Расстояния между небесными телами огромны, и долгое время оценить их было почти невозможно. Но сегодня астрономам точно известны расстояния от Солнца до всех планет, которые вращаются вокруг него.
Расстояние от Солнца до планет земной группы
Ближайшие к Солнцу 4 планеты входят в так называемую земную группу, так как все они похожи на Землю. Какое же расстояние отделяет их от светила?
Меркурий
Ближе всего к нашей звезде располагается Меркурий. Дистанция между ним и светилом непостоянна и изменяется от 46 до 69,8 млн км. Это связано с тем, что орбита планеты представляет собой не идеальную окружность, а эллипс, то есть овал. Такую же форму имеют орбиты и остальных планет. Средняя же дистанция между Меркурием и Солнцем оценивается в 58 млн км.
Венера
Далее следует Венера. Расстояние между ней и звездой колеблется от 107,4 до 108,9 млн км (среднее значение – 108,2 млн км).
Земля
Третьей планетой от Солнца является наша Земля. Дистанция между ней и звездой составляет 147-152 млн км. Среднее значение этой величины, равное 149,6 млн км, в астрономии принимается за одну астрономическую единицу. С помощью этой несистемной величины удобно измерять некоторые расстояния в космическом пространстве.
Марс
Расстояние от Марса до Солнца колеблется от 206 до 249 млн км, при этом средняя величина равна 228 млн км.
Расстояние от Солнца до планет-гигантов
Далее следуют газовые гиганты, которые значительно превосходят землеподобные планеты не только по размерам, но и по дистанции от нашей звезды.
Юпитер
Юпитер находится на расстоянии 740-816 млн км от Солнца (среднее значение – 816 млн км).
Сатурн
Сатурн располагается ещё дальше. Дистанция между ним и светилом в среднем равна 1,429 млрд км, но колеблется в диапазоне 1,353-1,513 млрд км.
Уран
Седьмая планета Солнечной системы – Уран. Расстояние от него до Солнца колеблется от 2,748 до 3,004 млрд км, а в средняя дистанция составляет 2,876 млрд км.
Нептун
Наконец, на окраине Солнечной системы располагается Нептун. Его орбита имеет радиус от 4,452 до 4,554 млрд км (среднее значение этой величины – 4,503 млрд км).
Стоит отметить, что орбиты планет непостоянны и способны менять свой радиус, но это заметно только на промежутках времени в сотни миллионов лет.
Список использованных источников
• https://cosmosplanet.ru/solnechnayasistema/rasstoyanie-planet-ot-solntsa.html
• https://ria.ru/20090313/164726855.html
Пришелец Инопланетянович
Если не оставишь коммент, то я приду за тобой!!!
Оставить коммент
Не нашли, то что искали? Используйте форму поиска по сайту
Планета – это обращающееся вокруг звезды несамосветящееся космическое тело, недостаточно массивное, чтобы быть звездой, но достаточно массивное, чтобы принять форму, близкую к шару. Мы видим планеты на небе потому, что они отражают свет, падающий на них от Солнца. Погасло бы Солнце, погасли бы и планеты на небе.
В Солнечной системе насчитывается 8 больших планет. Они обращаются вокруг Солнца в одну и ту же сторону. Если смотреть из точки над северным полюсом Солнца, то обращение планет будет происходить против часовой стрелки . Траектория движения планеты вокруг Солнца называется орбитой планеты. Скорость, с которой планета движется по орбите, называется орбитальной скоростью планеты. Орбитальные скорости планет различны. Чем ближе планета к Солнцу (т.е. чем меньше радиус её орбиты), тем выше её орбитальная скорость.
В порядке удаления от Солнца планеты расположены так: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун. В пределах Солнечной системы расстояния удобно выражать в астрономических единицах (а.е.). 1 а.е. = 149 597 870,9 км.
Отношения между временем (Т), скоростью (V) и расстоянием (S) следующие: Т = S : V, S = T · V, V = S : T. Применительно к обращению по орбите:
Т – промежуток времени, в течение которого планета совершает 1 полный оборот вокруг Солнца по отношению к звёздам. Этот промежуток времени называют сидерическим периодом обращения вокруг Солнца (период обозначают буквой Р) или сидерическим годом.
V – орбитальная скорость планеты.
S – расстояние, которое проходит планета за 1 год. Это ни что иное, как длина орбиты планеты (длину обозначают буквой L). Период обращения, длина орбиты и орбитальная скорость взаимосвязаны: Р = L : V, L = Р · V, V = L : Р. Зная любые два из этих параметров, можно вычислить третий.
Длину орбиты (длину окружности) вычисляют исходя из её радиуса (среднего расстояния планеты от Солнца): L = 2πR. Если вместо L в вышеприведённые уравнения поставить 2πR, то получим: P = 2πR : V, 2πR = P · V, V = 2πR : Р. Число π (“Архимедово число”) ≈ 3,14.
Название планеты |
Среднее расстояние от Солнца R, км |
Среднее расстояние от Солнца R, а.е. |
Длина орбиты L, млн км |
Орбитальная скорость V, км/с |
Сидерический период обращения вокруг Солнца Р (год) |
Меркурий | 57 900 000 | 0,387 | 364 | 48 | 87,97 земных суток |
Венера | 108 200 000 | 0,723 | 680 | 35 | 224,70 земных суток |
Земля | 149 600 000 | 1,000 | 940 | 30 | 365,26 земных суток |
Марс | 227 900 000 | 1,524 | 1 430 | 24 | 1,88 земных лет |
Юпитер | 778 500 000 | 5,204 | 4 890 | 13 | 11,86 земных лет |
Сатурн | 1 433 000 000 | 9,582 | 9 004 | 10 | 29,46 земных лет |
Уран | 2 877 000 000 | 19,23 | 18 080 | 7 | 84,32 земных лет |
Нептун | 4 503 000 000 | 30,10 | 28 290 | 5 | 164,79 земных лет |
Решим задачу: какую часть длины своей орбиты пролетит Марс за то время, пока Земля пролетит половину длины своей орбиты?
1) Половину длины своей орбиты Земля пролетит за 365,26 суток : 2 = 182,63 суток.
2) Найдём, какую часть года Марса составляют 182,63 суток. 182,63 суток : (1,88 земных лет · 365,26 суток/году) ≈ 0,27 или ≈ 1/4. Соответственно, за 1/4 года Марс пролетит 1/4 своей орбиты.
