведь у них одинаковую длину имеют ребра DH, EH, ребро GH – общее, а ∠DHG и ∠EHG прямые. Тогда одинаковы отрезки EG и DG. Это означает, что ∆EGD – равнобедренный.

В ∆EGDMG– это медиана. Так как ∆EGD – равнобедренный, то MG одновременно ещё и высота, поэтому MD⊥MG.

Аналогично ∆EHD– равнобедренный (EH = HD), а потому MH в нем – и медиана, и высота. Поэтому MD⊥MH.

Получили, что MD перпендикулярен и MH, и MG, то есть двум прямым в плоскости MHG. Тогда MD перпендикулярен всей плоскости MHG, и, в частности, отрезку HK: HK⊥MD.

Но также MD⊥MG. Получается, KH перпендикулярен двум прямым в плоскости EDG, и потому он является перпендикуляром к плоскости EDG. Значит, именно его длину нам и надо найти.

Рассмотрим ∆MDH. Он прямоугольный, а ∠MDH = 45° (угол между стороной и диагональю квадрата). Тогда длину MH можно найти так:

29 rasstoyaniya v stereometrii

Так как ребро GH перпендикулярно грани АЕНD, то ∆MHG – прямоугольный. Тогда по теореме Пифагора можно найти MG:

30 rasstoyaniya v stereometrii

Далее можно найти HK разными способами, но проще воспользоваться подобием ∆MHG и ∆MKH. Они оба – прямоугольные, и у них есть общий угол ∠KMH, этого достаточно для подобия треугольников. Записываем пропорцию:

31 rasstoyaniya v stereometrii

Здесь слева записано отношение сторон, лежащих против ∠KMH, а справа – отношение сторон, лежащих против прямых углов (то есть отношение гипотенуз). Используем пропорцию дальше:

32 rasstoyaniya v stereometrii

Задание. Найдите расстояние между прямыми ВС и DH:

33 rasstoyaniya v stereometrii

Решение. ВС и DH – скрещивающиеся. Надо найти общий перпендикуляр к ним. В данном случае он очевиден – это отрезок CD. Действительно, CD⊥ВС как стороны квадрата АВСD, но и DH⊥CD как стороны в другом квадрате, СDHG.. Длина же ребра CD равна единице, ведь у куба все ребра одинаковы.

Ответ: 1.

Задание. Каково расстояние между прямыми ВС и DG:

34 rasstoyaniya v stereometrii

Решение.На грани СDHG опустим из С перпендикуляр СК на диагональ GD:

35 rasstoyaniya v stereometrii

Будет ли СК являться расстоянием между ВС и DG? Ясно, что СК⊥DG. При этом ребро ВС перпендикулярно грани СGHD, так как ВС⊥СG и ВС⊥СD. Значит, также ВС⊥СК. То есть СК – общий перпендикуляр к ВС и DG, и по определению как раз и является искомым расстоянием.

Длину СК найдем из прямоугольного ∆СKG. ∠СGK составляет 45°, ведь это угол между диагональю DG и стороной квадрата СG. Тогда можно записать:

36 rasstoyaniya v stereometrii

Задание. Найдите расстояние между ребрами АВ и HG:

37 rasstoyaniya v stereometrii

Решение. Здесь ребра АВ и HG параллельны, так как каждая их них параллельна ребру CD. Проведем отрезок АН. Так как и АВ, и HG перпендикулярны грани АЕНD, то эти ребра одновременно перпендикулярны и АН. То есть АН – общий перпендикуляр к АВ и HG, и поэтому именно его длину и надо найти.

Сделать это можно из прямоугольного ∆АНD, в котором ∠НАD составляет 45°:

38 rasstoyaniya v stereometrii

Задание. Чему равно расстояние между ребром AB и диагональю FD:

39 rasstoyaniya v stereometrii

Решение. Пусть А1, D1, Hи Е1 – середины ребер АВ, DC, HG, и EF соответственно. Проведем через А1, D1, Hплоскость. Диагональ FD пересечет ее в какой-нибудь точке К:

40 rasstoyaniya v stereometrii

Сначала покажем, что плоскости α и ADH (то есть нижняя грань) параллельны.

