Расстояние d между точками в пространстве A11;y1;z1>, A22;y2;z2> представляется формулой
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 4.3 / 5. Количество оценок: 8
Оценок пока нет. Поставьте оценку первым.
3 комментария
найти расстояние между точками с(-2;1;-2) д (-1;2;1) м (-1;0;2) н (1;-1;2) найти 3 вектора сд — 2 вектора мн
Векторы в пространстве и метод координат
Существует два способа решения задач по стереометрии
Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.
Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.
Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.
Система координат в пространстве
Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.
Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.
Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:
Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.
Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.
Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:
Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма
Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .
Произведение вектора на число:
Скалярное произведение векторов:
Косинус угла между векторами:
Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.
1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.
Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:
Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.
Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.
Запишем координаты векторов:
и найдем косинус угла между векторами и :
2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.
Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.
Координаты точек A, B и C найти легко:
Из прямоугольного треугольника AOS найдем
Координаты вершины пирамиды:
Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.
Найдем координаты векторов и
и угол между ними:
Покажем теперь, как вписать систему координат в треугольную призму:
3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1
Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.
Запишем координаты точек:
Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.
Найдем координаты векторов и , а затем угол между ними:
Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.
Плоскость в пространстве задается уравнением:
Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.
Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.
Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.
Покажем, как это делается.
Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).
Уравнение плоскости выглядит так:
Подставим в него по очереди координаты точек M, N и K.
То есть A + C + D = 0.
Аналогично для точки K:
Получили систему из трех уравнений:
В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.
Пусть, например, D = −2. Тогда:
Выразим C и B через A и подставим в третье уравнение:
Решив систему, получим:
Уравнение плоскости MNK имеет вид:
Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:
Вектор — это нормаль к плоскости MNK.
Уравнение плоскости, проходящей через заданную точку имеет вид:
Угол между плоскостями равен углу между нормалями к этим плоскостям:
Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.
Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.
Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.
4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.
Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.
Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.
Итак, первый вектор нормали у нас уже есть:
Напишем уравнение плоскости AEF.
Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.
Пусть С = -1. Тогда A = B = 2.
Уравнение плоскости AEF:
Нормаль к плоскости AEF:
Найдем угол между плоскостями:
5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.
Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂
Строим чертеж. Прямую четырехугольную призму можно по-другому назвать “параллелепипед”.
Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?
«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.
Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .
Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:
Координаты вектора — тоже:
Находим угол между плоскостями, равный углу между нормалями к ним:
Зная косинус угла, находим его тангенс по формуле
Получим:
Ответ:
Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.
Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.
Находим синус угла между прямой m и плоскостью α по формуле:
6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.
Как всегда, рисуем чертеж и выбираем систему координат
Находим координаты вектора .
Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .
Найдем угол между прямой и плоскостью:
Ответ:
Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:
7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = . Найдите расстояние от точки A до плоскости A1DB.
Построим чертеж и выпишем координаты точек:
Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D
Решим эту систему. Выберем
Тогда
Уравнение плоскости A1DB имеет вид:
Дальше все просто. Находим расстояние от точки A до плоскости A1DB:
В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.
Векторы. Метод координат. Угол между прямыми, плоскостями. Расстояние от точки до плоскости, между скрещивающимися прямыми
(<color<textbf<Факт 1. Про векторы>>>)
(bullet) Если в пространстве заданы две точки (A(x_1;y_1;z_1)) и (B(x_2;y_2;z_2)) , то вектор (overrightarrow) имеет координаты [overrightarrow = \]
(bullet) Если в пространстве заданы два вектора (vec =\) и (vec= \) , то:
(qquad blacktriangleright) разность этих векторов (vec-vec=\)
(bullet) Справедливы следующие утверждения:
I. Скалярное произведение ненулевых векторов (их длины не равны нулю) равно нулю тогда и только тогда, когда они перпендикулярны: [(vec, vec)=0 quadLeftrightarrowquad vecperp vec]
II. Длина вектора равна квадратному корню из скалярного произведения вектора на себя: [|vec|=sqrt<(vec, vec)>]
III. Переместительный закон: [(vec, vec)=(vec, vec)]
(<color<textbf<Факт 3. Про уравнение плоскости>>>)
(bullet) Если (vec=\) – нормаль к плоскости, то уравнение плоскости имеет вид [ax+by+cz+d=0] Для того, чтобы найти (d) , нужно подставить в уравнение плоскости вместо (x, y, z) координаты любой точки, лежащей в этой плоскости. Пример: если (vec=<1;2;3>) – нормаль к плоскости, (O(4;5;6)) – точка из плоскости, то справедливо: (1cdot 4+2cdot 5+3cdot 6+d=0) , откуда (d=-32) , следовательно, уравнение плоскости имеет вид (x+2y+3z-32=0) . (bullet) Уравнение плоскости можно составить, используя три точки из плоскости, не лежащие на одной прямой.