В понимании учёных птолемеевской эпохи планеты обращались вокруг Солнца по идеальным окружностям. Только в начале XVII века великий немецкий математик и астроном Иоганн Кеплер пришёл к выводу, что планеты должны обращаться вокруг Солнца не по окружностям, а по эллипсам. Открытый им первый закон движения планет (I закон Кеплера) так и гласит: “Каждая планета обращается по эллипсу, в одном из фокусов которого находится Солнце”. Эллипс выглядит так (точками показаны фокусы эллипса):
Ближайшая к Солнцу точка орбиты называется перигелием, а наиболее удалённая – афелием. Орбиты планет, конечно, не так сильно вытянуты, как эллипс на рисунке. Они близки к окружностям, но у каждой из них имеется свой перигелий и афелий. Орбитальная скорость планеты в перигелии максимальна, а в афелии – минимальна. Например, у Земли в перигелии скорость 30,27 км/с, а в афелии – 29,27 км/с.
Меркурий, Венера, Марс, Юпитер и Сатурн были известны с древнейших времён. Их никто не открывал, поскольку они видны невооружённым глазом. Уран и Нептун невооружённым глазом не видны (Уран виден на пределе возможностей человеческого глаза), поэтому их смогли открыть только после изобретения телескопа. Уран был случайно открыт английским астрономом Вильямом Гершелем в 1781 г., а Нептун был найден в 1846 г. немецким астрономом Иоганном Галле по результатам вычислений английского математика Урбена Леверье. Долгое время к планетам относили Плутон – космическое тело диаметром всего 2 400 км, открытое американским астрономом Клайдом Томбо в 1930 г. С 2006 г. Плутон относят к классу карликовых планет.
Планеты вместе с Солнцем и Луной участвуют в суточном вращении звёздного неба, а значит восходят в восточной части горизонта, поднимаются, опускаются и заходят в западной части горизонта. Как известно, причиной суточного вращения является осевое вращение Земли. Но поскольку сами планеты обращаются вокруг Солнца и мы наблюдаем за ними с движущейся Земли, планеты постепенно смещаются относительно звёзд. Такое движение называют видимым годовым движением (или перемещением) планет. Видимое годовое движение планет и орбитальное движение – не одно и то же. По орбите планеты всегда движутся в одну и ту же сторону с почти постоянными скоростями. А на небе они могут замедлять своё движение, останавливаться, пятиться назад, описывая петли и зигзаги (“планетес” в переводе означает “блуждающее светило”).
Видимое перемещение планет – кажущееся, мнимое. Вот так выглядела на небе петля Марса в 2009-2010 гг.:
По отношению к земной орбите планеты разделяют на внешние (верхние) и внутренние (нижние). Внутренние планеты находятся внутри земной орбиты (Меркурий и Венера), а внешние – снаружи (Марс, Юпитер, Сатурн, Уран и Нептун). От этого во многом зависят условия видимости планет на звёздном небе. Условия видимости – это время суток, когда планета видна (вечером, ночью, под утро), это продолжительность видимости (от нескольких минут до 12 часов), это высота над горизонтом (чем выше поднимется планета, тем лучше её изображение в телескопе), это её видимый угловой диаметр (чем он больше, тем больше подробностей можно разглядеть на планете в телескоп). Условия видимости планеты постоянно изменяются, улучшаются или ухудшаются.
Важны и конфигурации (расположения), которые образуют планеты с Солнцем и Землёй.
Для внутренних планет (Меркурия и Венеры) характерны верхние и нижние соединения, а также западные и восточные элонгации (наибольшие видимые на небе удаления от Солнца). Для внешних планет (Марса, Юпитера, Сатурна, Урана и Нептуна) характерны соединения, противостояния, а также западные и восточные квадратуры.
Нижнее соединение внутренней планеты – планета находится между Солнцем и Землёй и поэтому не видна, кроме случаев, когда диск планеты проецируется на диск Солнца (явление перемещения диска планеты по диску Солнца называется прохождением; пример – прохождение Венеры по диску Солнца 8 июня 2012 года). При этом планета находится на минимальном расстоянии от Земли.
Верхнее соединение внутренней планеты – планета не видна, так как находится за Солнцем. Расстояние от Земли до планеты максимальное.
Западная элонгация внутренней планеты – планета видна в виде серпа утром перед восходом Солнца. Элонгации – наилучшее время для наблюдений внутренней планеты.
Восточная элонгация внутренней планеты – планета видна в виде серпа вечером после захода Солнца.
Соединение внешней планеты – планета не видна, так как находится за Солнцем. Расстояние до планеты максимальное.
Противостояние внешней планеты – Земля находится между Солнцем и планетой; планета видна всю ночь в виде полностью освещённого диска. Противостояния – наилучшее время для наблюдений внешних планет. Расстояние до планеты минимальное, видимый диаметр диска максимальный.
Западная квадратура внешней планеты – планета видна во второй половине ночи в восточной стороне небосвода.
Восточная квадратура внешней планеты – планета видна в первой половине ночи в западной стороне небосвода.
Из схемы легко понять, что внутренние планеты никогда не бывают в противостоянии и не могут быть видны всю ночь. Внешние планеты никогда не проецируются на диск Солнца. Разберём следующую конфигурацию планет:
С Марса:
– можно увидеть Венеру вечером после захода Солнца (Солнце правее Венеры и, следовательно, раньше зайдёт за горизонт), Венера выглядит в форме серпа, повёрнутого вправо;
– можно увидеть Землю утром перед восходом Солнца (Солнце левее Земли и, следовательно, восходит позже Земли), диск Земли освещён чуть больше половины, выпуклость влево;
– Солнце, Венеру и Землю одновременно увидеть нельзя, т.к. все они находятся над горизонтом в дневное время суток, а небо на Марсе днём весьма светлое;
– Венера движется быстрее Марса, следовательно, расстояние между ними будет сокращаться, пока не наступит нижнее соединение;
– Венера на небе Марса будет приближаться к Солнцу и продолжительность её видимости по вечерам будет уменьшаться.
С Земли:
– Венеру не видно, она за Солнцем (расстояние до Венеры максимальное, но будет постепенно сокращаться);
– Венера восходит и заходит вместе с Солнцем;
– через несколько недель Венера выйдет из-за Солнца и будет видна по вечерам;
– Марс виден по вечерам, его диск освещён больше половины, выпуклость вправо;
– Земля движется быстрее Марса, убегает от него, расстояние между ними увеличивается;
– продолжительность видимости Марса уменьшается, вскорости наступит соединение Марса с Солнцем (Марс будет за Солнцем).
С Венеры (считаем, что атмосфера как у Земли):
– Землю не видно, она за Солнцем (соединение), расстояние до Земли максимально;
– Земля восходит и заходит одновременно с Солнцем;
– Венера движется быстрее Земли и будет постепенно догонять её, расстояние будет сокращаться;
– скоро Землю можно будет увидеть по вечерам после захода Солнца (Венера имеет обратное вращение);
– Марс виден по вечерам, расстояние между Венерой и Марсом сокращается, видимый размер Марса будет увеличиваться;
– условия видимости Марса улучшаются, скоро наступит противостояние и Марс будет виден всю ночь.
