Геометрия
Лучшие условия по продуктам Тинькофф по этой ссылке
Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера
. 500 руб. на счет при заказе сим-карты по этой ссылке
Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке
План урока:
Прямоугольная система координат
В планиметрии мы уже рассматривали прямоугольную систему координат. Ее образовывали 2 перпендикулярные друг другу оси – Ох и Оу. С ее помощью можно было определить положение любой точки на координатной плоскости, просто указав две ее координаты – абсциссу х и ординату у.
В стереометрии необходимо определять положение точки уже не на плоскости, а в пространстве. Для этого добавляется третья ось Оz, которую ещё называют осью апликат. Каждые пара осей образует свою отдельную координатную плоскость, всего получается три таких плос-ти: Оху, Охz и Oуz.
Точка О именуется началом координат. Она делит каждую ось на два луча, один из которых – это положительная полуось, а второй – отрицательная полуось.
Для каждой точки в пространстве можно указать три координаты, однозначно определяющие ее положение в пространстве. Пусть в пространстве есть некоторая точка М. Опустим из нее перпендикуляры на координатные плоскости. В свою очередь из этих проекций точки М опустим перпендикуляры уже на координатные оси. В результате будет построен прямоугольный параллелепипед. Измерения этого параллелепипеда и будут координатами точки М:
Если точка M находится в одной из координатных плоскостей, то одна из ее координат будет нулевой. Например, если М принадлежит плоскости Охz, то нулю будет равна координата у. Если же точка располагается на одной из координатных осей, то у нее уже две координаты будут нулевыми. Так, если точка находится на оси Ох, то только координата х может быть ненулевой, а у и z окажутся нулевыми координатами.
На показанном рисунке ребра параллелепипеда лежат на положительных полуосях, поэтому все координаты положительны. Если же какие-то ребра будут лежать на отрицательных полуосях, то и соответствующие координаты будут отрицательными.
Координаты вектора
Введем в пространстве прямоугольную систему коорд-т, а далее от ее начала отложим вектора i, j и k, которые соответственно будут лежать на координатных осях Ох, Оу и Оz, и длина которых составит единицу. Эти вектора именуют координатными векторами, единичными векторами или просто ортами.
Ясно, что орты находятся в разных плоскостях, то есть они образуют тройку некомпланарных векторов. Это означает, что любой вектор а в пространстве можно разложить на орты:
где х, у и z – какие-то действительные числа. Они как раз и считаются координатами вектора а. Записываются коорд-ты вектора в фигурных скобках. На следующем рисунке показан вектор а<3; – 2; – 4>.
Задание. Разложите на орты вектор
Если начало вектора ОМ располагается в начале системы координат О, то вектор ОМ именуют радиус-вектором. В таком случае коорд-ты точки конца вектора, то есть точки М, совпадают с коорд-тами самого вектора ОМ.
Это свойство радиус-вектора мы уже изучали в 9 классе в планиметрии, и в стереометрии оно сохраняется.
Задание. О – начало координат, а точка М имеет коорд-ты (2; 5; – 3). Найдите коорд-ты вектора ОМ.
Решение. Всё очень просто – коорд-ты вектора будут совпадать с коорд-тами его конца, так его начало совпадает с началом коорд-т:
Также в стереометрии остаются справедливыми ещё несколько правил, которые были доказаны в курсе планиметрии:
Задание. Найдите сначала сумму, а потом разность векторов а <3; 7; 5>и b<2; 4; 6>.
Решение. Будем обозначать коорд-ты векторов через индексы. Например, коорд-ты вектора а – это ха, уа и zа. Пусть сумма векторов будет вектором с, а их разность – вектором d. Для вычисления суммы надо складывать соответствующие координаты:
Для вычисления разности надо из коорд-т вектора а вычитать коорд-ты вектора b:
Задание. Вычислите коорд-ты вектора р, зная, что:
Решение. Для вычисления координат надо в выражении для вектора р сами векторы заменить на их координаты:
Получается, что вектор p имеет координаты <0; – 2; 3>.
Теперь мы можем доказать ещё одно утверждение, уже известное из курса планиметрии:
Действительно, пусть есть некоторый вектор АВ, причем коорд-ты точек А и В известны. Построим радиус-вектора OА и OВ:
Координаты радиус-векторов будут совпадать с координатами их концов:
Задание. Определите коорд-ты вектора CD, если даны коорд-ты точек С и D: С(3; 8; – 5) и D(5; 4; 1).
Решение. Здесь надо просто из коорд-т точки D, являющейся концом вектора, вычесть коорд-ты точки С:
Задание. От точки K(10; 6; 13) отложен вектор m<3; 2; 5>, конец совпал в точку H. Найдите коорд-ты точки H.
Решение. Коорд-ты вектора m и его концов связаны формулами:
Координаты середины отрезка
Пусть в пространстве есть отрезок АВ, и координаты его концов известны. Точка М – середина этого отрезка. Как вычислить ее координаты? Рассмотрим взаимосвязь векторов АМ, МВ и АВ:
Раз М – середина АВ, то вектора АМ и МВ имеют равные длины, и при этом они находятся на одной прямой. Значит, эти вектора равны и потому у них одинаковые коорд-ты:
Аналогично можно получить аналогичные формулы для коорд-т у и z:
Рассмотрим несколько задач на координаты точек.
Задание. Найдите коорд-ты середины отрезка, соединяющего точки А(3; 7; 12) и В(1; 5; – 4).
Решение. Просто используем только что выведенные формулы. Середину также обозначаем буквой М:
Задание. Известно, что K середина отрезка CD. Даны координаты точек С и K: С(12; 9; – 3) и K(15; 7; 3). Найдите коорд-ты D.
Решение. Сначала запишем формулу для коорд-ты х:
Вычисление длины векторов и расстояния между точками
Рассмотрим радиус-вектор ОМ с коорд-тами . Попытаемся найти его длину. Мы можем построить прямоугольный параллелепипед, в котором этот вектор окажется диагональю:
Напомним, что квадрат длины диагонали в прямоугольном параллелепипеде равен сумме квадратов его измерений. Но в полученном параллелепипеде измерения – это коорд-ты х, у и z, поэтому можно записать:
Так как равные вектора имеют как одинаковы и коорд-ты, и длина, то ясно, что каждый вектор с коорд-тами будет равен рассмотренному радиус-вектору, а значит и его длина будет рассчитываться по такой же формуле.
Задание. Найдите длину вектора m<– 2; 9; 6>.
Решение. Просто используем формулу:
Рассмотрим отрезок АВ с известными коорд-тами его концов. Можно построить вектор АВ, его коорд-ты будут определяться так:
Задание. Найдите расстояние между точкой K(10; 15; 5) и M(16; 21; – 2).
Решение. Просто подставляем коорд-ты точек в формулу:
Задание. Найдите длину медианы KM в ∆ KPN, если известны коорд-ты его вершин: P(2; 5; 8), N (6; 9; 12) и K(16; 11; 13).
Решение. Для нахождения длины медианы достаточно знать коорд-ты ее концов. Коорд-ты K уже известны, а M – середина PN, что позволяет вычислить и ее коорд-ты:
Коллинеарность векторов
Напомним, что если два вектора а и b коллинеарны друг другу, то должно существовать такое число k, что
Полученное отношение (1) является одновременно и признаком коллинеарных векторов, и их свойством. Слово «признак» означает, что любые вектора, чьи координаты соответствуют условию (1), будут коллинеарны. Слово «свойство» означает обратное – если известно, что вектора коллинеарны, то для них обязательно выполняется условие (1). В таких случаях в математике может использоваться словосочетание «тогда и только тогда»:
Очень важно то, что это правило действует только в случае, если все коорд-ты векторов ненулевые. Теперь рассмотрим случай, когда какие-то коорд-ты вектора b (одна или две из них) равны нулю. Например, пусть
В результате мы выяснили, что если коорд-та одного вектора нулевая, то и у любого вектора, коллинеарному ему, эта же коорд-та также должна быть нулевой. Особняком стоит случай с нулевым вектором с коорд-тами <0; 0; 0>. Он условно признается коллинеарным любому вектору.
Задание. Выясните, какие из этих пар векторов коллинеарны:
Решение. В первом задании просто делим друг на друга соответствующие коорд-ты и находим значение коэффициента k:
Значение коэффициента k оказалось одинаковым для каждой пары коорд-т, значит, вектора коллинеарны.