Пусть (A(1;0;0), B(0;3;4), C(2;0;5)) – точки из плоскости. Тогда уравнение плоскости можно найти, решив систему: [begin 1cdot a+0cdot b+0cdot c+d=0\ 0cdot a+3cdot b+4cdot c+d=0\ 2cdot a+0cdot b+5cdot c+d=0end quadRightarrowquad begin d=-a\ 3b+4c-a=0\ a+5c=0endquadRightarrowquad begin d=-a\ a=-5c\ b=-3cendquadRightarrowquadbegina=-5c\ b=-3c\ d=5cend] Следовательно, уравнение плоскости имеет вид: [-5ccdot x-3ccdot y+ccdot z+5c=0] Можно разделить обе части на (c) , так как (cne 0) (иначе (a=b=c=d=0) ), следовательно, уравнение плоскости имеет вид [-5x-3y+z+5=0]
(<color<textbf<Факт 5. Про расстояния от точки до плоскости, между скрещивающимися прямыми>>>)
(bullet) Если (M(x_0;y_0;z_0)) — некоторая точка вне плоскости (phi) , (ax+by+cz+d=0) — уравнение плоскости (phi) , то расстояние от точки (M) до плоскости (phi) ищется по формуле: [rho(M, phi)=dfrac<|ax_0+by_0+cz_0+d|><sqrt>]
(bullet) Для того, чтобы найти расстояние между скрещивающимися прямыми, нужно
— построить плоскость, проходящую через одну из них и параллельную другой;
— найти уравнение этой плоскости;
— найти расстояние от любой точки первой прямой до этой плоскости.
[spoiler title=”источники:”]
http://ege-study.ru/ru/ege/materialy/matematika/vektory-v-prostranstve-i-metod-koordinat/
http://shkolkovo.net/theory/162
[/spoiler]
({color{red}{textbf{Факт 1. Про векторы}}})
(bullet) Если в пространстве заданы две точки (A(x_1;y_1;z_1)) и (B(x_2;y_2;z_2)), то вектор (overrightarrow{AB}) имеет координаты [overrightarrow{AB} = {x_2-x_1;y_2-y_1;z_2-z_1}]
(bullet) Если в пространстве заданы два вектора (vec{a}
={x_1;y_1;z_1}) и (vec{b}=
{x_2;y_2;z_2}), то:
(qquad blacktriangleright) сумма этих векторов (vec{a}+vec{b}={x_1+x_2;y_1+y_2;z_1+z_2})
(qquad blacktriangleright) разность этих векторов (vec{a}-vec{b}={x_1-x_2;y_1-y_2;z_1-z_2})
(qquad blacktriangleright) произведение вектора на число (lambda
vec{a}={lambda x_1;lambda
y_1;lambda z_1})
(bullet) Если в пространстве заданы две точки (A(x_1;y_1;z_1)) и (B(x_2;y_2;z_2)), а точка (O) — середина отрезка (AB), то (O) имеет координаты [Oleft(dfrac{x_1+x_2}2;dfrac{y_1+y_2}2;dfrac{z_1+z_2}2right)]
(bullet) Длина вектора (vec{a}={x;y;z}) обозначается (|vec{a}|) и вычисляется по формуле [|vec{a}|=sqrt{x^2+y^2+z^2}]
(bullet) Заметим, что расстояние между двумя точками есть не что иное, как длина вектора с началом и концом в этих точках.