Расстояния между Землёй и планетами постоянно изменяются. Поэтому изменяются и видимые (угловые) размеры планет на земном небе. Вот в каких пределах они изменяются:
Меркурий 4,5 – 13,0”
Венера 9,7 – 66,0”
Марс 3,5 – 25,1”
Юпитер 29,8 – 50,1”
Сатурн 14,5 – 20,1”
Уран 3,3 – 4,1”
Нептун 2,2 – 2,4”
Планеты также разделяют на планеты земной группы и планеты-гиганты.
Планеты земной группы (Меркурий, Венера, Земля и Марс) сравнительно близко расположены к Солнцу и поэтому получают от него значительное количество тепла и света. Для поддержания жизни на Земле, например, это является определяющим фактором. Планеты земной группы небольшие, сравнительно медленно вращаются вокруг своих осей, имеют твёрдую поверхность, высокую плотность, имеют мало спутников (Земля – 1, Марс – 2) или не имеют их вообще (Меркурий и Венера).
Планеты-гиганты (Юпитер, Сатурн, Уран и Нептун) расположены сравнительно далеко от Солнца и, следовательно, слабо освещаются и согреваются его лучами. Планеты-гиганты в несколько раз по диаметру превосходят Землю, довольно быстро вращаются вокруг своих осей, не имеют твёрдой поверхности, имеют низкую плотность, обладают обширными системами спутников (у Юпитера известно 67 спутников на сегодняшний день). Кроме того, у всех планет-гигантов обнаружены кольца (особенно мощными и красивыми кольцами обладает Сатурн). Кольца состоят из отдельных частиц различного размера. Частицы обращаются вокруг планет подобно спутникам.
Движение вокруг оси называется вращением, а движение вокруг Солнца или планеты – обращением.
Все звёзды и планеты вращаются вокруг своих осей. Такое вращение называется осевым. Осевое вращение звёзд и планет приводит к их сжатию с полюсов. Строго говоря, ни одна звезда, ни одна планета не является по форме шаром. Чем быстрее вращается планета, тем сильнее она сжата с полюсов. Сжатие с полюсов называется полярным сжатием. При этом полярный диаметр планеты всегда короче экваториального диаметра. Например, у Земли полярный диаметр на 43 км короче экваториального (43 км от среднего диаметра Земли 12 750 км составляет ≈ 0,003). Поскольку планеты земной группы твёрдые и сравнительно медленно вращаются, их полярное сжатие небольшое. В отличие от них планеты-гиганты являются газо-жидкими телами. Их быстрое осевое вращение придаёт им сплюснутую форму, которая хорошо заметна не только на фотографиях, но и в небольшие телескопы. Например, полярный диаметр Сатурна короче экваториального на 11 800 км (11 800 км от среднего диаметра Сатурна 114 000 км составляет ≈ 0,1). О планетах говорят, что они имеют форму эллипсоида вращения.
Период вращения планеты по отношению к звёздам называется сидерическим периодом вращения или звёздными сутками.
Название планеты | Сидерический период вращения |
Меркурий | 58 суток 15,5 часов |
Венера | 243 суток 0,6 часов |
Земля | 23 часа 56 минут 04,1 секунды |
Марс | 24 часа 37 минут 22,7 секунды |
Юпитер | 9 часов 55,5 минуты |
Сатурн | 10 часов 34,2 минуты |
Уран | 17 часов 14,4 минуты |
Нептун | 15 часов 57,3 минуты |
Самые длинные звёздные сутки на Венере. Весьма интересно также, что Венера вращается по отношению к другим планетам в обратную сторону, т.е. с востока на запад. Самые короткие звёздные сутки у Юпитера. Нужно помнить, что планеты-гиганты газо-жидкие и поэтому вращаются неравномерно, как и Солнце. Например, экваториальные зоны Юпитера совершают полный оборот за 9 часов 50,5 минут, а зоны в средних широтах – за 9 часов 55,5 минут, т.е. на 5 минут дольше! Поэтому не имеет смысла говорить о периодах вращения планет-гигантов с точностью до секунд (как у Земли и Марса). У планет-гигантов в таблице приведены периоды вращения на средних широтах.
Через орбиту любой планеты можно провести плоскость – плоскость орбиты. Плоскости орбит планет не совпадают. К плоскости орбиты Земли они наклонены под углами от 0,77º (Уран) до 7º (Меркурий).
Оси вращения планет наклонены к плоскостям их орбит под различными углами:
Меркурий – 90,0º
Венера – 87,4º
Земля – 66,5º
Марс – 64,8º
Юпитер – 86,9º
Сатурн – 63,3º
Уран – 7,8º
Нептун – 61,7º
Чем больше наклон оси к плоскости орбиты планеты, тем меньше на планете выражена смена времён года. На Меркурии, Венере, Юпитере смены времён года нет. У остальных планет смена времён года присутствует. Особенно она выражена у Урана, который движется по орбите “лёжа на боку”:
Массы и размеры планет определяют силу тяжести на их поверхностях, которая прежде всего указывает, может ли данная планета удерживать вокруг себя атмосферу. Меркурий – самая маленькая из планет, атмосфера на нём практически отсутствует. Большинство спутников планет и астероиды также не имеют атмосфер. Марс – чуть больше по размерам, атмосфера на Марсе есть, но довольно разреженная (не путать со словом “разряженная”). Разреженная – значит, малоплотная, имеет малую плотность. Наиболее протяжёнными и плотными атмосферами обладают планеты-гиганты, особенно Юпитер и Сатурн.
Название планеты |
Масса планеты, кг |
Масса планеты относительно массы Земли |
Диаметр планеты, км |
Диаметр планеты относительно диаметра Земли |
Меркурий | 3,33·1023 | 0,056 | 4 880 | 0,38 |
Венера | 4,87·1024 | 0,815 | 12 104 | 0,95 |
Земля | 5,97·1024 | 1 | 12 756 | 1 |
Марс | 6,42·1023 | 0,107 | 6 792 | 0,53 |
Юпитер | 1,90·1027 | 317,8 | 143 000 | 11,2 |
Сатурн | 5,68·1026 | 95,2 | 120 500 | 9,4 |
Уран | 8,68·1025 | 14,5 | 51 100 | 4,0 |
Нептун | 1,02·1026 | 17,1 | 49 500 | 3,9 |
Атмосферы планет – это смеси различных газов. В атмосферах Венеры и Марса в основном присутствует углекислый газ (химическая формула СО2), в атмосфере Земли – азот (N2) и кислород (О2), в атмосферах планет-гигантов – водород (Н2) и гелий (Не). Газы из атмосфер планет медленно и непрерывно улетучиваются в космическое пространство. Это явление называется диссипацией атмосфер или планетным ветром.
Подробнее о физической природе планет читай в энциклопедии “Планеты” В. Сурдина (выпуск 2000 года, поэтому там Плутон всё ещё отнесён к планетам).