Повторяем эти действия в задании б):
На этот раз коэффициенты k оказались различными, значит, вектора неколлинеарны.
В задании в) у вектора е коорд-та z нулевая. Значит, если и у вектора f, если он коллинеарен z, эта координата должна быть нулевой, но это не так. Значит, вектора e и f неколлинеарны.
В задании г) снова указаны вектора с нулевыми коорд-тами. Но у обоих векторов коорд-та z нулевая, поэтому они могут быть коллинеарными. Однако необходимо проверить, что отношение ненулевых координат одинаково:
Коэффициент k получился одинаковым, поэтому вектора коллинеарны.
В последнем задании д) вектор n – нулевой, ведь все его коорд-ты нулевые. Нулевой вектор всегда коллинеарен другим векторам, в том числе и в этом задании.
Ответ: а) да; б) нет; в) нет; г) да; д) да.
Задание. Выясните, располагаются ли на одной прямой точки А(3; 5; 12), В(5; 7; 16) и С(0; 2; 6).
Решение. Ясно, что если эти точки находятся на одной прямой, то вектора АВ и ВС будут коллинеарными. Если же эти вектора неколлинеарны, то и точки должны находиться на разных прямых.
Сначала вычислим коорд-ты векторов АВ и ВС:
Теперь проверяем, коллинеарны ли эти вектора:
Коэффициенты k одинаковы, а потому АВ и ВС – коллинеарные векторы. Значит, точки А, В и С находятся на одной прямой.
Определение компланарности векторов
Пусть у нас есть три вектора с известными коорд-тами:
Как определить, компланарны ли эти вектора, то есть располагаются ли они в одной плоскости? Если эти вектора компланарны, то, по признаку компаланарности, вектор а можно разложить на вектора b и с:
где х и y – некоторые числа. Но если такое разложение существует, то коорд-ты векторов а, b и с будут связаны равенствами:
Получили систему из 3 уравнений с двумя неизвестными (х и y). Если такая система имеет решение, то вектора компланарны. Если же решения нет, то вектора не компланарны.
Задание. Определите, компланарны ли вектора
Имеем систему с тремя уравнениями. Из последних двух уравнений очевидно, что его решением может быть только пара чисел:
Значит, рассмотренная тройка векторов компланарна.
Задание. Располагаются ли в одной плос-ти вектора:
Решение. Нам надо проверить компаланарность векторов, поэтому действуем также, как и в предыдущей задаче. Если вектора компланарны, то существует разложение:
Получилось неверное равенство. Это означает, что у системы уравнений решения нет, и потому тройка векторов некомпланарна.
Скалярное произведение векторов
В 9 классе мы уже изучали скалярное произведение векторов.
Для нахождения угла между векторами необходимо отложить их от одной точки, тогда они образуют такой угол.
Задание. Угол между векторами с и d составляет 60°, а их длины соответственно равны 5 и 6. Найдите их скалярное произведение.
Решение. Здесь для расчета просто перемножаем длины векторов и косинус 60°:
Напомним несколько уже известных нам фактов о скалярном произведении, остающихся верными и в стереометрии:
Формула для расчета скалярного произведения по коорд-там векторов, используемая в стереометрии, несколько отличается от формулы из курса планиметрии. Напомним, что в планиметрии произведение векторов аа; уа> и b<хb; yb> можно было рассчитать так:
Задание. Вычислите скалярное произведение векторов:
На практике скалярное произведение обычно используется для расчета углов между векторами, а также отрезками и прямыми. Рассмотрим несколько задач.
Задание. Вычислите угол между векторами:
Теперь через скалярное произведение возможно рассчитать косинус искомого нами угла, а затем и сам угол, который мы обозначим как α:
Задание. Рассчитайте углы в ∆АВС, зная коорд-ты его вершин: А(1; – 1; 3), В(3; – 1; 1) и С(– 1; 1; 3).
Решение. Чтобы найти ∠В, необходимо просто рассчитать угол между векторами ВС и ВА также, как это сделано в предыдущей задаче. Но сначала найдем коорд-ты векторов ВС и ВА и их длины:
Далее рассчитываем скалярное произведение векторов:
Теперь найдем угол А, который представляет собой угол между векторам AВ и AС. Вектор AВ – это вектор, противоположный ВA, то у него та же длина, но противоположный знак у коорд-т:
Задание. В прямоугольном параллелепипеде АВСDA1B1C1D1 ребра имеют длину:
Рассчитайте угол между векторами DB1 и BC1.
Решение. Введем систему коорд-т Охуz и расположим в нем параллелепипед следующим образом:
При этом построении граничные точки векторов будут иметь следующие коорд-ты:
Находим коорд-ты векторов, а также их длины:
Рассчитываем скалярное произведение DB1 и BC1:
Получили ноль. Из этого вытекает, что вектора перпендикулярны, то есть искомый нами угол составляет 90°.
Сегодня мы научились использовать координаты для решения стереометрических задач. Почти все формулы, используемые в методе координаты, аналогичны тем формулам, которые были выведены ещё в курсе планиметрии. Надо лишь учитывать существование ещё одной, третьей координаты z.
Нахождение координат середины отрезка: примеры, решения
В статье ниже будут освещены вопросы нахождения координат середины отрезка при наличии в качестве исходных данных координат его крайних точек. Но, прежде чем приступить к изучению вопроса, введем ряд определений.
Отрезок – прямая линия, соединяющая две произвольные точки, называемые концами отрезка. В качестве примера пусть это будут точки A и B и соответственно отрезок A B .
Если отрезок A B продолжить в обе стороны от точек A и B , мы получим прямую A B . Тогда отрезок A B – часть полученной прямой, ограниченный точками A и B . Отрезок A B объединяет точки A и B , являющиеся его концами, а также множество точек, лежащих между. Если, к примеру, взять любую произвольную точку K , лежащую между точками A и B , можно сказать, что точка K лежит на отрезке A B .
Длина отрезка – расстояние между концами отрезка при заданном масштабе (отрезке единичной длины). Длину отрезка A B обозначим следующим образом: A B .
Середина отрезка – точка, лежащая на отрезке и равноудаленная от его концов. Если середину отрезка A B обозначить точкой C , то верным будет равенство: A C = C B
И далее мы рассмотрим, как же определять координаты середины отрезка (точки C ) при заданных координатах концов отрезка ( A и B ), расположенных на координатной прямой или в прямоугольной системе координат.
Середина отрезка на координатной прямой
Исходные данные: координатная прямая O x и несовпадающие точки на ней: A и B . Этим точкам соответствуют действительные числа x A и x B . Точка C – середина отрезка A B : необходимо определить координату x C .
Поскольку точка C является серединой отрезка А В , верным будет являться равенство: | А С | = | С В | . Расстояние между точками определяется модулем разницы их координат, т.е.
| А С | = | С В | ⇔ x C – x A = x B – x C
Тогда возможно два равенства: x C – x A = x B – x C и x C – x A = – ( x B – x C )
Из первого равенства выведем формулу для координаты точки C : x C = x A + x B 2 (полусумма координат концов отрезка).
Из второго равенста получим: x A = x B , что невозможно, т.к. в исходных данных – несовпадающие точки. Таким образом, формула для определения координат середины отрезка A B с концами A ( x A ) и B ( x B ):
Полученная формула будет основой для определения координат середины отрезка на плоскости или в пространстве.
Середина отрезка на плоскости
Исходные данные: прямоугольная система координат на плоскости О x y , две произвольные несовпадающие точки с заданными координатами A x A , y A и B x B , y B . Точка C – середина отрезка A B . Необходимо определить координаты x C и y C для точки C .
Возьмем для анализа случай, когда точки A и B не совпадают и не лежат на одной координатной прямой или прямой, перпендикулярной одной из осей. A x , A y ; B x , B y и C x , C y – проекции точек A , B и C на оси координат (прямые О х и О y ).
Согласно построению прямые A A x , B B x , C C x параллельны; прямые также параллельны между собой. Совокупно с этим по теореме Фалеса из равенства А С = С В следуют равенства: А x С x = С x В x и А y С y = С y В y , и они в свою очередь свидетельствуют о том, что точка С x – середина отрезка А x В x , а С y – середина отрезка А y В y . И тогда, опираясь на полученную ранее формулу, получим:
x C = x A + x B 2 и y C = y A + y B 2
Этими же формулами можно воспользоваться в случае, когда точки A и B лежат на одной координатной прямой или прямой, перпендикулярной одной из осей. Проводить детальный анализ этого случая не будем, рассмотрим его лишь графически:
Резюмируя все выше сказанное, координаты середины отрезка A B на плоскости с координатами концов A ( x A , y A ) и B ( x B , y B ) определяются как:
( x A + x B 2 , y A + y B 2 )
Середина отрезка в пространстве
Исходные данные: система координат О x y z и две произвольные точки с заданными координатами A ( x A , y A , z A ) и B ( x B , y B , z B ) . Необходимо определить координаты точки C , являющейся серединой отрезка A B .