({color{red}{textbf{Факт 2. Про скалярное произведение}}})
(bullet) Скалярным произведением двух векторов называется произведение длин этих векторов на косинус угла между ними: [{large{(vec{a},
vec{b})=|vec{a}|cdot|vec{b}|cdotcos angle (vec{a},
vec{b})}}] На рисунке показано, что такое угол между векторами:
(bullet) Справедливы следующие утверждения:
I. Скалярное произведение ненулевых векторов (их длины не равны нулю) равно нулю тогда и только тогда, когда они перпендикулярны: [(vec{a}, vec{b})=0 quadLeftrightarrowquad
vec{a}perp vec{b}]
II. Длина вектора равна квадратному корню из скалярного произведения вектора на себя: [|vec{a}|=sqrt{(vec{a},
vec{a})}]
III. Переместительный закон: [(vec{a}, vec{b})=(vec{b},
vec{a})]
IV. Распределительный закон: [(vec{a}+vec{b},
vec{c})=(vec{a}, vec{c})+(vec{b}, vec{c})]
V. Сочетательный закон ((lambda) – число): [lambda(vec{a}, vec{b})=(lambda
vec{a}, vec{b})]
(bullet) Скалярное произведение двух векторов (vec{a}
={x_1;y_1;z_1}) и (vec{b}= {x_2;y_2;z_2}) можно вычислить с помощью координат этих векторов: [{large{(vec{a},
vec{b})=x_1x_2+y_1y_2+z_1z_2}}]
(bullet) Косинус угла между векторами (vec{a} ={x_1;y_1;z_1}) и (vec{b}= {x_2;y_2;z_2}) вычисляется по формуле: [{large{cosangle(vec{a}, vec{b})=dfrac{x_1x_2+y_1y_2+z_1z_2}
{sqrt{x^2_1+y^2_1+z^2_1}cdot
sqrt{x^2_2+y^2_2+z^2_2}}}}]
({color{red}{textbf{Факт 3. Про уравнение плоскости}}})
(bullet) Если (vec{n}={a;b;c}) – нормаль к плоскости, то уравнение плоскости имеет вид [ax+by+cz+d=0] Для того, чтобы найти (d), нужно подставить в уравнение плоскости вместо (x, y, z) координаты любой точки, лежащей в этой плоскости.
Пример: если (vec{n}={1;2;3}) – нормаль к плоскости, (O(4;5;6)) – точка из плоскости, то справедливо: (1cdot 4+2cdot 5+3cdot
6+d=0), откуда (d=-32), следовательно, уравнение плоскости имеет вид (x+2y+3z-32=0).
(bullet) Уравнение плоскости можно составить, используя три точки из плоскости, не лежащие на одной прямой.
Пусть (A(1;0;0),
B(0;3;4), C(2;0;5)) – точки из плоскости. Тогда уравнение плоскости можно найти, решив систему: [begin{cases}
1cdot a+0cdot b+0cdot c+d=0\
0cdot a+3cdot b+4cdot c+d=0\
2cdot a+0cdot b+5cdot c+d=0end{cases} quadRightarrowquad
begin{cases}
d=-a\
3b+4c-a=0\
a+5c=0end{cases}quadRightarrowquad begin{cases} d=-a\
a=-5c\
b=-3cend{cases}quadRightarrowquadbegin{cases}a=-5c\
b=-3c\
d=5cend{cases}] Следовательно, уравнение плоскости имеет вид: [-5ccdot x-3ccdot y+ccdot z+5c=0] Можно разделить обе части на (c), так как (cne 0) (иначе (a=b=c=d=0)), следовательно, уравнение плоскости имеет вид [-5x-3y+z+5=0]
({color{red}{textbf{Факт 4. Про углы между прямыми, плоскостями}}})
(bullet) Если векторы (vec{a} ={x_1;y_1;z_1}) и (vec{b}=
{x_2;y_2;z_2}) являются направляющими прямых (p) и (q), то косинус угла между этими прямыми равен: [cos phi=dfrac{|x_1x_2+y_1y_2+z_1z_2|}
{sqrt{x^2_1+y^2_1+z^2_1}cdot sqrt{x^2_2+y^2_2+z^2_2}}]
(bullet) Если (vec{a}) — направляющий вектор прямой (p), а (vec{n}) — нормаль к плоскости (phi) (перпендикуляр к плоскости), то синус угла между прямой (p) и плоскостью (phi) равен модулю косинуса угла между векторами (vec{a}) и (vec{n}): [sin
angle(p, phi)=|cos angle(vec{a}, vec{n})|]