Заметим, что в четырехугольнике АА1D1D стороны АА1 и DDпараллельны (ведь они лежат на сторонах квадрата АВСD) и одинаковы (ведь они составляют половину от длины ребер АВ и CD, то есть имеют длину 0,5). Тогда АА1D1D – параллелограмм. Более того, раз у него есть прямые углы ∠А1АDи ∠АDD1, то можно утверждать, что АА1D1D – прямоугольник. Тогда АD||A1D1. Аналогично можно показать, что DHH1D– прямоугольник, и DH||D1H1.

Далее можно действовать разными способами. Первый способ – это использование признака параллельности плоскостей (теорема 9 из этого урока). Так как в α есть пересекающиеся прямые А1D1и D1H1, а в плоскости ADH находятся прямые AD и DH, и АD||A1D1, и DH||D1H1, то по этому признаку α||ADH.

Однако, если этот признак вдруг оказался «забыт», то можно использовать отрезок DD1. Он перпендикулярен и грани ADHE, и плоскости α, ведь в каждой из них есть по две прямых, перпендикулярных ему. Это AD и DH на грани ADHE и A1D1и D1Hв α. Тогда α и ADH перпендикулярны одной и той же прямой, а потому они параллельны. Так или иначе, мы выяснили, что α||ADH.

Отсюда вытекает, что α должна проходить через середину Е1. Действительно, расстояние между параллельными плоскостями не зависит от выбора точек измерения. В данном случае оно равно отрезку АА1, то есть 0,5. Но FE– это также общий перпендикуляр к α и ADH. Значит, α пересекает FE в точке, находящейся на расстоянии 0,5 от Е. А это как раз и есть середина FE, то есть точка Е1.

Далее докажем, что точка К, в которой прямая FD пересекает α – это середина отрезка Е1D1. Для этого удобно отдельно показать плоскость, проходящую через параллельные ребра FE и CD, то есть четырехугольник FEDC:

41 rasstoyaniya v stereometrii

Заметим, так как ребра FE и CD перпендикулярны верхней и нижней грани, то они перпендикулярны и отрезкам FC и ED, то есть FEDC прямоугольник. Тогда FC||ED, и ∠Е1FD = ∠D1DF (накрест лежащие углы при секущей FD). ∠FKEи ∠DKD1 одинаковы уже как вертикальные углы. Тогда ∆FKE1 и ∆DKDподобны по 2 углам. Но отрезки FEи DDодинаковы как половины равных ребер FE и CD. Получается, что ∆FKEи ∆DKDравны, и поэтому Е1К = KD1. Это и значит, что К – середина Е1D1.

Также отметим, что Е1D1 – диагональ в четырехугольнике А1Е1Н1D1. Докажем, что А1Е1Н1D – это квадрат. Ранее мы уже показали, что АА1D1D и DHH1D1 – прямоугольники. Аналогично можно продемонстрировать, что прямоугольниками являются также АА1Е1Е и ЕЕ1Н1Н. Из этого вытекает равенство сторон:

42 rasstoyaniya v stereometrii

То есть в А1Е1Н1Dвсе стороны одинаковы, и эта фигура – ромб. Теперь надо показать, что и углы в этом четырехугольнике составляют 90°. Продемонстрируем это на примере ∠А1D1H1. AD⊥CDHG и AD||A1D1, поэтому А1D1⊥CDHG. Значит, также А1D перпендикулярна любой прямой на грани CDHG, в том числе и D1H1. То есть ∠А1D1H1 = 90°. Но если в ромбе хотя бы один угол прямой, то он является квадратом.

Итак, мы выяснили, что А1Е1Н1D1 – квадрат, а К – середина его диагонали Е1D1. Получается, что К – точка пересечения диагоналей квадрата А1Е1Н1D1, ведь эта точка пересечения как раз делит диагонали пополам.

Теперь мы можем наконец доказать, что А1К – это и есть искомое расстояние. Действительно, так как АВ – перпендикуляр к α, та А1К принадлежит α, то А1К⊥АВ. Но как же доказать, что А1К⊥FD. Здесь поможет теорема о трех перпендикулярах. Е1К – это проекция FK на α, и Е1К⊥А1К, ведь диагонали квадрата пересекаются под прямым углом. Раз отрезок А1К перпендикулярен проекции, то он перпендикулярен и самой наклонной, то есть А1К⊥FK.