A x , A y , A z ; B x , B y , B z и C x , C y , C z – проекции всех заданных точек на оси системы координат.
Согласно теореме Фалеса верны равенства: A x C x = C x B x , A y C y = C y B y , A z C z = C z B z
Следовательно, точки C x , C y , C z являются серединами отрезков A x B x , A y B y , A z B z соответственно. Тогда, для определения координат середины отрезка в пространстве верны формулы:
x C = x A + x B 2 , y c = y A + y B 2 , z c = z A + Z B 2
Полученные формулы применимы также в случаях, когда точки A и B лежат на одной из координатных прямых; на прямой, перпендикулярной одной из осей; в одной координатной плоскости или плоскости, перпендикулярной одной из координатных плоскостей.
Определение координат середины отрезка через координаты радиус-векторов его концов
Формулу для нахождения координат середины отрезка также можно вывести согласно алгебраическому толкованию векторов.
Исходные данные: прямоугольная декартова система координат O x y , точки с заданными координатами A ( x A , y A ) и B ( x B , x B ) . Точка C – середина отрезка A B .
Согласно геометрическому определению действий над векторами верным будет равенство: O C → = 1 2 · O A → + O B → . Точка C в данном случае – точка пересечения диагоналей параллелограмма, построенного на основе векторов O A → и O B → , т.е. точка середины диагоналей.Координаты радиус-вектора точки равны координатам точки, тогда верны равенства: O A → = ( x A , y A ) , O B → = ( x B , y B ) . Выполним некоторые операции над векторами в координатах и получим:
O C → = 1 2 · O A → + O B → = x A + x B 2 , y A + y B 2
Следовательно, точка C имеет координаты:
x A + x B 2 , y A + y B 2
По аналогии определяется формула для нахождения координат середины отрезка в пространстве:
C ( x A + x B 2 , y A + y B 2 , z A + z B 2 )
Примеры решения задач на нахождение координат середины отрезка
Среди задач, предполагающих использование полученных выше формул, встречаются, как и те, в которых напрямую стоит вопрос рассчитать координаты середины отрезка, так и такие, что предполагают приведение заданных условий к этому вопросу: зачастую используется термин «медиана», ставится целью нахождение координат одного из концов отрезка, а также распространены задачи на симметрию, решение которых в общем также не должно вызывать затруднений после изучения настоящей темы. Рассмотрим характерные примеры.
Исходные данные: на плоскости – точки с заданными координатами А ( – 7 , 3 ) и В ( 2 , 4 ) . Необходимо найти координаты середины отрезка А В .
Решение
Обозначим середину отрезка A B точкой C . Координаты ее буду определяться как полусумма координат концов отрезка, т.е. точек A и B .
x C = x A + x B 2 = – 7 + 2 2 = – 5 2 y C = y A + y B 2 = 3 + 4 2 = 7 2
Ответ: координаты середины отрезка А В – 5 2 , 7 2 .
Исходные данные: известны координаты треугольника А В С : А ( – 1 , 0 ) , В ( 3 , 2 ) , С ( 9 , – 8 ) . Необходимо найти длину медианы А М .
Решение
- По условию задачи A M – медиана, а значит M является точкой середины отрезка B C . В первую очередь найдем координаты середины отрезка B C , т.е. точки M :
x M = x B + x C 2 = 3 + 9 2 = 6 y M = y B + y C 2 = 2 + ( – 8 ) 2 = – 3
- Поскольку теперь нам известны координаты обоих концов медианы (точки A и М ), можем воспользоваться формулой для определения расстояния между точками и посчитать длину медианы А М :
A M = ( 6 – ( – 1 ) ) 2 + ( – 3 – 0 ) 2 = 58
Ответ: 58
Исходные данные: в прямоугольной системе координат трехмерного пространства задан параллелепипед A B C D A 1 B 1 C 1 D 1 . Заданы координаты точки C 1 ( 1 , 1 , 0 ) , а также определена точка M , являющаяся серединой диагонали B D 1 и имеющая координаты M ( 4 , 2 , – 4 ) . Необходимо рассчитать координаты точки А .
Решение
Диагонали параллелепипеда имеют пересечение в одной точке, которая при этом является серединой всех диагоналей. Исходя из этого утверждения, можно иметь в виду, что известная по условиям задачи точка М является серединой отрезка А С 1 . Опираясь на формулу для нахождения координат середины отрезка в пространстве, найдем координаты точки А : x M = x A + x C 1 2 ⇒ x A = 2 · x M – x C 1 = 2 · 4 – 1 + 7 y M = y A + y C 1 2 ⇒ y A = 2 · y M – y C 1 = 2 · 2 – 1 = 3 z M = z A + z C 1 2 ⇒ z A = 2 · z M – z C 1 = 2 · ( – 4 ) – 0 = – 8
Ответ: координаты точки А ( 7 , 3 , – 8 ) .
Середина отрезка. Координаты середины отрезка
В геометрических задачах часто можно столкнуться с необходимостью найти середину отрезка заданного координатами точек его концов, например в задачах поиска медианы, средней линии, .
Каждая координата середины отрезка равна полусумме соответствующих координат концов отрезка.
Формулы вычисления расстояния между двумя точками:
- Формула вычисления координат середины отрезка с концами A( xa , ya ) и B( xb , yb ) на плоскости:
xc = | xa + xb | yc = | ya + yb |
2 | 2 |
Формула вычисления координат середины отрезка с концами A( xa , ya , za ) и B( xb , yb , zb ) в пространстве:
xc = | xa + xb | yc = | ya + yb | zc = | za + zb |
2 | 2 | 2 |
Примеры задач на вычисление середины отрезка
Примеры вычисления координат середины отрезка на плоскости
xc = | xa + xb | = | -1 + 6 | = | 5 | = 2.5 |
2 | 2 | 2 |
yc = | ya + yb | = | 3 + 5 | = | 8 | = 4 |
2 | 2 | 2 |
Примеры вычисления координат середины отрезка в пространстве
xc = | xa + xb | = | -1 + 6 | = | 5 | = 2.5 |
2 | 2 | 2 |
yc = | ya + yb | = | 3 + 5 | = | 8 | = 4 |
2 | 2 | 2 |
zc = | za + zb | = | 1 + (-3) | = | -2 | = -1 |
2 | 2 | 2 |
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
[spoiler title=”источники:”]
http://zaochnik.com/spravochnik/matematika/vektory/nahozhdenie-serediny-otrezka/
http://ru.onlinemschool.com/math/library/analytic_geometry/points_center/
[/spoiler]
На прямой последовательно обозначают точки А, В, С, Д, причём АВ=ВС=СД=6. Для начала чертим чертёж, чтобы разобраться. А—-.а—-В—-.в––С—-.с—-Д. Точками изображены середины сторон АВ, ВС, и СД, и а, в, с. АВ = ВС = СД = 6. Требуется определить расстояние от точки а до точки с. 1) способ. Если считать по порядку, то аВ = 3 см,Вв = вС = 3 см, Сс = 3 см. Всё расстояние ас = аВ + Вв + вС + Сс = аВ + ВС + Сс = 3 + 6 + 3 = 12 (см). 2) способ. Искомое расстояние равно полному расстоянию АД без половины АВ, и половины СД. ас = 6 см + 6 см + 6 см – 6/2 – 6/2 = 18 – 3 – 3 = 12 (см). Не пойму, в чём прикол задачи, то есть какая-то сложность или подвох должны быть. По чертежу получается всё элементарно. автор вопроса выбрал этот ответ лучшим Анатолий-тдр5 3 года назад Формулировка скользкая. И всё же берусь утверждать, что все 4 точки различные, так как традиционно, когда говорят о множестве геометрических точек, то имеют в виду, что это различные точки, если нет на этот счёт уточнений. Если бы речь шла о точках числовой прямой, т.е. о числах, то там конечно могли бы быть и совпадения. Из этого предположения и будем решать задачу. Все связанные векторы АВ, BC, CD – коллинеарны и сонаправлены. В противном случае нашлась бы всегда бы пара векторов, у которой конец одного вектора совпадал с началом другого, но это бы означало совпадение различных точек. Тогда искомое число – это длина вектора, соединяющего середины векторов АB и CD. Найдём этот вектор и его длину. Искомый вектор обозначим MN, где M – середина вектора AB, а N – середина вектора CD. Тогда МN=ON–OM=(OC+CN)-( OB + BM)=( OC – OB)+( CN –BM)=BC+CN+MB=BC+CD/2+AC/2. Из сонаправленности векторов BC, CD и AC следует, что |MN|=|BC|+| CD|/2+| AC|/2=6+3+3=12 Но если всё же предположить , что могут быть совпадения в последовательности точек (с чем я лично не согласен), то расстояние между серединами было бы равно 0 или 6 или 12. ЛенивыйЖирныйКот 3 года назад Крутил и так и сяк, получается 12. Первый вариант: АВ+ВС+СД-0,5АВ-0,5ВС или АВ*3-СД; Второй вариант: 0,5АВ+ВС+0,5СД. Получается, раз отрезки расположены на одной прямой и друг за другом, то в первом случае берется сумма всех трех и из неё вычитается половина первого отрезка (его начало) и половина третьего отрезка (его конец). Во втором случае наоборот, к среднему отрезку прибавляется половина первого отрезка (его конец) и половина третьего отрезка (его начало). Хоть в лоб, хоть по лбу, всё равно 12 и ни на копейку больше. Знаете ответ? |
План урока:
Прямоугольная система координат
Координаты вектора
Координаты середины отрезка
Вычисление длины векторов и расстояния между точками
Коллинеарность векторов
Определение компланарности векторов
Скалярное произведение векторов
Прямоугольная система координат
В планиметрии мы уже рассматривали прямоугольную систему координат. Ее образовывали 2 перпендикулярные друг другу оси – Ох и Оу. С ее помощью можно было определить положение любой точки на координатной плоскости, просто указав две ее координаты – абсциссу х и ординату у.