(bullet) Если две плоскости заданы уравнениями (a_1x+b_1y+c_1z+d_1=0) и (a_2x+b_2y+c_2z+d_2=0), то косинус угла между плоскостями ищется по формуле: [{large{cos phi=left| dfrac{a_1a_2+b_1b_2+c_1c_2}
{sqrt{a^2_1+b^2_1+c^2_1}cdot
sqrt{a^2_2+b^2_2+c^2_2}}right|}}]
({color{red}{textbf{Факт 5. Про расстояния от точки до плоскости,
между скрещивающимися прямыми}}})
(bullet) Если (M(x_0;y_0;z_0)) — некоторая точка вне плоскости (phi), (ax+by+cz+d=0) — уравнение плоскости (phi), то расстояние от точки (M) до плоскости (phi) ищется по формуле: [rho(M, phi)=dfrac{|ax_0+by_0+cz_0+d|}{sqrt{a^2+b^2+c^2}}]
(bullet) Для того, чтобы найти расстояние между скрещивающимися прямыми, нужно
— построить плоскость, проходящую через одну из них и параллельную другой;
— найти уравнение этой плоскости;
— найти расстояние от любой точки первой прямой до этой плоскости.
Пусть векторы
и
заданы своими проекциями:
=(,,),
Разложим векторы по формуле (6):
Эти соотношения почленно сложим и
учтём, что по свойству умножения вектора
на число
.
Получим
или
+=(+;+;+). (7)
Аналогично для
разности
–=(–;–;–).
(8)
Точно так же для
произведения
и
=(,,). (9)
Формула (7)
показывает, что проекция на ось координат
суммы векторов равна сумме проекций
на эту ось слагаемых векторов. Подобное
утверждение имеет место для формулы
(8). Формула (9) показывает, что при
умножении вектора на число
на это число умножаются все проекции
вектора.
§7. Длина вектора. Расстояние между двумя точками
Пусть вектор
задан своими проекциями:
=(,,).
Перенесём его параллельно себе так,
чтобы его начало совпало с началом
координат. Получим
=.
Из рис. 9 видно, что
.
Согласно (5)
аналогично
и
.
Эти числа подставим в предыдущую формулу
и получим
.
Извлечём квадратный корень и найдем
длину вектора:
. (10)
Задача.
Пусть в пространстве Oxyz
точки
и
заданы координатами А
и В
(рис. 10). Нужно найти расстояние между
ними.
Так как координаты
точки
равны
проекциям на оси координат радиус-вектора
этой точки, то
и
=.
Согласно (8)
=,
но
Значит,
Отсюда видно, что проекции на оси
координат вектора равны разностям
соответствующих координат его конца
и начала. Зная проекции
,
по формуле (10) найдём длину вектора
,
следовательно, и расстояние между
точками
и
||=
§8. Направляющие косинусы вектора
Пусть в пространстве
Oxyz
задан
вектор
=(,,).
Поместим его начало в начало координат.
Пусть
– углы, образованные вектором
с осями координат Ox,
Oy,
Oz
(рис. 11).
По формуле (3) для проекций этого вектора
на оси координат имеем
(11)
В правые части
вместо ||
подставим (10) и выразим косинусы углов:
(12)
Они называются
направляющими
косинусами вектора
.
Если все равенства в (12) возведём в
квадрат и почленно сложим, то получим
.
Для единичного вектора, у которого
||=1,
формулы (11) примут вид
.
Отсюда
§9. Скалярное произведение векторов, угол между
векторами. Условие ортогональности
двух векторов
Даны два вектора
и
,
начала которых расположены в одной
точке, а угол между векторами равен
.
Такое расположение мы всегда можем
получить, перенеся один из векторов
параллельно.
Скалярное
произведение двух векторов
и
обозначается
(либо
)
и определяется как число, равное
произведению длин этих векторов на
косинус угла между ними, т. е.
(,)=||||. (13)
Из определения
ясно, что ||
=
(проекция
на
).