Осталось лишь вычислить длину А1К. Для этого по аналогии с предыдущими задачами используем прямоугольный∆А1Е1К, в котором ∠А1Е1К = 45°:

43 rasstoyaniya v stereometrii

Отвлечемся от куба и рассмотрим другую задачу.

Задание. В ∆АВС вписана окружность. Через центр этой окружности (точку О) проведена прямая ОН, причем она перпендикулярна плоскости АВС. Верно ли, что точка Н находится на одинаковом расстоянии от прямых АВ, АС и ВС?

44 rasstoyaniya v stereometrii

Решение. Пусть N, K и M – точки касания окружности и сторон АВ, АС и ВС соответственно. Тогда ОN, OK и OM– радиусы, а они должны быть перпендикулярны касательным, то есть

45 rasstoyaniya v stereometrii

Заметим, что ОN, OK и OM – это также проекции прямых HN, HK и HM соответственно. Раз отрезки АВ, АС и ВС перпендикулярны этим проекциям, то они должны быть перпендикулярны и наклонным:

46 rasstoyaniya v stereometrii

Это значит, что HN, HK и HM– это расстояния от H до сторон ∆АВС. Осталось показать, что они одинаковы. Это можно сделать с помощью ∆HON, ∆HOK и ∆HOM. Они все прямоугольные, причем катет OH– общий, а катеты ON, OM и OK одинаковы как радиусы одной окружности. Отсюда вытекает вывод, что эти треугольники равны, то есть одинаковы и их гипотенузы HN, HKи HM, ч. т. д.

Теперь снова вернемся к кубу, чтобы на практике научиться определять угол между прямой и плоскостью.

Задание. Найдите угол между ребром куба BD и гранью СDHG:

47 rasstoyaniya v stereometrii

Решение. ВС – это перпендикуляр к грани СDHG, поэтому CD– проекция BD на грань СDHG. Тогда нам надо найти ∠BDC. Он составляет 45°, так как это угол между стороной и диагональю квадрата АВСD:

48 rasstoyaniya v stereometrii

Ответ: 45°.

Задание. Вычислите угол между ребром CD и плоскостью BDHF:

49 rasstoyaniya v stereometrii

Решение. Нам надо из С опустить перпендикуляр на BDHF. Несложно догадаться, что для этого надо на грани ABCD опустить перпендикуляр СК на диагональ BD:

50 rasstoyaniya v stereometrii

Действительно, СK⊥BD. Надо найти ещё одну прямую в BDHF, перпендикулярную СК. И такой прямой может быть BF. Так как BF перпендикулярна всей грани АВСD, то она обязательно перпендикулярна и СК. Получаем, что СК⊥BF и CK⊥BD, и тогда СK⊥BDHF.

Если СK– перпендикуляр, то KD – это проекция СD. Тогда искомый нами угол – это ∠СDK. Он равен 45°, ведь BD – диагональ квадрата АВСD, а CD – его сторона.

Ответ: 45°

Задание. Чему равен угол между прямой BD и плоскостью ABGH:

51 rasstoyaniya v stereometrii

Решение. На нижней грани АЕНD опустим на АН перпендикуляр DK:

52 rasstoyaniya v stereometrii

Заметим, что ребро АВ перпендикулярно грани АЕНD, поэтому KD⊥АВ. Но также KD⊥AH (мы специально построили так KD). Тогда можно утверждать, что KD – это перпендикуляр ко всей плоскости АВGH.

В таком случае BK – это проекция BD на AB. Значит, нам необходимо вычислить ∠DBK. Его можно найти из прямоугольного ∆DBK, но сперва надо вычислить длины сторон KD и BD.

ВD найдем из прямоугольного ∆ABD:

53 rasstoyaniya v stereometrii

Теперь мы можем найти ∠DBK, а точнее его синус, из ∆DBK:

54 rasstoyaniya v stereometrii

По таблице синусов легко определить, что ∠DBK = 30°.

Ответ: 30°.

В ходе сегодняшнего урока мы узнали о перпендикуляре к плоскости. Перпендикуляры используются для определения расстояний в стереометрии, а также угла между прямой и плоскостью.

Расстояние между прямыми в пространстве онлайн

С помощю этого онлайн калькулятора можно найти расстояние между прямыми в пространстве. Дается подробное решение с пояснениями. Для вычисления расстояния между прямыми в пространстве, задайте вид уравнения прямых (“канонический” или “параметрический” ), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку “Решить”.