В стереометрии необходимо определять положение точки уже не на плоскости, а в пространстве. Для этого добавляется третья ось Оz, которую ещё называют осью апликат. Каждые пара осей образует свою отдельную координатную плоскость, всего получается три таких плос-ти: Оху, Охz и Oуz.
Точка О именуется началом координат. Она делит каждую ось на два луча, один из которых – это положительная полуось, а второй – отрицательная полуось.
Для каждой точки в пространстве можно указать три координаты, однозначно определяющие ее положение в пространстве. Пусть в пространстве есть некоторая точка М. Опустим из нее перпендикуляры на координатные плоскости. В свою очередь из этих проекций точки М опустим перпендикуляры уже на координатные оси. В результате будет построен прямоугольный параллелепипед. Измерения этого параллелепипеда и будут координатами точки М:
Если точка M находится в одной из координатных плоскостей, то одна из ее координат будет нулевой. Например, если М принадлежит плоскости Охz, то нулю будет равна координата у. Если же точка располагается на одной из координатных осей, то у нее уже две координаты будут нулевыми. Так, если точка находится на оси Ох, то только координата х может быть ненулевой, а у и z окажутся нулевыми координатами.
На показанном рисунке ребра параллелепипеда лежат на положительных полуосях, поэтому все координаты положительны. Если же какие-то ребра будут лежать на отрицательных полуосях, то и соответствующие координаты будут отрицательными.
Координаты вектора
Введем в пространстве прямоугольную систему коорд-т, а далее от ее начала отложим вектора i, j и k, которые соответственно будут лежать на координатных осях Ох, Оу и Оz, и длина которых составит единицу. Эти вектора именуют координатными векторами, единичными векторами или просто ортами.
Ясно, что орты находятся в разных плоскостях, то есть они образуют тройку некомпланарных векторов. Это означает, что любой вектор а в пространстве можно разложить на орты:
где х, у и z – какие-то действительные числа. Они как раз и считаются координатами вектора а. Записываются коорд-ты вектора в фигурных скобках. На следующем рисунке показан вектор а{3; – 2; – 4}.
Задание. Разложите на орты вектор
Если начало вектора ОМ располагается в начале системы координат О, то вектор ОМ именуют радиус-вектором. В таком случае коорд-ты точки конца вектора, то есть точки М, совпадают с коорд-тами самого вектора ОМ.
Это свойство радиус-вектора мы уже изучали в 9 классе в планиметрии, и в стереометрии оно сохраняется.
Задание. О – начало координат, а точка М имеет коорд-ты (2; 5; – 3). Найдите коорд-ты вектора ОМ.
Решение. Всё очень просто – коорд-ты вектора будут совпадать с коорд-тами его конца, так его начало совпадает с началом коорд-т:
Также в стереометрии остаются справедливыми ещё несколько правил, которые были доказаны в курсе планиметрии:
Задание. Найдите сначала сумму, а потом разность векторов а{3; 7; 5} и b{2; 4; 6}.
Решение. Будем обозначать коорд-ты векторов через индексы. Например, коорд-ты вектора а – это ха, уа и zа. Пусть сумма векторов будет вектором с, а их разность – вектором d. Для вычисления суммы надо складывать соответствующие координаты:
Для вычисления разности надо из коорд-т вектора а вычитать коорд-ты вектора b:
Задание. Вычислите коорд-ты вектора р, зная, что:
Решение. Для вычисления координат надо в выражении для вектора р сами векторы заменить на их координаты:
Получается, что вектор p имеет координаты {0; – 2; 3}.
Теперь мы можем доказать ещё одно утверждение, уже известное из курса планиметрии:
Действительно, пусть есть некоторый вектор АВ, причем коорд-ты точек А и В известны. Построим радиус-вектора OА и OВ:
Координаты радиус-векторов будут совпадать с координатами их концов:
ч. т. д.
Задание. Определите коорд-ты вектора CD, если даны коорд-ты точек С и D: С(3; 8; – 5) и D(5; 4; 1).
Решение. Здесь надо просто из коорд-т точки D, являющейся концом вектора, вычесть коорд-ты точки С:
Задание. От точки K(10; 6; 13) отложен вектор m{3; 2; 5}, конец совпал в точку H. Найдите коорд-ты точки H.
Решение. Коорд-ты вектора m и его концов связаны формулами:
Координаты середины отрезка
Пусть в пространстве есть отрезок АВ, и координаты его концов известны. Точка М – середина этого отрезка. Как вычислить ее координаты? Рассмотрим взаимосвязь векторов АМ, МВ и АВ:
Раз М – середина АВ, то вектора АМ и МВ имеют равные длины, и при этом они находятся на одной прямой. Значит, эти вектора равны и потому у них одинаковые коорд-ты:
Аналогично можно получить аналогичные формулы для коорд-т у и z:
Рассмотрим несколько задач на координаты точек.
Задание. Найдите коорд-ты середины отрезка, соединяющего точки А(3; 7; 12) и В(1; 5; – 4).
Решение. Просто используем только что выведенные формулы. Середину также обозначаем буквой М:
Задание. Известно, что K середина отрезка CD. Даны координаты точек С и K: С(12; 9; – 3) и K(15; 7; 3). Найдите коорд-ты D.
Решение. Сначала запишем формулу для коорд-ты х:
Вычисление длины векторов и расстояния между точками
Рассмотрим радиус-вектор ОМ с коорд-тами {x; у; z}. Попытаемся найти его длину. Мы можем построить прямоугольный параллелепипед, в котором этот вектор окажется диагональю:
Напомним, что квадрат длины диагонали в прямоугольном параллелепипеде равен сумме квадратов его измерений. Но в полученном параллелепипеде измерения – это коорд-ты х, у и z, поэтому можно записать:
Так как равные вектора имеют как одинаковы и коорд-ты, и длина, то ясно, что каждый вектор с коорд-тами {x; y; z} будет равен рассмотренному радиус-вектору, а значит и его длина будет рассчитываться по такой же формуле.
Задание. Найдите длину вектора m{– 2; 9; 6}.
Решение. Просто используем формулу:
Рассмотрим отрезок АВ с известными коорд-тами его концов. Можно построить вектор АВ, его коорд-ты будут определяться так:
Задание. Найдите расстояние между точкой K(10; 15; 5) и M(16; 21; – 2).
Решение. Просто подставляем коорд-ты точек в формулу:
Задание. Найдите длину медианы KM в ∆ KPN, если известны коорд-ты его вершин: P(2; 5; 8), N (6; 9; 12) и K(16; 11; 13).