С учётом этого соотношения формулу
(13) запишем так:
(,)
= ||
или (,)
= ||.
(14)
Скалярное
произведение двух векторов равно
произведению длины одного вектора и
проекции другого вектора на направление
первого. Угол
между векторами
и
будем обозначать также
.
Скалярное
произведение обладает следующими
свойствами:
Первое
свойство показывает, что сомножители
можно поменять местами; второе – что
постоянный скалярный множитель можно
вынести за знак скалярного произведения;
третье – что при скалярном умножении
векторов можно использовать правило
умножения многочленов. Первые два
свойства проверяются на основании
определения скалярного произведения
векторов, т. е. с помощью формулы
(13). Докажем третье свойство.
С учётом (14) запишем
(,+
)=||=||+||=(,)+(,).
Пусть векторы
заданы своими проекциями:
поэтому
=++,
=++.
Сначала для произведений базисных
векторов
,
докажем справедливость соотношений
(,)=1;
(,)=1; (,)=1; (15)
(,)=0;
(,)=0; (,)=0; (16)
Действительно,
по формуле (13) имеем ()=||||,
поэтому (,)=1.
Далее, (,)=||||=0.
Остальные равенства в (15) и (16) доказываются
аналогично.
Запишем скалярное
произведение
(,)=(++,
++).
Использовав второе
и третье свойства скалярного произведения,
будем иметь
(,)=(,)+(,)+(,)+(,)+
+(,)+(,)+(,)+(
Отсюда с учётом
(15) и (16) получим
(,)=++. (17)
Таким образом,
скалярное произведение векторов равно
сумме произведений одноименных проекций
этих векторов.
Вычисление угла
между векторами.
Запишем ||
и ||
через проекции с использованием формулы
(10). Из (13) следует, что
.
Следовательно, согласно (17)
. (18)
Зная
найдем угол
Условие
ортогональности (перпендикулярности)
двух векторов. Если
для ненулевых векторов
и
их скалярное произведение (,)=0,
то вектор
ортогонален вектору
В самом деле, пусть
(,)=0,
тогда согласно (13) имеем (,)=||||=0.
Так как
,
,
то
=0.
Значит,
,
т. е. векторы ортогональны.
Условие
ортогональности двух векторов с учётом
(17) можно записать следующим образом:
++=0.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Skip to content
Длина вектора в пространстве
Длиной (или модулем) вектора называется расстояние между началом и концом вектора.
Длина вектора a{X,Y,Z} выражается через его координаты следующей формулой:
Пример
Длина вектора $aleft{ { — 2,3,sqrt 3 } right}$ равна
$left| a right| = sqrt {{X^2} + {Y^2} + {Z^2}} = $
$sqrt {{{left( { — 2} right)}^2} + {3^2} + {{left( {sqrt 3 } right)}^2}} = sqrt {16} = 4$
Расстояние между двумя точками в пространстве
Расстояние d между точками в пространстве A1{x1;y1;z1}, A2{x2;y2;z2} представляется формулой
Пример
Расстояние между точками A1{4;-6;3} и A2 {-1;5;-4}
$d = sqrt {{{left( {{x_2} — {x_1}} right)}^2} + {{left( {{y_2} — {y_1}} right)}^2} + {{left( {{z_2} — {z_1}} right)}^2}} = $
$=sqrt {{{left( { — 1 — 4} right)}^2} + {{left( {5 — left( { — 6} right)} right)}^2} + {{left( { — 4 — 3} right)}^2}} =$
$ =sqrt {25 + 121 + 49} = sqrt {195} approx 14$
12786
Простейшие задачи в координатах
Наталья Игоревна Восковская
Эксперт по предмету «Математика»
Задать вопрос автору статьи
К простейшим задачам в координатах относятся следующие задачи:
-
Вычисление координат вектора по координатам его начала и конца.
-
Нахождение координат середины отрезка.
-
Вычисление длины вектора.
-
Вычисление расстояние между двумя точками.
Рассмотрим далее решение этих задач.
Вычисление координат вектора по координатам его начала и конца
Перед тем, как ввести данную задачу напомним понятие радиус вектора данной точки.