Правило Тициуса — Боде | |
---|---|
Названо в честь | Тициус, Иоганн Даниэль и Иоганн Элерт Боде |
Шкала измерения | астрономическая единица |
Медиафайлы на Викискладе |
Правило Ти́циуса — Бо́де (называемое также законом Бо́де) представляет собой эмпирическую формулу, приблизительно описывающую расстояния между планетами Солнечной системы и Солнцем (средние радиусы орбит). Эта закономерность была обнаружена Иоганном Тициусом в 1766 году и получила известность благодаря работам Иоганна Боде в 1772 году.
Правило устанавливает, что начиная с Меркурия каждая следующая планета располагается примерно вдвое дальше от Солнца, чем предыдущая. Наблюдения показали, что первые семь планет (если учесть и малые планеты пояса астероидов как возможные обломки пятой планеты) с хорошей точностью следуют этому правилу; открытый в 1781 году Уран также хорошо вписался в общую закономерность. Однако Нептун выпадает из правила. Строгого теоретического обоснования данной математической закономерности до сих пор не существует. Делаются попытки обобщить правило на спутники планет[⇨] и на известные экзопланеты[⇨].
Формулировка[править | править код]
Правило формулируется следующим образом.
К каждому элементу последовательности прибавляется 4, затем результат делится на 10. Полученное число считается радиусом орбиты i-й планеты в астрономических единицах. То есть,
Последовательность — геометрическая прогрессия, кроме первого числа. То есть, .
Эту же формулу можно записать по-другому:
Встречается также другая формулировка:
Для любой планеты среднее расстояние от её орбиты до орбиты самой внутренней планеты (в Солнечной системе — Меркурия) в два раза больше, чем среднее расстояние от орбиты предыдущей планеты до орбиты самой внутренней планеты:
Результаты вычислений приведены в таблице[1] (где ). Видно, что этой закономерности соответствует и пояс астероидов, а Нептун, напротив, из закономерности выпадает, причём его место занимает Плутон, хотя он, согласно решению XXVI Ассамблеи МАС исключён из числа планет.
Планета | Радиус орбиты (а.е.) | ||||
---|---|---|---|---|---|
по правилу | фактический | ||||
Меркурий | 0 | 0,4 | 0,39 | ||
Венера | 0 | 1 | 0,7 | 0,72 | |
Земля | 1 | 2 | 1,0 | 1,00 | 1,825 |
Марс | 2 | 4 | 1,6 | 1,52 | 1,855 |
Пояс астероидов | 3 | 8 | 2,8 | в сред. 2,2—3,6 | 2,096 (по орбите Цереры) |
Юпитер | 4 | 16 | 5,2 | 5,20 | 2,021 |
Сатурн | 5 | 32 | 10,0 | 9,54 | 1,9 |
Уран | 6 | 64 | 19,6 | 19,22 | 2,053 |
Нептун | выпадает | 30,06 | 1,579 | ||
Плутон | 7 | 128 | 38,8 | 39,5 | 2,078 (по отношению к Урану) |
Эрида | 8 | 256 | 77,2 | 67,7 |
История[править | править код]
Первое упоминание о подобной закономерности встречается в учебнике Дэвида Грегори «Начала астрономии» (The Elements of Astronomy, 1715):
…предположим, что расстояние Земли от Солнца разделено на десять равных частей, из которых расстояние от Меркурия будет примерно четыре, от Венеры семь, от Марса пятнадцать, от Юпитера пятьдесят два, а от Сатурна девяносто. пять.
Когда в 1766 году Тициус впервые строго сформулировал это правило (в приложении к своему переводу работы Шарля Бонне), ему удовлетворяли все известные в то время планеты (от Меркурия до Сатурна), имелся лишь пропуск на месте пятой планеты. В 1772 году Боде в своём «Путеводителе по знанию звездного неба» (Anleitung zur Kenntniß des gestirnten Himmels) Боде изложил (без упоминания Тициуса) то же правило; впоследствии Боде признал приоритет Тициуса.
Новый закон не привлёк большого внимания до тех пор, пока в 1781 году не был открыт Уран, который почти точно лёг на предсказанную последовательность. После этого Боде призвал начать поиски недостающей планеты между Марсом и Юпитером. Именно в том месте, где должна была располагаться эта планета, была обнаружена Церера. Это вызвало рост доверия к правилу Тициуса — Боде среди астрономов, которое сохранялось до открытия Нептуна. Когда выяснилось, что, кроме Цереры, примерно на том же расстоянии от Солнца находится множество тел, формирующих пояс астероидов, была выдвинута гипотеза, что они образовались в результате разрушения планеты (Фаэтона), которая раньше находилась на этой орбите.
Попытки обоснования[править | править код]
Правило не имеет конкретного математического и аналитического (через формулы) объяснения, основанного только на теории гравитации, так как не существует общих решений так называемой «задачи трёх тел» (в простейшем случае), или «задачи N тел» (в общем случае). Прямое численное моделирование также затруднено огромным объёмом вычислений.
Одно из вероятных объяснений правила заключается в следующем. Уже на стадии формирования Солнечной системы в результате гравитационных возмущений, вызванных протопланетами и их резонансом с Солнцем (при этом возникают приливные силы, и энергия вращения тратится на приливное ускорение или, скорее, замедление), сформировалась регулярная структура из чередующихся областей, в которых могли или не могли существовать стабильные орбиты согласно правилам орбитальных резонансов (то есть отношение радиусов орбит соседних планет равных 1/2, 3/2, 5/2, 3/7 и т. п.)[2]. Впрочем, часть астрофизиков полагает, что это правило — всего лишь случайное совпадение.
Резонансным орбитам сейчас в основном соответствуют планеты или группы астероидов, которые постепенно (за десятки и сотни миллионов лет) выходили на эти орбиты. В случаях, когда планеты (а также астероиды и планетоиды за Плутоном) не расположены на стабильных орбитах (как Нептун) и не расположены в плоскости эклиптики (как Плутон), наверняка в ближайшем (относительно сотен миллионов лет) прошлом имели место инциденты, нарушавшие их орбиты (столкновение, близкий пролёт массивного внешнего тела). Со временем (быстрее к центру системы и медленнее на окраинах системы) они неизбежно займут стабильные орбиты, если им не помешают новые инциденты.
Пояс Койпера и орбитальные резонансы
Наличие стабильных орбит, вызванных резонансами между телами системы, впервые численно смоделировано (компьютерная симуляция движения точечных взаимодействующих масс вокруг резонирующего центра — Солнца, представленного как две точечные массы с упругой связью) и приведено в сравнении с реальными астрономическими данными в работах 1998—1999 годов профессора Рену Малхотра.[источник не указан 3115 дней]
Само существование резонансных орбит и само явление орбитального резонанса в нашей планетной системе подтверждается экспериментальными данными по распределению астероидов по радиусу орбиты и плотности объектов KBO пояса Койпера по радиусу их орбиты.