Решение. Для нахождения длины медианы достаточно знать коорд-ты ее концов. Коорд-ты K уже известны, а M – середина PN, что позволяет вычислить и ее коорд-ты:
Коллинеарность векторов
Напомним, что если два вектора а и b коллинеарны друг другу, то должно существовать такое число k, что
Полученное отношение (1) является одновременно и признаком коллинеарных векторов, и их свойством. Слово «признак» означает, что любые вектора, чьи координаты соответствуют условию (1), будут коллинеарны. Слово «свойство» означает обратное – если известно, что вектора коллинеарны, то для них обязательно выполняется условие (1). В таких случаях в математике может использоваться словосочетание «тогда и только тогда»:
Очень важно то, что это правило действует только в случае, если все коорд-ты векторов ненулевые. Теперь рассмотрим случай, когда какие-то коорд-ты вектора b (одна или две из них) равны нулю. Например, пусть
В результате мы выяснили, что если коорд-та одного вектора нулевая, то и у любого вектора, коллинеарному ему, эта же коорд-та также должна быть нулевой. Особняком стоит случай с нулевым вектором с коорд-тами {0; 0; 0}. Он условно признается коллинеарным любому вектору.
Задание. Выясните, какие из этих пар векторов коллинеарны:
Решение. В первом задании просто делим друг на друга соответствующие коорд-ты и находим значение коэффициента k:
Значение коэффициента k оказалось одинаковым для каждой пары коорд-т, значит, вектора коллинеарны.
Повторяем эти действия в задании б):
На этот раз коэффициенты k оказались различными, значит, вектора неколлинеарны.
В задании в) у вектора е коорд-та z нулевая. Значит, если и у вектора f, если он коллинеарен z, эта координата должна быть нулевой, но это не так. Значит, вектора e и f неколлинеарны.
В задании г) снова указаны вектора с нулевыми коорд-тами. Но у обоих векторов коорд-та z нулевая, поэтому они могут быть коллинеарными. Однако необходимо проверить, что отношение ненулевых координат одинаково:
Коэффициент k получился одинаковым, поэтому вектора коллинеарны.
В последнем задании д) вектор n – нулевой, ведь все его коорд-ты нулевые. Нулевой вектор всегда коллинеарен другим векторам, в том числе и в этом задании.
Ответ: а) да; б) нет; в) нет; г) да; д) да.
Задание. Выясните, располагаются ли на одной прямой точки А(3; 5; 12), В(5; 7; 16) и С(0; 2; 6).
Решение. Ясно, что если эти точки находятся на одной прямой, то вектора АВ и ВС будут коллинеарными. Если же эти вектора неколлинеарны, то и точки должны находиться на разных прямых.
Сначала вычислим коорд-ты векторов АВ и ВС:
Теперь проверяем, коллинеарны ли эти вектора:
Коэффициенты k одинаковы, а потому АВ и ВС – коллинеарные векторы. Значит, точки А, В и С находятся на одной прямой.
Определение компланарности векторов
Пусть у нас есть три вектора с известными коорд-тами:
Как определить, компланарны ли эти вектора, то есть располагаются ли они в одной плоскости? Если эти вектора компланарны, то, по признаку компаланарности, вектор а можно разложить на вектора b и с:
где х и y – некоторые числа. Но если такое разложение существует, то коорд-ты векторов а, b и с будут связаны равенствами:
Получили систему из 3 уравнений с двумя неизвестными (х и y). Если такая система имеет решение, то вектора компланарны. Если же решения нет, то вектора не компланарны.
Задание. Определите, компланарны ли вектора
Имеем систему с тремя уравнениями. Из последних двух уравнений очевидно, что его решением может быть только пара чисел:
Значит, рассмотренная тройка векторов компланарна.
Задание. Располагаются ли в одной плос-ти вектора:
Решение. Нам надо проверить компаланарность векторов, поэтому действуем также, как и в предыдущей задаче. Если вектора компланарны, то существует разложение:
Получилось неверное равенство. Это означает, что у системы уравнений решения нет, и потому тройка векторов некомпланарна.
Скалярное произведение векторов
В 9 классе мы уже изучали скалярное произведение векторов.
Для нахождения угла между векторами необходимо отложить их от одной точки, тогда они образуют такой угол.
Задание. Угол между векторами с и d составляет 60°, а их длины соответственно равны 5 и 6. Найдите их скалярное произведение.
Решение. Здесь для расчета просто перемножаем длины векторов и косинус 60°:
Напомним несколько уже известных нам фактов о скалярном произведении, остающихся верными и в стереометрии:
Формула для расчета скалярного произведения по коорд-там векторов, используемая в стереометрии, несколько отличается от формулы из курса планиметрии. Напомним, что в планиметрии произведение векторов а{xа; уа} и b{хb; yb} можно было рассчитать так:
Задание. Вычислите скалярное произведение векторов:
На практике скалярное произведение обычно используется для расчета углов между векторами, а также отрезками и прямыми. Рассмотрим несколько задач.
Задание. Вычислите угол между векторами:
Теперь через скалярное произведение возможно рассчитать косинус искомого нами угла, а затем и сам угол, который мы обозначим как α:
Задание. Рассчитайте углы в ∆АВС, зная коорд-ты его вершин: А(1; – 1; 3), В(3; – 1; 1) и С(– 1; 1; 3).
Решение. Чтобы найти ∠В, необходимо просто рассчитать угол между векторами ВС и ВА также, как это сделано в предыдущей задаче. Но сначала найдем коорд-ты векторов ВС и ВА и их длины:
Далее рассчитываем скалярное произведение векторов:
Теперь найдем угол А, который представляет собой угол между векторам AВ и AС. Вектор AВ – это вектор, противоположный ВA, то у него та же длина, но противоположный знак у коорд-т:
Задание. В прямоугольном параллелепипеде АВСDA1B1C1D1 ребра имеют длину:
AB = 1
BC = 2
BB1 = 2
Рассчитайте угол между векторами DB1 и BC1.
Решение. Введем систему коорд-т Охуz и расположим в нем параллелепипед следующим образом:
При этом построении граничные точки векторов будут иметь следующие коорд-ты:
Находим коорд-ты векторов, а также их длины:
Рассчитываем скалярное произведение DB1 и BC1:
Получили ноль. Из этого вытекает, что вектора перпендикулярны, то есть искомый нами угол составляет 90°.
Ответ: 90°
Сегодня мы научились использовать координаты для решения стереометрических задач. Почти все формулы, используемые в методе координаты, аналогичны тем формулам, которые были выведены ещё в курсе планиметрии. Надо лишь учитывать существование ещё одной, третьей координаты z.
Роман Тургенева «Накануне»: идейно-художественное своеобразие
Из каких слоев общества появятся «новые люди»? Что будет отличать их от поколения Рудиных и Лаврецких? Какую программу обновления России они примут и как приступят к освобождению народа от крепостного права? Эти вопросы волновали Тургенева давно. Еще в 1855 году, в момент работы над «Рудиным», задача, которую он поставил в «Накануне», уже начинала возникать перед ним: «Фигура главной героини, Елены, тогда еще нового типа в русской жизни, довольно ясно обрисовывалась в моем воображении,— вспоминал Тургенев,— но недоставало героя, такого лица, которому Елена, при ее еще смутном, хотя сильном стремлении к свободе, могла предаться» (XII, 306), Тогда же сосед Тургенева, отправляясь в Крым в качестве офицера дворянского ополчения, оставил писателю рукопись автобиографической повести, одним из главных героев которой был молодой болгарский революционер, студент Московского университета. Теперь мы знаем, что прототипом тургеневского Инсарова явился Николай Димитров Катранов, родившийся в 1829 году в болгарском городе Свиштов в небогатой купеческой семье. В 1848 году в составе большой группы болгарских юношей он приехал в Россию и поступил на историко-филологический факультет Московского университета.
Начавшаяся в 1853 году русско-турецкая война всколыхнула революционные настроения балканских славян, боровшихся за избавление от многовекового турецкого ига. В начале 1853 года Николай Катранов с русской женой Ларисой уехал на родину. Но внезапная вспышка туберкулеза спутала все планы. Пришлось вернуться в Россию, а затем ехать на лечение в Венецию, где Катранов простудился и скоропостижно скончался 5 мая 1853 года. Это был талантливый человек: он писал стихи, занимался переводами, горячо пропагандировал среди русских друзей идею освобождения родины.