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Расстояние между прямыми в пространстве − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2:

где M1(x1, y1, z1) и M2(x2, y2, z2) − точки, лежащие на прямых L1 и L2, а q1={m1, p1, l1} и q2={m2, p2, l2} − направляющие векторы прямых L1 и L2, соответственно.

Прямые (1) и (2) в пространстве могут совпадать, быть паралленьными, пересекаться, или быть скрещивающимся. Если прямые в пространстве пересекаются или совпадают, то расстояние между ними равно нулю. Мы рассмотрим два случая. Первый − прямые параллельны, и второй − прямые скрещиваются. Остальные являются частыми случаями. Если при вычислении расстояния между параллельными прямыми мы получим расстояние равным нулю, то это значит, что эти прямые совпадают. Если же расстояние между скрещивающимися прямыми равно нулю, то эти прямые пересекаются.

1. Расстояние между параллельными прямыми в пространстве

Рассмотрим два метода вычисления расстояния между прямыми.

Метод 1. От точки M1 прямой L1 проводим плоскость α, перпендикулярно прямой L2. Находим точку M3(x3, y3, y3) пересечения плоскости α и прямой L3. По сути мы находим проекцию точки M1 на прямую L2. Как найти проекцию точки на прямую посмотрите здесь. Далее вычисляем расстояние между точками M1(x1, y1, z1) и M3(x3, y3, z3):

которое и является расстоянием между прямыми L1 и L2 (Рис.1).

Пример 1. Найти расстояние между прямыми L1 и L2:

Решение. Прямая L1 проходит через точку M1(x1, y1, z1)=M1(1, 2, 1) и имеет направляющий вектор

Прямая L2 проходит через точку M2(x2, y2, z2)=M2(8, 4, 1) и имеет направляющий вектор

Найдем проекцию точки M1 на прямую L2. Для этого построим плоскость α, проходящей через точку M1 и перпендикулярной прямойL2.

Для того, чтобы плоскость α было перепендикулярна прямой L2, нормальный вектор плоскости α должен быть коллинеарным направляющему вектору прямой L2, т.е. в качестве нормального вектора плоскости α можно взять направляющий вектор прямой L2. Тогда уравнение искомой плоскости, проходящей через точку M1(x1, y1, z1) имеет следующий вид:

Подставляя значения m2, p2, l2, x1, y1, z1 в (5) получим :

После упрощения получим уравнение плоскости, проходящей через точку M1 и перпендикулярной прямой L2:

Найдем точку пересечения прямой L2 и плоскости α, для этого построим параметрическое уравнение прямой L2.

Выразив переменные x, y, z через параметр t, получим параметрическое уравнение прямой L2:

Чтобы найти точку пересечения прямой L2 и плоскости α, подставим значения переменных x, y, z из (7) в (6):

Решив уравнение получим:

Подставляя полученное значение t в (7), получим точку пересеченияпрямой L2 и плоскости α:

Остается найти расстояние между точками M1 и M3:

Ответ: Расстояние между прямыми L1 и L2 равно d=7.2506.

Метод 2. Найдем расстояние между прямыми L1 и L2 (уравнения (1) и (2)). Во первых, проверяем параллельность прямых L1 и L2. Если направляющие векторы прямых L1 и L2 коллинеарны, т.е. если существует такое число λ, что выполнено равенство q1=λq2, то прямые L1 и L2 параллельны.

Данный метод вычисления расстояния между параллельными векторами основана на понятии векторного произведения векторов. Известно, что норма векторного произведения векторов и q1 дает площадь параллелограмма, образованного этими векторами (Рис.2). Узнав площадь параллелограмма, можно найти вершину параллелограмма d, разделив площадь на основание q1 параллелограмма.

Вычислим координаты вектора :

Вычислим векторное произведение векторов и q1:

Вычисляя определители второго порядка находим координаты вектора c:

Далее находим площадь параллелограмма:

Расстояние между прямыми L1 и L2 равно:

где

Пример 2. Решим пример 1 методом 2. Найти расстояние между прямыми

и

Решение. Прямая L1 проходит через точку M1(x1, y1, z1)=M1(1, 2, 1) и имеет направляющий вектор

Прямая L2 проходит через точку M2(x2, y2, z2)=M2(8, 4, 1) и имеет направляющий вектор

Векторы q1 и q2 коллинеарны. Следовательно прямые L1 и L2 параллельны. Для вычисления расстояния между параллельными прямыми воспользуемся векторным произведением векторов.