Сравнивая структуру стабильных орбит планет Солнечной системы с электронными оболочками простейшего атома, можно обнаружить некоторое подобие, хотя в атоме переход электрона происходит практически мгновенно только между стабильными орбитами (электронными оболочками), а в планетарной системе выход небесного тела на стабильные орбиты занимает десятки и сотни миллионов лет.
Проверка для спутников планет Солнечной системы[править | править код]
Три планеты Солнечной системы — Юпитер, Сатурн и Уран — имеют систему спутников, которые, скорее всего, сформировались в результате таких же процессов, как и в случае самих планет. Эти системы спутников образуют регулярные структуры, на основе орбитальных резонансов, которые, правда, не подчиняются правилу Тициуса — Боде в его первоначальном виде. Однако, как выяснил в 1960-е годы астроном Стэнли Дермотт (англ. Stanley Dermott), можно немного обобщить правило Тициуса — Боде:
где — орбитальный период (дней). Оценку точности правила Дермотта[en] для системы спутников Юпитера, Сатурна и Урана представляют следующие таблицы[3]:
- Юпитер: T(0) = 0,444, C = 2,03
Спутник | n | Результат расчёта | Фактически | |
---|---|---|---|---|
Jupiter V | Амальтея | 1 | 0,9013 | 0,4982 |
Jupiter I | Ио | 2 | 1,8296 | 1,7691 |
Jupiter II | Европа | 3 | 3,7142 | 3,5512 |
Jupiter III | Ганимед | 4 | 7,5399 | 7,1546 |
Jupiter IV | Каллисто | 5 | 15,306 | 16,689 |
Jupiter VI | Гималия | 9 | 259,92 | 249,72 |
- Сатурн: T(0) = 0,462, C = 1,59
Спутник | n | Результат расчёта | Фактически | |
---|---|---|---|---|
Saturn I | Мимас | 1 | 0,7345 | 0,9424 |
Saturn II | Энцелад | 2 | 1,1680 | 1,3702 |
Saturn III | Тетис | 3 | 1,8571 | 1,8878 |
Saturn IV | Диона | 4 | 2,9528 | 2,7369 |
Saturn V | Рея | 5 | 4,6949 | 4,5175 |
Saturn VI | Титан | 7 8 |
11,869 18,872 |
15,945 |
Saturn VIII | Япет | 11 | 75,859 | 79,330 |
- Уран: T(0) = 0,488, C = 2,24
Спутник | n | Результат расчёта | Фактически | |
---|---|---|---|---|
Uranus V | Миранда | 1 | 1,0931 | 1,4135 |
Uranus I | Ариэль | 2 | 2,4485 | 2,5204 |
Uranus II | Умбриэль | 3 | 5,4848 | 4,1442 |
Uranus IV | Оберон | 4 | 13,463 | 12,286 |
Проверка для экзопланет[править | править код]
Тимоти Боверд (англ. Timothy Bovaird) и Чарльз Лайнвивер (Charles H. Lineweaver) из Австралийского национального университета проверили[4] применимость правила к экзопланетным системам (2013 год). Из известных систем, содержащих по четыре открытых планеты, они отобрали 27 таких, для которых добавление дополнительных планет между известными нарушало бы стабильность системы. Считая отобранные кандидаты полными системами, авторы показали, что для них выполняется обобщённое правило Тициуса — Боде, аналогичное предложенному Дермоттом:
где R и C — параметры, обеспечивающие наилучшее приближение к наблюдаемому распределению.
Было обнаружено, что из 27 отобранных для анализа систем 22 системы удовлетворяют взаимным соотношениям радиусов орбит даже лучше, чем Солнечная система, 2 системы подходят под правило примерно как Солнечная, у 3 систем правило работает хуже Солнечной.
Для 64 систем, которые по выбранному критерию не были полными, авторы попытались предсказать орбиты ещё не открытых планет. Всего ими сделано 62 предсказания с помощью интерполяции (в 25 системах) и 64 — с помощью экстраполяции. Оценка максимальных масс планет, сделанная по чувствительности приборов, с помощью которых были открыты эти системы экзопланет, показывает, что некоторые из предсказанных планет должны быть земного типа. Согласно проверке Chelsea X. Huang и Gáspár Á. Bakos (2014), фактически обнаруживаемое количество планет на таких орбитах существенно ниже предсказанного и, таким образом, использование соотношения Тициуса — Боде для заполнения «недостающих» орбит — под вопросом[5]: на предсказываемых орбитах планеты образуются не всегда. Тем не менее пять планет на предсказанных орбитах были впоследствии обнаружены. Например, была предсказана неизвестная планета в звёздной системе KOI 2722; два месяца спустя эта экзопланета была обнаружена с помощью космического телескопа «Кеплер»[6].
Согласно уточнённой проверке M. B. Altaie, Zahraa Yousef, A. I. Al-Sharif (2016 г.), для 43 экзопланетных систем, содержащих четыре или более планеты, соотношение Тициуса — Боде выполняется с высокой точностью при условии изменения масштабов радиусов орбит. Исследование также подтверждает масштабную инвариантность закона Тициуса — Боде[7][неавторитетный источник].
Современные статистические данные (2020 год) по экзопланетным орбитам убедительно указывают на общее выполнение законов, подобных Тициусу – Боде (то есть экспоненциального увеличения больших полуосей в зависимости от номера планеты) во всех экзопланетных системах и для всех известных систем экзопланет, для которых известна величины полуосей[8][9],
Проблемы теории[править | править код]
Правило Тициуса — Боде входит в некоторое противоречие с моделью Ниццы. Модель описывает формирование Солнечной системы с учётом миграции планет и предполагает, что они не всегда занимали современное положение. Следовательно, должны были существовать периоды (по меньшей мере переходные), когда положение планет не укладывалось в уравнение[источник не указан 2079 дней].
Примечания[править | править код]
- ↑ Александр Березин. Новости науки Архивная копия от 6 августа 2018 на Wayback Machine.
- ↑ Правило Тициуса—Боде. Дата обращения: 12 января 2011. Архивировано 25 августа 2011 года.
- ↑ Dermott, S. F. (1969). “On the origin of commensurabilities in the solar system – III: The resonant structure of the solar system”. Mon. Not. R. Astron. Soc. 142 (2): 143—149. Bibcode:1969MNRAS.142..143D. DOI:10.1093/mnras/142.2.143.
- ↑ Timothy Bovaird, Charles H. Lineweaver. Exoplanet Predictions Based on the Generalised Titius-Bode Relation Архивная копия от 9 августа 2020 на Wayback Machine.
- ↑ [https://web.archive.org/web/20200809153632/https://arxiv.org/abs/1405.2259 Архивная копия от 9 августа 2020 на Wayback Machine [1405.2259] Testing the Titius-Bode law predictions for Kepler multi-planet systems].
- ↑ Guido Meyer (2014). Planetenformel – irrer Zufall oder Naturgesetz?