Вплоть до 1859 года тетрадь с рукописью Каратеева — так звали тургеневского соседа — лежала без движения, хотя, познакомившись с ней, писатель воскликнул: «Вот герой, которого я искал! Между тогдашними русскими такого еще не было». Почему же Тургенев обратился к этой тетради в 1859 году, когда и в России подобного типа герои уже появились? Почему в качестве образца для русских «сознательно-героических натур» Тургенев предлагает болгарина Дмитрия Инсарова? Что не устроило, наконец, Тургенева в добролюбовской интерпретации романа «Накануне», опубликованного в январском номере журнала «Русский вестник» в 1860 году?
Н. А. Добролюбов, посвятивший разбору этого романа специальную статью «Когда же придет настоящий день?», дал классическое определение художественному дарованию Тургенева, увидев в нем писателя, чуткого к общественным проблемам. Очередной его роман «Накануне» еще раз блестяще оправдал эту репутацию. Добролюбов отметил четкую расстановку в нем главных действующих лиц. Центральная героиня Елена Стахова стоит перед выбором, на место ее избранника претендуют молодой ученый, историк Берсенев, будущий художник, человек искусства Шубин, успешно начинающий служебную деятельность чиновник Курнатовский и, наконец, человек гражданского подвига, болгарский революционер Инсаров. Социально-бытовой сюжет романа имеет символический подтекст: Елена Стахова олицетворяет молодую Россию «накануне» предстоящих перемен, Кто всего нужнее ей сейчас: люди науки или искусства, государственные чиновники или героические натуры, люди гражданского подвига? Выбор Еленой Инсарова дает недвусмысленный ответ на этот вопрос.
Добролюбов заметил, что в Елене Стаховой «сказалась та смутная тоска по чем-то, та почти бессознательная, но неотразимая потребность новой жизни, новых людей, которая охватывает теперь все русское общество, и даже не одно только так называемое образованное» (VI, 120).
В описании детских лет Елены Тургенев обращает внимание на глубокую близость ее к народу. С тайным уважением и страхом слушает она рассказы нищей девочки Кати о жизни «на всей божьей воле» и воображает себя странницей, покинувшей отчий дом и скитающейся по дорогам. Из народного источника пришла к Елене русская мечта о правде, которую надо искать далеко-далеко, со странническим посохом в руках. Из того же источника— готовность пожертвовать собой ради других, ради высокой цели спасения людей, попавших в беду, страдающих и несчастных. Не случайно в разговорах с Инсаровым Елена вспоминает буфетчика Василия, «который вытащил из горевшей избы безногого старика и сам чуть не погиб».
Даже внешний облик Елены напоминает птицу, готовую взлететь, и ходит героиня «быстро, почти стремительно, немного наклонясь вперед». Смутная тоска и неудовлетворенность Елены тоже связаны с темой полета: «Отчего я с завистью гляжу на пролетающих птиц? Кажется, полетела бы с ними, полетела — куда, не знаю, только далеко, далеко отсюда» (VIII, 79). Устремленность к полету проявляется и в безотчетных поступках героини: «Долго глядела она на темное, низко нависшее небо; потом она встала, движением головы откинула от лица волосы и, сама не зная зачем, протянула к нему, к этому небу, свои обнаженные, похолодевшие руки…» (VIII, 35—36). Проходит тревога — «опускаются невзлетевшие крылья». И в роковую минуту, у постели больного Инсарова, Елена видит высоко над водой белую чайку: «Вот если она полетит сюда,— подумала Елена,— это будет хороший знак…» Чайка закружилась на месте, сложила крылья — и, как подстреленная, с жалобным криком пала куда-то далеко за темный корабль» (VIII, 157).
Таким же окрыленным героем, достойным Елены, оказывается Дмитрий Инсаров. Что отличает его от русских Берсеневых и Шубиных? Прежде всего — цельность характера, полное отсутствие противоречий между словом и делом. Он занят не собой, все помыслы его сосредоточены на одной цели — освобождении родины, Болгарии. Тургенев верно уловил в характере Инсарова типические черты лучших людей эпохи болгарского Возрождения: широту и разносторонность умственных интересов, сфокусированных в одну точку, подчиненных одному делу — освобождению народа от векового рабства. Силы Инсарова питает и укрепляет живая связь с родной землей, чего так не хватает русским героям романа — Берсеневу, который пишет труд «О некоторых особенностях древнегерманского права в деле судебных наказаний», талантливому Шубину, который лепит вакханок и мечтает об Италии. И Берсенев, и Шубин — тоже деятельные люди, но их деятельность слишком далека от насущных потребностей народной жизни. Это люди без крепкого корня, отсутствие которого придает их характерам или внутреннюю вялость, как у Берсенева, или мотыльковое непостоянство, как у Шубина.
В то же время в характере Инсарова сказывается родовая ограниченность, типичная для Дон-Кихота. В поведении героя подчеркиваются упрямство и прямолинейность, некоторый педантизм. Художественную завершенность эта двойственная характеристика получает в ключевом эпизоде с двумя статуэтками героя, которые вылепил Шубин. В первой Инсаров представлен героем, а во второй — бараном, поднявшимся на задние ноги и склоняющим рога для удара. Не обходит Тургенев в своем романе и размышлений о трагичности судьбы людей донкихотского склада.
Рядом с сюжетом социальным, отчасти вырастая из него, отчасти возвышаясь над ним, развертывается в романе сюжет философский. «Накануне» открывается спором между Шубиным и Берсеневым о счастье и долге. «…Каждый из нас желает для себя счастья… Но такое ли это слово «счастье», которое соединило, воспламенило бы нас обоих, заставило бы нас подать друг другу руки? Не эгоистическое ли, я хочу сказать, не разъединяющее ли это слово?» (VIII, 14). Соединяют людей слова: «родина», «наука», «справедливость». И «любовь», но только если она — не «любовь-наслаждение», а «любовь-жертва».
Инсарову и Елене кажется, что их любовь соединяет личное с общественным, что она одухотворяется высшей целью. Но вот оказывается, что жизнь вступает в некоторое противоречие с желаниями и надеждами героев. На протяжении всего романа Инсаров и Елена не могут избавиться от ощущения непростительности своего счастья, от чувства виновности перед кем-то, от страха расплаты за свою любовь. Почему?
Жизнь ставит перед влюбленной Еленой роковой вопрос: совместимо ли великое дело, которому она отдалась, с горем бедной, одинокой матери, которое попутно этим делом вызывается? Елена смущается и не находит на этот вопрос возражения. Ведь любовь Елены к Инсарову приносит страдание не только матери: она оборачивается невольной нетерпимостью и по отношению к отцу, к русским друзьям — Берсеневу и Шубину, она ведет Елену к разрыву с Россией. «Ведь все-таки это мой дом,—думала она,— моя семья, моя родина…»
Елена безотчетно ощущает, что и в ее чувствах к Инсарову счастье близости с любимым человеком временами преобладает над любовью к тому делу, которому весь, без остатка, хочет отдаться герой. Отсюда — чувство вины перед Инсаровым: «Кто знает, может быть, я его убила».
В свою очередь, Инсаров задает Елене аналогичный вопрос: «Скажи мне, не приходило ли тебе в голову, что эта болезнь послана нам в наказание?» (VIII, 128). Любовь и общее дело оказываются не вполне совместимыми. В бреду, в период первой болезни, а потом в предсмертные мгновения коснеющим языком Инсаров произносит два роковых для него слова: «резеда» и «Рендич». Резеда — это тонкий запах духов, оставленный Еленой в комнате больного Инсарова; Рендич — соотечественник героя, один из организаторов готовящегося восстания балканских славян против турецких поработителей. Бред выдает глубокое внутреннее раздвоение цельного Инсарова, источником этого раздвоения является любовь.
В отличие от Чернышевского и Добролюбова с их оптимистической теорией «разумного эгоизма», утверждавшей единство личного и общего, счастья и долга, любви и революции в природе человека, Тургенев обращает внимание на скрытый драматизм человеческих чувств, на вечную борьбу центростремительных (эгоистических) и центробежных (альтруистических) начал в душе каждого человека. Человек, по Тургеневу, драматичен не только в своем внутреннем существе, но и в отношениях с окружающей его природой. Природа не считается с неповторимой ценностью человеческой личности: с равнодушным спокойствием она поглощает и простого смертного, и героя; все равны перед ее неразличающим взором. Этот мотив универсального трагизма жизни вторгается в роман неожиданной смертью Инсарова, исчезновением Елены на этой земле —«навсегда, безвозвратно». «Смерть, как рыбак,—с горечью говорит Тургенев,—который поймал рыбу в свою сеть и оставляет ее на время в воде: рыба еще плавает, но сеть на ней, и рыбак выхватит ее —когда захочет» (VIII, 166). С точки зрения «равнодушной природы» каждый из нас «виноват уже тем, что живет».