Построим вектор ={x2x1, y2y1, z2z1}={7, 2, 0}.

Вычислим векторное произведение векторов и q1. Для этого составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов и q1:

Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов и q1:

Таким образом, результатом векторного произведения векторов и q1 будет вектор:

Поскольку векторное произведение векторов и q1 дает плошадь параллелограмма образованным этими векторами, то расстояние между прямыми L1 и L2 равно :

Ответ: Расстояние между прямыми L1 и L2 равно d=7.25061.

2. Расстояние между скрещивающимися прямыми в пространстве

Пусть задана декартова прямоугольная симтема координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2 (уравнения (1) и (2)).

Пусть прямые L1 и L2 не параллельны (паралельные прямые мы расстотрели в предыдущем параграфе). Чтобы найти расстояние между прямыми L1 и L2 нужно построить параллельные плоскости α1 и α2 так, чтобы прямая L1 лежал на плоскости α1 а прямая L2 − на плоскости α2. Тогда расстояние между прямыми L1 и L2 равно расстоянию между плоскостями L1 и L2 (Рис. 3).

Поскольку плоскость α1, проходит через прямую L1, то он проходит также через M1(x1, y1, z1). Следовательно справедливо следующее равенство:

где n1={A1, B1, C1} − нормальный вектор плоскости α1. Для того, чтобы плоскость α1 проходила через прямую L1, нормальный вектор n1 должен быть ортогональным направляющему вектору q1 прямой L1, т.е. скалярное произведение этих векторов должен быть равным нулю:

Так как плоскость α1 должна быть параллельной прямой L2, то должна выполнятся условие:

Решая систему линейных уравнений (27)−(29), с тремя уравнениями и четыремя неизвестными A1, B1, C1, D1, и подставляя в уравнение

получим уравнение плоскости α1. (Как построить уравнение плоскости, проходящей через прямую, параллельно другой прямой подробно изложено здесь).

Аналогичным образом находим уравнение плоскости α2:

Плоскости α1 и α2 параллельны, следовательно полученные нормальные векторыn1={A1, B1, C1} и n2={A2, B2, C2} этих плоскостей коллинеарны. Если эти векторы не равны, то можно умножить (31) на некторое число так, чтобы полученный нормальный вектор n2 совпадал с нормальным вектором уравнения (30).

Тогда расстояние между параллельными плоскостями вычисляется формулой:

Полученное расстояние между плоскостями α1 и α2 является также расстоянием между прямыми L1 и L2.

Пример 3. Найти расстояние между прямыми

и

Решение. Прямая L1 проходит через точку M1(x1, y1, z1)=M1(2, 1, 4) и имеет направляющий вектор q1={m1, p1, l1}={1, 3, −2}.

Прямая L2 проходит через точку M2(x2, y2, z2)=M2(6, −1, 2) и имеет направляющий вектор q2={m2, p2, l2}={2, −3, 7}.

Шаг 1.

Построим плоскость α1, проходящую через прямую L1, параллельно прямой L2.

Поскольку плоскость α1 проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(2, 1, 4) и нормальный вектор n1={m1, p1, l1} плоскости α1 перпендикулярна направляющему вектору q1 прямой L1. Тогда уравнение плоскости должна удовлетворять условию:

а условие параллельности прямой L1 и искомой плоскости α1 представляется следующим условием:

Так как плоскость α1 должна быть параллельной прямой L2, то должна выполнятся условие:

Таким образом мы должны решить систему трех уравнений с четырьмя неизвестными (34)−(36). Подставим значения x1, y1, z1, m1, p1, l1, m2, p2, l2 в (27)−(29):

Представим эти уравнения в матричном виде:

Решим систему линейных уравнений (40) отностительно A1, B1, C1, D1:

Искомая плоскость может быть представлена формулой:

Подставляя значения A1, B1, C1, D1 в (42), получим:

Упростим уравнение, умножив на число 17.

Шаг 2.

Построим плоскость α2, проходящую через прямую L2, параллельно прямой L1.