- ↑ M. B. Altaie, Zahraa Yousef, A. I. Al-Sharif. Applying Titius-Bode’s Law on Exoplanetry Systems Архивная копия от 6 августа 2020 на Wayback Machine.
- ↑ Lara, Patricia; Cordero-Tercero, Guadalupe; Allen, Christine (2020). “The reliability of the Titius–Bode relation and its implications for the search for exoplanets”. Publications of the Astronomical Society of Japan. 72 (2). arXiv:2003.05121. DOI:10.1093/pasj/psz146.
- ↑ Ballesteros, F. J.; Fernandez-Soto, A.; Martinez, V.J. (2019). “Title: Diving into Exoplanets: Are Water Seas the Most Common?”. Astrobiology. 19 (5): 642—654. DOI:10.1089/ast.2017.1720. HDL:10261/213115. PMID 30789285. S2CID 73498809.
Литература[править | править код]
- Ньето М. Закон Тициуса — Боде. История и теория. М.: Мир, 1976.
- Планетарные орбиты и протон. «Наука и жизнь» № 1, 1993. С. 155.
- Hahn, J. M., Malhotra, R. Orbital evolution of planets embedded in a massive planetesimal disk, AJ 117:3041—3053 (1999)
- Malhotra, R. Migrating Planets, Scientific American 281(3):56—63 (1999)
- Malhotra, R. Chaotic planet formation, Nature 402:599—600 (1999)
- Malhotra, R. Orbital resonances and chaos in the Solar system, in Solar System Formation and Evolution, Rio de Janeiro, Brazil, ASP Conference Series vol. 149 (1998). Preprint
- Showman, A., Malhotra, R. The Galilean Satellites, Science 286:77 (1999)
Ссылки[править | править код]
- Правило XVIII века в большинстве планетарных систем выполняется лучше, чем в Солнечной Архивная копия от 14 апреля 2013 на Wayback Machine
- Malhotra’s research spans orbital dynamics in the solar system and in extra-solar planetary systems (недоступная ссылка) (англ.)
- Анимация графики распределения астероидов по орбитам Архивная копия от 29 мая 2014 на Wayback Machine (англ.)
Расстояния между планетами Солнечной системы сильно варьируются. Причина этого в том, что крупные небесные тела имеют эллиптические орбиты и ни одна из них не является идеальными кругами. Например, расстояние между Меркурием и Землей может составлять от 77 миллионов километров в ближайшей точке до 222 миллионов километров в самой дальней. На расстояниях между планетами существует огромное количество различий в зависимости от их положения на орбитальном пути.
В таблице ниже показаны восемь планет и среднее расстояние между ними.
В таблицах есть и другие параметры, помимо расстояния между планетами солнечной системы в масштабе. Также вы можете ознакомиться со второй таблицей.
Расстояние между Солнцем и планетами Солнечной системы
Восемь планет в нашей системе планид занимают свои орбиты вокруг Солнца. Они вращают звезду в эллипсах. Это означает, что их расстояние до светила меняется в зависимости от того, где они находятся на своих траекториях. Когда они приближаются к Солнцу, это называется перигелием, и когда они находятся от него дальше всего, это называется афелием.
Поэтому говорить о том, какое расстояние между планетами Солнечной системы, бывает довольно трудно – не только потому, что их расстояния постоянно меняются, но также и потому, что пролеты огромны – их порой бывает трудно измерить. По этой причине астрономы часто используют термин, называемый астрономической единицей и представляющий дистанцию от Земли до Солнца.
В приведенной ниже таблице (впервые созданной основателем Universe Today Фрейзером Каином в 2008 году) показаны все планеты и их отдаленность от Солнца.
Пример конкретных небесных тел
Рассмотрим расстояние между планетами Солнечной системы в км, используя конкретные примеры.
- Меркурий.
Ближайшее расстояние от Солнца: 46 миллионов км/29 миллионов миль (0,307 AU).
Самое дальнее расстояние от Солнца: 70 миллионов км/43 миллиона миль (0,666 AU).
Среднее расстояние: 57 миллионов км/35 миллионов миль (0,387 AU).
Близость к Земле: 77,3 миллиона км/48 миллионов миль.
- Венера.
Ближайшее расстояние от Солнца: 107 миллионов км/66 миллионов миль (0,718 AU).
Самое дальнее расстояние от Солнца: 109 миллионов км/68 миллионов миль (0,728 AU).
Среднее расстояние: 108 миллионов км/67 миллионов миль (0,722 AU).
Близость к Земле:147 миллионов км/91 миллион миль (0,98 AU).
- Марс.
Ближайшее расстояние от Солнца: 205 миллионов км/127 миллионов миль (1,38 AU).
Самое дальнее расстояние от Солнца: 249 миллионов км/155 миллионов миль (1,66 AU).
Среднее расстояние: 228 миллионов км/142 миллиона миль (1,52 AU).
Близость к Земле: 55 миллионов км/34 миллиона миль.
- Юпитер.
Ближайшее расстояние от Солнца: 741 млн. км/460 млн. миль (4,95 AU).
Самое дальнее расстояние от Солнца: 817 миллионов км/508 миллионов миль (5,46 AU).
Среднее расстояние: 779 миллионов км/484 миллиона миль (5,20 AU).
Близость к Земле: 588 миллионов км/346 миллионов миль.
- Сатурн.
Ближайшее расстояние от Солнца: 1,35 миллиарда км/839 миллионов миль (9,05 AU).
Самое дальнее расстояние от Солнца: 1,51 миллиарда км/938 миллионов миль (10,12 AU)Средняя: 1,43 млрд. км/889 млн. миль (9,58 AU).
Близость к Земле: 1,2 миллиарда км/746 миллионов миль.
- Уран.
Ближайшее расстояние от Солнца: 2,75 млрд. км/1,71 млрд. миль (18,4 AU).
Самое дальнее расстояние от Солнца: 3,00 млрд. км/1,86 млрд. миль (20,1 AU).
Среднее расстояние: 2,88 млрд. км/1,79 млрд. миль (19,2 AU).
Близость к Земле: 2,57 млрд. км/1,6 млрд. миль.
- Нептун.
Ближайшее расстояние от Солнца: 4,45 млрд. км/2,7 млрд. миль (29,8 AU).
Самое дальнее расстояние от Солнца: 4,55 миллиарда км/2,83 миллиарда миль (30,4 AU).
Среднее расстояние: 4,50 млрд. км/2,8 млрд. миль (30,1 AU).
Близость к Земле: 4,3 млрд. км/2,7 млрд. миль.
- Плутон.
Ближайшее расстояние от Солнца: 4,44 миллиарда км/2,76 миллиарда миль (29,7 AU).
Самое дальнее расстояние от Солнца: 7,38 миллиарда км/4,59 миллиарда миль (49,3 AU).
Среднее расстояние: 5,91 млрд. км/3,67 млрд. миль (39,5 AU).