Однако мысль о трагизме человеческого существования не умаляет, а, напротив, укрупняет в романе Тургенева красоту и величие дерзновенных, освободительных порывов человеческого духа, оттеняет поэзию любви Елены к Инсарову, придает широкий общечеловеческий смысл социальному содержанию романа. Неудовлетворенность Елены современным состоянием жизни в России, ее тоска по иному, более совершенному социальному порядку в философском плане романа приобретает «продолжающийся» смысл, актуальный во все эпохи и все времена. «Накануне» — это роман о порыве России к новым общественным отношениям, пронизанный нетерпеливым ожиданием «сознательно-героических натур», которые двинут вперед дело освобождения крестьян.
И в то же время это роман о бесконечных исканиях человечества, о постоянном стремлении его к социальному совершенству, о вечном вызове, который бросает человеческая личность «равнодушной природе»:
«О, как тиха и ласкова была ночь, какою голубиною кротостию дышал лазурный воздух, как всякое страдание, всякое горе должно было замолкнуть и заснуть под этим ясным небом, под этими святыми, невинными лучами! «О боже! — думала Елена,— зачем смерть, зачем разлука, болезнь и слезы? или зачем эта красота, это сладостное чувство надежды, зачем успокоительное сознание прочного убежища, неизменной защиты, бессмертного покровительства? Что же значит это улыбающееся, благословляющее небо, эта счастливая, отдыхающая земля? Ужели это все только в нас, а вне нас вечный холод и безмолвие? Ужели мы одни… одни… а там, повсюду, во всех этих недосягаемых безднах и глубинах, — все, все нам чуждо? К чему же тогда эта жажда и радость молитвы?.. Неужели же нельзя умолить, отвратить, спасти… О боже! неужели нельзя верить чуду?» (VIII, 156).
Современников Тургенева из лагеря революционной демократии, для которых главнее был социальный смысл романа, не мог не смущать его финал: неопределенный ответ Увара Ивановича на вопрос Шубина, будут ли у нас,. в России, люди, подобные Инсарову. Какие могли быть загадки на этот счет в конце 1859 года, когда дело реформы стремительно подвигалось вперед, когда «новые люди» заняли ключевые посты в журнале «Современник»? Чтобы правильно ответить на этот вопрос, нужно выяснить, какую программу действий предлагал Тургенев «русским Инсаровым».
Автор «Записок охотника» вынашивал мысль о братском союзе всех антикрепостнических сил и надеялся на гармонический исход социальных конфликтов. Инсаров говорит: «Заметьте: последний мужик, последний нищий в Болгарии и я — мы желаем одного и того же. У всех у нас одна цель. Поймите, какую это дает уверенность и крепость!» (VIII, 68). Тургеневу хотелось, чтобы все прогрессивно настроенные люди России, без различия социальных положений и оттенков в политических убеждениях, протянули друг другу руки.
В жизни случилось другое. Добролюбов в статье «Когда же придет настоящий день?» решительно противопоставил задачи «русских Инсаровых» той программе общенационального единения, которую провозгласил в романе Тургенева болгарский революционер. «Русским Инсаровым» предстояла борьба с «внутренними турками», в число которых у Добролюбова попадали не только консерваторы, противники реформ, но и либеральные партии русского общества. Статья била в святая святых убеждений и верований Тургенева. Поэтому он буквально умолял Некрасова не печатать ее, а когда она была опубликована – покинул журнал «Современник» навсегда.
В романе «Накануне» (1860) смутные светлые предчувствия и надежды, которые пронизывали меланхоличное повествование «Дворянского гнезда», превращаются в определенные решения. Основной для Тургенева вопрос о соотношении мысли и деятельности, человека дела и теоретика в этом романе решается в пользу практически осуществляющего идею героя.
Само название романа «Накануне» — название «временное», в отличие от «локального» названия «Дворянское гнездо», — отражает то обстоятельство, что замкнутости, неподвижности патриархальной русской жизни приходит конец. Русский дворянский дом с вековым укладом его быта, с приживалками, соседями, карточными проигрышами оказывается на распутье мировых дорог. Русская девушка находит применение своим силам и самоотверженным стремлениям, участвуя в борьбе за независимость болгарского народа. Сразу после выхода в свет романа читатели и критики обратили внимание на то, что личностью, которую русское молодое поколение готово признать за образец, здесь представлен болгарин.
Название романа «Накануне» не только отражает прямое, сюжетное его содержание (Инсаров гибнет накануне войны за независимость его родины, в которой он страстно хочет принять участие), но и содержит оценку состояния русского общества накануне реформы и мысль о значении народно-освободительной борьбы в одной стране (Болгарии) как кануна общеевропейских политических перемен (в романе косвенно затрагивается и вопрос о значении сопротивления итальянского народа австрийскому владычеству).
Добролюбов считал образ Елены средоточием романа — воплощением молодой России. В этой героине, по мнению критика, воплощена «неотразимая потребность новой жизни, новых людей, которая охватывает теперь все русское общество, и даже не одно только так называемое «образованное» <.. .> «Желание деятельного добра» есть в нас, и силы есть; но боязнь, неуверенность в своих силах и, наконец, незнание: что делать? — постоянно нас останавливают <…> и мы всё ищем, жаждем, ждем… ждем, чтобы нам хоть кто-нибудь объяснил, что делать».
Таким образом, Елена, представлявшая, по его мнению, молодое поколение страны, ее свежие силы, характеризуется стихийностью протеста, она ищет «учителя» — черта, присущая деятельным героиням Тургенева.
Идея романа и структурное ее выражение, столь сложные и многозначные в «Дворянском гнезде», в «Накануне» предельно ясны, однозначны. Героиня, ищущая учителя-наставника, достойного любви, в «Накануне» выбирает из четырех претендентов на ее руку, из четырех идеальных вариантов, ибо каждый из героев — высшее выражение своего этико-идейного типа. Шубин и Берсенев представляют художественно-мыслительный тип (тип людей отвлеченно-теоретического или образно-художественного творчества), Инсаров и Курнатовский относятся к «деятельному» типу, т. е. к людям, призвание которых состоит в практическом «жизнетворчестве».
Говоря о значении в романе выбора своего пути и своего «героя», который делает Елена, Добролюбов рассматривает этот поиск-выбор как некий процесс, эволюцию, аналогичную развитию русского общества за последнее десятилетие. Шубин, а затем и Берсенев соответствуют по своим принципам и характерам более архаичным, отдаленным стадиям этого процесса. Вместе с тем оба они не настолько архаичны, чтобы быть «несовместимыми» с Курнатовским (деятелем эпохи реформ) и Инсаровым (особое значение которому придает складывающаяся революционная ситуация), Берсенев и Шубин — люди 50-х гг. Ни один из них не является чистым представителем гамлетовского типа. Таким образом, Тургенев в «Накануне» как бы распростился со своим излюбленным типом. И Берсенев, и Шубин генетически связаны с «лишними людьми», но в них нет многих главных черт героев этого рода. Оба они прежде всего не погружены в чистую мысль, анализ действительности не является их основным занятием. От рефлексии, самоанализа и бесконечного ухода в теорию их «спасает» профессионализация, призвание, живой интерес к определенной сфере деятельности и постоянный труд.
«Одарив» своего героя-художника Шубина фамилией великого русского скульптора, Тургенев придал его портрету привлекательные черты, напоминающие внешность Карла Брюллова, — он сильный, ловкий блондин.
Из первого же разговора героев — друзей и антиподов (наружность Берсенева рисуется как прямая противоположность внешности Шубина: он худой, черный, неловкий), разговора, который является как бы прологом романа, выясняется, что один из них «умница, философ, третий кандидат московского университета», начинающий ученый, другой — художник, «артист», скульптор. Но характерные черты «артиста» — черты человека 50-х гг. и идеала людей 50-х гг. — сильно рознятся от романтического представления о художнике. Тургенев нарочито дает это понять: в самом начале романа Берсенев указывает Шубину, каковы должны быть его — «артиста» — вкусы и склонности, и Шубин, шутливо «отбиваясь» от этой обязательной и неприемлемой для него позиции художника-романтика, защищает свою любовь к чувственной жизни и ее реальной красоте.