Поскольку плоскость α2 проходит через прямую L2 , то она проходит также через точку M2(x2, y2, z2)=M2(6, −1, 2) и нормальный вектор n2={m2, p2, l2} плоскости α2 перпендикулярна направляющему вектору q2 прямой L2. Тогда уравнение плоскости должна удовлетворять условию:

а условие параллельности прямой L2 и искомой плоскости α2 представляется следующим условием:

Так как плоскость α2 должна быть параллельной прямой L1, то должна выполнятся условие:

Таким образом мы должны решить систему трех уравнений с четырьмя неизвестными (37)−(39). Подставим значения x2, y2, z2, m2, p2, l2, m1, p1, l1 в (37)−(39):

Представим эти уравнения в матричном виде:

Решим систему линейных уравнений (50) отностительно A2, B2, C2, D2:

Искомая плоскость может быть представлена формулой:

Подставляя значения A2, B2, C2, D2 в (52), получим:

Упростим уравнение, умножив на число −83.

Шаг 3.

Расстояние между построенными плоскостями (43) и (53) будет расстоянием между прямыми (1) и (2).

Запишем формулы уравнений плоскостей α1 и α2 :

где n1={A1, B1, C1}={15, −11, −9} и n2={A2, B2, C2}={15, −11, −9} − нормальные векторы плоскостей α1 и α2, соответственно, а свободные члены равны D1=17, D2=−83, соответственно.

Поскольку нормальные векторы плоскостей α1 и α2 совпадают, то можно найти расстояние между плоскостями α1 и α2, используя следующую формулу:

Подставим значения A1, B1, C1, D1, D2 в (54):

Упростим и решим:

Расстояние между прямыми равно: d=4.839339

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 4 декабря 2022 года; проверки требует 1 правка.

В данной статье рассматриваются две параллельные прямые на плоскости. Для параллельных прямых, расположенных не в одной плоскости, смотрите Скрещивающиеся прямые#расстояние.

Расстояние между двумя прямыми линиями на плоскости — это наименьшее расстояние между любыми двумя точками, лежащими на этих прямых. В случае пересекающихся линий расстояние между ними равно нулю, потому что минимальное расстояние между ними равно нулю (в точке пересечения), в то время как в случае двух параллельных линий это перпендикуляр — расстояние от точки на одной прямой к другой прямой.

Формулы и доказательства[править | править код]

Если линии параллельны, то расстояние между ними — это постоянная величина, так что не важно, какая точка выбрана, чтобы измерить расстояние. Даны уравнения двух параллельных линий

{displaystyle y=mx+b_{1},}
{displaystyle y=mx+b_{2},,}

расстояние между двумя параллельными прямыми — это расстояние между двумя точками пересечения этих линий с перпендикуляром

{displaystyle y=-x/m,.}

Это расстояние может быть найдено при решении системы линейных уравнений

{displaystyle {begin{cases}y=mx+b_{1}\y=-x/m,,end{cases}}}

и

{displaystyle {begin{cases}y=mx+b_{2}\y=-x/m,,end{cases}}}

чтобы получить координаты точек пересечения. Определяем координаты точки пересечения

{displaystyle left(x_{1},y_{1}right) =left({frac {-b_{1}m}{m^{2}+1}},{frac {b_{1}}{m^{2}+1}}right),,}

и

{displaystyle left(x_{2},y_{2}right) =left({frac {-b_{2}m}{m^{2}+1}},{frac {b_{2}}{m^{2}+1}}right),.}

Расстояние между точками

{displaystyle d={sqrt {left({frac {b_{1}m-b_{2}m}{m^{2}+1}}right)^{2}+left({frac {b_{2}-b_{1}}{m^{2}+1}}right)^{2}}},,}

которое можно сократить, как

{displaystyle d={frac {|b_{2}-b_{1}|}{sqrt {m^{2}+1}}},.}

Если известны уравнения прямых в декартовой системе координат, то можно их записать:

{displaystyle ax+by+c_{1}=0,}
{displaystyle ax+by+c_{2}=0,,}

где расстояние между прямыми можно записать так

{displaystyle d={frac {|c_{2}-c_{1}|}{sqrt {a^{2}+b^{2}}}}.}

См. также[править | править код]

  • Расстояние от точки до линии
  • Скрещивающиеся прямые#расстояние

Добавить комментарий