Определение 1
Пусть точка $M$ дана в заданной системе координат с началом в точке $O$. Тогда вектор $overrightarrow{OM}$ называется радиус-вектором для точки $M$.
Напомним, что при этом, если $M={x,y}$ в данной системе координат, то вектор $overrightarrow{OM}={x,y}$ в этой системе координат.
Сдай на права пока
учишься в ВУЗе
Вся теория в удобном приложении. Выбери инструктора и начни заниматься!
Получить скидку 3 000 ₽
Пример 1
Даны точки $A$ и $B$ имеющие координаты $left{x_1, y_1right}$ и ${x_2, y_2}$ соответственно. Найти координаты вектора $overrightarrow{AB}.$
Решение.
Рассмотрим рисунок по данной задаче (Рис. 1).
Рисунок 1. Связь между координатами вектора и координатами его начала и конца
По определению разности двух векторов, имеем
[overrightarrow{AB}=overrightarrow{OB}-overrightarrow{OA}]
Следовательно,
[overrightarrow{AB}=left{x_2, y_2right}-left{x_1, y_1right}={x_2-x_1, y_2-y_1}]
Ответ: $overrightarrow{AB}={x_2-x_1, y_2-y_1}$.
Координаты середины отрезка
Пример 2
Даны точки $A$ и $B$ имеющие координаты $left{x_1, y_1right}$ и ${x_2, y_2}$ соответственно. $C$ — середина отрезка $AB$. Найти координаты точки $C.$
Решение.
Обозначим координаты точки $C$ через $left{x, yright}$. Рассмотрим рисунок 2.
Рисунок 2. Середина отрезка
Из правила параллелограмма, получим
[overrightarrow{OC}=frac{1}{2}(overrightarrow{OA}+overrightarrow{OB})]
Так как векторы $overrightarrow{OC}, overrightarrow{OA} и overrightarrow{OB}$ – радиус-векторы точек $C, A и B$ соответственно, то получим
[overrightarrow{OC}=left{x, yright}, overrightarrow{OA}=left{x_1, y_1right}, overrightarrow{OB}={x_2, y_2}]
Следовательно,
[x=frac{x_1+x_2}{2}, y=frac{y_1+y_2}{2}]
Ответ: $C=left{frac{x_1+x_2}{2}, frac{y_1+y_2}{2}right}$
«Простейшие задачи в координатах» 👇
Вычисление длины вектора по его координатам
Пример 3
Дан вектор $overrightarrow{a}$ с координатами $left{x, yright}$. Найти длину этого вектора.
Решение.
Рассмотрим систему координат $xOy$. Отложим от ее начала координат вектор $overrightarrow{OA}=overrightarrow{a}$. Проведем через точку $A$ перпендикуляры к осям координат $OA_1$ и $OA_2$ (рис. 3).
Рисунок 3. Вычисление длины вектора
Так как вектор $overrightarrow{OA}$ – радиус вектор точки $A$, то $A=left{x, yright}$, следовательно,
[OA_1=x, OA_2=y]
Найдем теперь длины вектора по теореме Пифагора:
[{|overrightarrow{a}|}^2={OA_1}^2+{OA_2}^2] [{|overrightarrow{a}|}^2=x^2+y^2] [left|overrightarrow{a}right|=sqrt{x^2+y^2}]
Ответ: $sqrt{x^2+y^2}$.
Расстояние между двумя точками
Пример 4
Даны точки $A$ и $B$ имеющие координаты $left{x_1, y_1right}$ и ${x_2, y_2}$ соответственно.Найти $d$ — расстояние между точками $A$ и $B$ через их координаты.
Решение.
Рассмотрим рисунок 4.
Рисунок 4. Расстояние между точками
[ d=|overrightarrow{AB}|]
Используя задачу 1, получим, что вектор $overrightarrow{AB}$ имеет координаты
[overrightarrow{AB}={x_2-x_1, y_2-y_1}]
Найдем длину данного вектора. По задаче 3, имеем
[d=left|overrightarrow{AB}right|=sqrt{{(x_2-x_1)}^2+{(y_2-y_1)}^2}]
Ответ: $d=sqrt{{(x_2-x_1)}^2+{(y_2-y_1)}^2}$.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Дата последнего обновления статьи: 05.04.2023