В самом подходе Шубина к своей профессии проявляется его связь с эпохой. Сознавая ограниченность возможностей скульптуры как художественного рода, он стремится передать в скульптурном портрете не только и не столько внешние формы, сколько духовную суть, психологию оригинала, не «линии лица», а взгляд глаз. Вместе с тем ему присуща особенная, заостренная способность оценивать людей и умение возводить их в типы. Меткость характеристик, которые он дает другим героям романа, превращает его выражения в крылатые слова; Эти характеристики в большинстве случаев и являются ключом к типам, изображенным в романе.
Если в уста Шубина автор романа вложил все социально-исторические приговоры, вплоть до приговора о правомерности «выбора Елены», Берсеневу он передал ряд этических деклараций. Берсенев — носитель высокого этического принципа самоотвержения и служения идее («идее науки»), как Шубин — воплощение идеального «высокого» эгоизма, эгоизма здоровой и цельной натуры.
Берсеневу придана нравственная черта, которой Тургенев отводил особенно высокое место на шкале душевных достоинств: доброта. Приписывая эту черту Дон-Кихоту, Тургенев на ней основывался в своем утверждении исключительного этического значения образа Дон-Кихота для человечества. «Все пройдет, все исчезнет, высочайший сан, власть, всеобъемлющий гений, всё рассыплется прахом <…> Но добрые дела не разлетятся дымом: они долговечнее самой сияющей красоты» (VIII, 191). У Берсенева эта доброта происходит от глубоко, органически усвоенной им гуманистической культуры и присущей ему «справедливости», объективности историка, способного встать выше личных, эгоистических интересов и пристрастий и оценить значение явлений действительности безотносительно к своей личности.
Отсюда и проистекает истолкованная Добролюбовым как признак нравственной слабости «скромность», понимание им второстепенного значения своих интересов в духовной жизни современного общества и своего «второго номера» в строго определенной иерархии типов современных деятелей.
Тип ученого как идеал оказывается исторически дезавуированным. Это «низведение» закреплено и сюжетной ситуацией (отношение Елены к Берсеневу), и прямыми оценками, данными герою в тексте романа, и самооценкой, вложенной в его уста. Такое отношение к профессиональной деятельности ученого могло родиться лишь в момент, когда жажда непосредственного жизнестроительства, исторического общественного творчества охватила лучших людей молодого поколения. Этот практицизм, это деятельное отношение к жизни не у всех молодых людей 60-х гг. носили характер революционного или даже просто бескорыстного служения. В «Накануне» Берсенев выступает как антипод не столько Инсарова (мы уже отмечали, что он более чем кто-либо другой способен оценить значение личности Инсарова), сколько обер-секретаря Сената — карьериста Курнатовского.
В характеристике Курнатовского, «приписанной» автором Елене, раскрывается мысль о принадлежности Курнатовского, как и Инсарова, к «действенному типу» и о взаимовраждебных позициях, занимаемых ими внутри этого — очень широкого — психологического типа. Вместе с тем в этой характеристике сказывается и то, как исторические задачи, необходимость решения которых ясна всему обществу (по словам Ленина, во время революционной ситуации обнаруживается невозможность «для господствующих классов сохранить в неизменном виде свое господство» и вместе с тем наблюдается «значительное повышение <…> активности масс», не желающих жить по-старому), заставляют людей самой разной политической ориентации надевать маску прогрессивного человека и культивировать в себе черты, которые приписываются обществом таким людям.
«Вера» Курнатовского — это вера в государство в приложении к реальной русской жизни эпохи, вера в сословно-бюрократическое, монархическое государство. Понимая, что реформы неизбежны, деятели типа Курнатовского связывали все возможные в жизни страны изменения с функционированием сильного государства, а себя считали носителями идеи государства и исполнителями его исторической миссии, отсюда — самоуверенность, вера в себя, по словам Елены.
В центре романа — болгарский патриот-демократ и революционер по духу — Инсаров. Он стремится опрокинуть деспотическое правление в родной стране, рабство, утвержденное веками, и систему попрания национального чувства, охраняемую кровавым, террористическим режимом. Душевный подъем, который он испытывает и сообщает Елене, связан с верой в дело, которому он служит, с чувством своего единства со всем страдающим народом Болгарии. Любовь в романе «Накануне» именно такова, какой ее рисует Тургенев в выше цитированных словах о любви как революции («Вешние воды»). Воодушевленные герои радостно летят на свет борьбы, готовые к жертве, гибели и победе.
В «Накануне» впервые любовь предстала как единство в убеждениях и участие в общем деле. Здесь была опоэтизирована ситуация, характерная для большого периода последующей жизни русского общества и имевшая огромное значение как выражение нового этического идеала. Прежде чем соединить свою жизнь с ее жизнью, Инсаров подвергает Елену своеобразному «экзамену», предвосхищающему символический «допрос», которому подвергает таинственный голос судьбы смелую девушку-революционерку в стихотворении в прозе Тургенева «Порог». При этом герой «Накануне» вводит любимую девушку в свои планы, свои интересы и заключает с ней своеобразный договор, предполагающий с ее стороны сознательную оценку их возможной будущности, — черта отношений, характерная для демократов-шестидесятников.
Любовь Елены и ее благородная решимость разрушают аскетическую замкнутость Инсарова, делают его счастливым. Добролюбов особенно ценил страницы романа, где изображалась светлая и счастливая любовь молодых людей. В уста Шубина Тургенев вложил лирическую апологию идеала героической молодости: «Да, молодое, славное, смелое дело. Смерть, жизнь, борьба, падение, торжество, любовь, свобода, родина… Хорошо, хорошо. Дай бог всякому! Это не то, что сидеть по горло в болоте да стараться показывать вид, что тебе всё равно, когда тебе действительно в сущности всё равно. А там — натянуты струны, звени на весь мир или порвись!» (VIII, 141).
Содержание
- Векторы в пространстве и метод координат
- Система координат в пространстве
- Плоскость в пространстве задается уравнением:
Векторы в пространстве и метод координат
Существует два способа решения задач по стереометрии
Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.
Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.
Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.
Система координат в пространстве
Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.
Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.
Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:
Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.
Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.
Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:
Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма
Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .
Произведение вектора на число:
Скалярное произведение векторов:
Косинус угла между векторами:
Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.
1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.
Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:
Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.
Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.
Запишем координаты векторов:
и найдем косинус угла между векторами и :
2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.
Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.
Координаты точек A, B и C найти легко:
Из прямоугольного треугольника AOS найдем
Координаты вершины пирамиды:
Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.
Найдем координаты векторов и
Покажем теперь, как вписать систему координат в треугольную призму:
3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1
Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.
Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.
Найдем координаты векторов и , а затем угол между ними:
Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.
Плоскость в пространстве задается уравнением:
Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.
Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.
Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.
Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).
Уравнение плоскости выглядит так:
Подставим в него по очереди координаты точек M, N и K.
Получили систему из трех уравнений:
В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.
Пусть, например, D = −2. Тогда:
Выразим C и B через A и подставим в третье уравнение:
Уравнение плоскости MNK имеет вид:
Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:
Вектор — это нормаль к плоскости MNK.
Уравнение плоскости, проходящей через заданную точку имеет вид:
Угол между плоскостями равен углу между нормалями к этим плоскостям:
Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.
Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.
Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.
4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.
Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.
Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.
Итак, первый вектор нормали у нас уже есть:
Напишем уравнение плоскости AEF.
Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.
Уравнение плоскости AEF:
Нормаль к плоскости AEF:
Найдем угол между плоскостями:
5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.
Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂
Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».
Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?
«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.
Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .
Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:
Координаты вектора — тоже:
Находим угол между плоскостями, равный углу между нормалями к ним:
Зная косинус угла, находим его тангенс по формуле
Получим:
Ответ:
Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.
Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.
Находим синус угла между прямой m и плоскостью α по формуле:
6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.
Как всегда, рисуем чертеж и выбираем систему координат
Находим координаты вектора .
Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .
Найдем угол между прямой и плоскостью:
Ответ:
Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:
7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = . Найдите расстояние от точки A до плоскости A1DB.
Построим чертеж и выпишем координаты точек:
Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D
Решим эту систему. Выберем
Тогда
Уравнение плоскости A1DB имеет вид:
Дальше все просто. Находим расстояние от точки A до плоскости A1DB:
В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.
Источник