Близость к Земле: 4,28 миллиарда км/2,66 миллиарда миль.
Что из себя представляет наша система?
Это гравитационно связанная система Солнца и объектов, которые прямо или косвенно вращаются вокруг этого светила, включая восемь крупных и пять карликовых планет, как это определено Международным астрономическим союзом (МАС). Из объектов, которые непосредственно вращаются вокруг Солнца, восемь являются планетами, а остальные – меньшими объектами, такими как карлики-планетоиды и малые тела Солнечной системы.
История
Солнечная система образовалась четыре с половиной миллиарда лет назад в результате некоего гравитационного коллапса, природа которого полностью не исследована. Известно лишь, что на месте нашей системы когда-то было огромное облако газа и множество астероидов. Из этих небесных тел в итоге возникли все известные нам планеты, а также малые объекты системы. Газовые планеты, равно как и Солнце, появились из того самого первичного облака пыли и газовых смесей. Расстояние между Солнцем и планетами Солнечной системы менялось с течением времени, пока не достигло нынешних стабильных показателей. Достоверно известно лишь то, что в других системах газовые планеты-гиганты находятся ближе к Солнцу, и это делает нашу систему уникальной.
Малые объекты
Помимо планет, наша система также изобилует разнообразными малыми объектами. К ним относятся Плутон, Церера, различные кометы и большой астероидный пояс. Астероидное кольцо, вращающееся вокруг Сатурна, также можно отнести к малым объектам нашей прекрасной системы. Их орбиты довольно нестабильны и они как бы дрейфуют в космосе, потому их расстояние от планет и друг от друга постоянно меняется в зависимости от различных гравитационных факторов. О закономерности расстояния между планетами Солнечной системы вы сможете узнать из материала ниже.
Другие характеристики
Также наша система примечательна постоянными потоками заряженных частиц, источником которых является Солнце. Эти потоки называются Солнечным ветром. Впрочем, к основной теме статьи они не имеют особого отношения, но этот факт весьма примечателен в контексте понимания того, чем является окружающий космос и где мы с вами живем. Наша система находится в зоне, называемой Рукав Ориона, расположенной на расстоянии в 26000 световых лет от самого центра нашей же галактики Млечного Пути. Можно сказать, что мы с вами обитаем на самой, что ни на есть, периферии Вселенной!
Проблема восприятия
На протяжении большей части истории человечество не признавало и не понимало концепцию Солнечной системы. Большинство людей до позднего Средневековья-Ренессанса считали Землю неподвижной в центре Вселенной, категорически отличающейся от божественных или эфирных объектов, которые двигались по небу. Хотя греческий философ Аристарх из Самоса впервые выдвинул гипотезу о гелиоцентрическом строении космоса, Николай Коперник первым разработал математически прогностическую гелиоцентрическую систему. О закономерности расстояний между планетами Солнечной системы вы узнаете ниже.
Еще немного о расстоянии
Дистанция от Земли до Солнца составляет 1 астрономическую единицу (AU, 150 000 000 км, 93 000 000 миль). Для сравнения, радиус Солнца составляет 0,0047 AU (700 000 км). Таким образом, главная звезда занимает 0,00001% (10-5%) объема сферы с радиусом размером земной орбиты, тогда как объем Земли составляет примерно одну миллионную (10-6) от Солнца. Юпитер — самая большая планета — составляет 5,2 астрономических единиц (780 000 000 км) от Солнца и имеет радиус 71 000 км (0,00047 AU), тогда как самая отдаленная планета Нептун составляет 30 AU (4,5 × 109 км) от светила.
За некоторыми исключениями, чем дальше небесное тело или пояс от Солнца, тем больше расстояние между его орбитой и орбитой ближайшего объекта к нему. Например, Венера примерно на 0,33 AU дальше от Солнца, чем Меркурий, тогда как Сатурн – 4,3 AU от Юпитера, а Нептун – 10,5 AU от Урана.
Были предприняты попытки определить связь между этими орбитальными расстояниями (например, закон Тиция-Боде), но такая теория не была принята. Некоторые изображения в этой статье показывают орбиты различных составляющих Солнечной системы в разных масштабах.
Моделирования расстояния
Существуют такие модели Солнечной системы, которые пытаются передать относительные масштабы, связанные с Солнечной системой и с расстояниями между планетами системы планид. Некоторые из них небольшие по масштабу, тогда как другие распространяются по городам или регионам. Крупнейшая такая масштабная модель — Солнечная система Швеции, использует 110-метровый (361 футовый) глобус Эриксона в Стокгольме в качестве фигуры Солнца, и, следуя шкале, Юпитер – это 7,5-метровая (25-футовая) сфера, тогда как самый дальний текущий объект, Седна, – это 10 см (4 дюйма) сфера в Лулео, в 912 км (567 миль) от смоделированного светила.
Если расстояние от Солнца до Нептуна увеличено до 100 метров, то светило будет иметь диаметр около 3 см (примерно две трети диаметра мяча для гольфа), планеты-гиганты будут меньше, чем около 3 мм, а диаметр Земли наряду с таковыми других наземных планет будет меньше, чем блоха (0,3 мм) в этом масштабе. Для создания столь экстраординарных моделей используются математические формулы и вычисления, учитывающие реальные расстояния между планетами Солнечной системы и золотое сечение.
Какого размера наша Солнечная система и где она кончается?
Как измерить расстояние до планеты?
В прошлом единственным методом измерения космических расстояний был метод горизонтального параллакса. Хотя этот метод достаточно точен и до сих пор применяется при расчете расстояния до очень далеких космических объектов, для измерения расстояний до планет-соседей по Солнечной системе, с середины 20-го века применяется более простой и ещё более точный способ – метод радиолокации.
В основе методики космической радиолокации лежит идея заимствованная у самой природы: достаточно просто найти на небесной сфере нужный объект (например, планету Венера), “прицелится” в неё и затем “выстрелить” радиоволнами сверхкороткого диапазона. Теперь нам остается только дождаться когда сигнал достигнет поверхности Венеры, отразится от неё и устремится обратно.
Скорость распространения радиоволн точно известна, а время между посылкой волн и их приемом также может быть измерено очень точно. Расстояние, покрытое радиоволнами за время путешествия туда и обратно, а следовательно, и расстояние до Венеры в заданный момент можно определить с несравненно большей точностью, чем методом параллаксов.
Начиная с 1961 г. года этот способ измерения близких космических расстояний стал основным. С помощью полученных данных было вычислено, что среднее расстояние от Земли до Солнца составляет 149 573 000 км.
Радиотелескопы без перерыва «сканируют» космос и ловят «эхо» своих сигналов отраженное от космических объектов
Световая секунда, световой год и другие космические единицы измерения
Используя кеплеровскую схему строения солнечной системы (Солнце в центре, планеты вращаются вокруг него), удобнее всего рассчитывать расстояния в пределах солнечной системы не от Земли, а от центра, то есть от Солнца. Но вот в каких единицах его отсчитывать?
- Во-первых, его можно выражать в миллионах километров. Километр — это наиболее распространенная единица для измерения больших расстояний.
- Во-вторых, чтобы избежать таких чисел, как миллионы километров, можно принять, что среднее расстояние от Земли до Солнца равно одной астрономической единице (сокращенно «а, е.») Тогда можно будет выражать расстояния в а, е., причем 1 а е. равна 149 500 000 км. С вполне достаточной точностью можно считать, что 1 а, е. равна 150 000 000 км.
- В-третьих, расстояние можно выразить через время, которое потребуется для того, чтобы его преодолел свет (или любое аналогичное излучение, например радиоволны). Скорость света в пустоте равна 299 776 км/сек. Число это можно для удобства округлить до 300 000 км/сек.
Таким образом, расстояние примерно в 300 000 км можно считать равным одной световой секунде (ибо это расстояние, преодолеваемое светом за одну секунду). Расстояние, в 60 раз большее, или 18 000 000 км, — это одна световая минута, а расстояние, еще в 60 раз большее, т.е. 1 080 000 000 км, — это один световой час.
Мы не слишком ошибемся, если будем считать, что световой час равен одному миллиарду километров.
Запомнив это, рассмотрим те планеты, которые были известны древним, и приведем таблицу их средних расстояний от Солнца, выраженных в каждой из трех указанных единиц.
Планеты | Среднее расстояние от Солнца | ||
миллионов км | астрономических единиц | световых часов | |
Меркурий | 57,9 | 0,387 | 0,0535 |
Венера | 108,2 | 0,723 | 0,102 |
Земля | 149,5 | 1,000 | 0,137 |
Марс | 227,9 | 1.524 | 0,211 |
Юпитер | 778,3 | 5,203 | 0,722 |
Сатурн | 1428,0 | 9,539 | 1,321 |
Уильям Гершель – в свое время раздвинул горизонты познания, открыв Уран и буквально удвоив границы Солнечной системы
Размеры Солнечной системы
В 17-м веке, когда был открыт Сатурн, астрономы считали его орбиту “границей” Солнечной системы, соответственно вся “система” умещалась в круг диаметром 3 миллиардов км.
Однако в 1781 г., когда английский астроном, немец по происхождению, Уильям Гершель (1738—1822) открыл планету Уран, диаметр Солнечной системы внезапно… удвоился!
А потом снова удвоился, когда сначала французский астроном Урбан Жозсф Леверье (1811 — 1877) открыл в 1846 г. Нептун, затем американский астроном Клайд Уильям Томбо (род. в 1906 г.) — Плутон в 1930 г.
Планеты | Среднее расстояние от Солнца | ||
миллионов км | астрономических единиц | световых часов | |
Уран | 2872 | 19,182 | 2,63 |
Нептун | 4498 | 30,058 | 4,26 |
Плутон | 5910 | 39,518 | 5,47 |
Если мы рассмотрим орбиту Плутона, как ранее орбиту Сатурна, то увидим, что диаметр солнечной системы равен не 3, а 12 миллиардам километров. Лучу света, который преодолевает расстояние, равное окружности Земли, за 1/7 сек и пробегает от Земли до Луны за 1 1/4 сек, понадобится полдня для того, чтобы пересечь солнечную систему.
Кроме того, есть все основания считать, что вовсе не орбита Плутона отмечает границу владений Солнца. Это не значит, что мы должны предполагать существование еще не открытых более далеких планет (за исключением карликовых планет). Имеются уже известные небесные тела, которые время от времени очень легко увидеть и которые, без сомнения, уходят от Солнца гораздо дальше, чем Плутон на самой удаленной точке своей орбиты.
Где находятся границы Солнечной системы
В 1684 г. английский ученый Исаак Ньютон (1642—1727) открыл закон всемирного тяготения. Этот закон строго математически обосновал кеплеровскую схему строения солнечной системы и позволил вычислить орбиту тела, обращающегося вокруг Солнца, даже если тело наблюдалось лишь на части своей орбиты.
Это в свою очередь дало возможность приняться за кометы — небесные тела, которые время от времени появлялись на небе. В древности и в эпоху Средневековья астрономы считали, что кометы появляются без всякой правильности и что движение их не подчинено никаким естественным законам, широкие же массы были убеждены, что единственное назначение комет — предвещать несчастье.
Однако современник и друг Ньютона, английский ученый Эдмунд Галлей (1656—1742) попробовал применить к кометам закон тяготения. Он заметил, что некоторые особенно яркие кометы появлялись в небе через каждые 75—76 лет.
И вот в 1704 г. он предположил, что все эти кометы на самом деле были одним и тем же небесным телом, которое двигалось вокруг Солнца по постоянной эллиптической орбите, причем орбите настолько вытянутой, что значительная ее часть лежала на колоссальном расстоянии от Земли. Когда комета находилась вдали от Земли, она была невидима.
Но через каждые 75 или 76 лет она оказывалась на той части своей орбиты, которая расположена ближе всего к Солнцу (и к Земле), и вот тогда-то она становилась видимой.
Попытка запечатлеть реальные размеры и расстояния планет Солнечной системы от Солнца и друг от друга
Галлей вычислил орбиту этой кометы и предсказал, что она вновь вернется в 1758 г. И действительно, комета появилась в тот год (через 16 лет после смерти Галлея) и с тех пор получила название кометы Галлея.
В ближайшей к Солнцу точке своей орбиты комета Галлея оказывается от него всего лишь примерно в 90 000 000 км, заходя таким образом немного внутрь орбиты Венеры В наиболее же удаленной от Солнца части своей орбиты комета Галлея уходит от него приблизительно в 3 1/2 раза дальше, чем Сатурн.
Таким образом, к 1760 г. астрономы прекрасно знали, что солнечная система не очерчена орбитой “последней” планеты.
Более того, комета Галлея — одна из комет, относительно близких к Солнцу. Существуют кометы, которые движутся вокруг него по таким невероятно вытянутым орбитам, что возвращаются к нему только раз в несколько столетий, а то и тысячелетий. Они уходят от Солнца не на миллиарды километров, а скорее всего на сотни миллиардов.
Голландский астроном Ян Хендрик Оорт (род. в 1900 г) в 1950 г. высказал предположение, что, возможно, существует целое огромное облако комет (известное как “Облако Оорта”), которые на протяжении всей своей орбиты находятся так далеко от Солнца, что никогда не бывают видимы.
Отсюда следует, что максимальный диаметр солнечной системы может достигать 1000 миллиардов, т. е триллиона (1 000 000 000 000) километров или даже больше. Световому лучу требуется 40 суток, чтобы покрыть такое расстояние. Таким образом, можно сказать, что диаметр солнечной системы превосходит один световой месяц.