Как найти расстояние от точки до следа

Задание 1. Построение следов плоскости и определение расстояния от точки до плоскости

По вопросам репетиторства по начертательной геометрии, вы можете связаться любым удобным способом в разделе Контакты. Возможно очное и дистанционное обучение по Skype: 1250 р./ак.ч.

1.1. Условие задания

Построить следы плоскости, заданной ∆BCD, и определить расстояние от точки А до заданной плоскости методом прямоугольного треугольника (координаты точек А, В, С и D см. в Таблице 1 раздела Задания);

1.2. Пример выполнения задания № 1

Первое задание представляет комплекс задач по темам:

1. Ортогональное проецирование, эпюр Монжа, точка, прямая, плоскость: по известным координатам трех точек B, C, D построить горизонтальную и фронтальную проекции плоскости, заданной ∆BCD;

2. Следы прямой, следы плоскости, свойства принадлежности прямой плоскости: построить следы плоскости, заданной ∆BCD;

3. Плоскости общего и частного положения, пересечение прямой и плоскости, перпендикулярность прямой и плоскости, пересечение плоскостей, метод прямоугольного треугольника: определить расстояние от точки А до плоскости ∆BCD.

1.2.1. По известным координатам трех точек B, C, D построим горизонтальную и фронтальную проекции плоскости, заданной ∆BCD (Рисунок 1.1), для чего необходимо построить горизонтальные и фронтальные проекции вершин ∆BCD, а затем одноименные проекции вершин соединить.

Известно, что следом плоскости называется прямая, полученная в результате пересечения заданной плоскости с плоскостью проекций.

У плоскости общего положения 3 следа: горизонтальный, фронтальный и профильный.

Для того чтобы построить следы плоскости, достаточно построить следы (горизонтальный и фронтальный) любых двух прямых, лежащих в этой плоскости, и соединить их между собой. Таким образом, след плоскости (горизонтальный или фронтальный) будет однозначно определен, поскольку через две точки на плоскости (в данном случае этими точками будут следы прямых) можно провести прямую, и при том, только одну.

Основанием для такого построения служит свойство принадлежности прямой плоскости: если прямая принадлежит заданной плоскости, то ее следы лежат на одноименных следах этой плоскости.

Следом прямой называется точка пересечения этой прямой с плоскостью проекций.

Горизонтальный след прямой лежит в горизонтальной плоскости проекций, фронтальный – во фронтальной плоскости проекций.

Рассмотрим построение горизонтального следа прямой DB, для чего необходимо:

1. Продолжить фронтальную проекцию прямой DB до пересечения с осью X, точка пересечения М2 является фронтальной проекцией горизонтального следа;

2. Из точки М2 восстановить перпендикуляр (линию проекционной связи) до его пересечения с горизонтальной проекцией прямой DB или ее продолжением. Точка пересечения М1 и будет являться горизонтальной проекцией горизонтального следа (Рисунок 1.1), которая совпадает с самим следом М.

Аналогично выполняется построение горизонтального следа отрезка СВ прямой: точка М’.

Чтобы построить фронтальный след отрезка CB прямой, необходимо:

1. Продолжить горизонтальную проекцию прямой CB до пересечения с осью X, точка пересечения Nявляется горизонтальной проекцией фронтального следа;

2. Из точки Nвосстановить перпендикуляр (линию проекционной связи) до его пересечения с фронтальной проекцией прямой CB или ее продолжением. Точка пересечения N2 и будет являться фронтальной проекцией фронтального следа, которая совпадает с самим следом N.

Соединив точки M′1 и M1 отрезком прямой, получим горизонтальный след плоскости απ1. Точка αпересечения απс осью X называется точкой схода следов. Для построения фронтального следа плоскости απнеобходимо соединить фронтальный след N2 с точкой схода следов αx

Epyur_1_1_

Рисунок 1.1 — Построение следов плоскости

Алгоритм решения этой задачи может быть представлен следующим образом:

  1. (D2B2 ∩ OX) = M2;
  2. (MM1 ∩ D1B1) = M1 = M;
  3. (C2B2 ∩ OX) = M′2;
  4. (M′2M′1 ∩ C1B1) = M′1 = M′;
  5. ( ∩ π2) = N2N;
  6. (MM′) ≡ απ1;
  7. xN) ≡ απ2.

1.2.2. Для решения второй части первого задания необходимо знать, что:

  • расстояние от точки А до плоскости ∆BCD определяется длиной перпендикуляра, восстановленного из этой точки на плоскость;
  • любая прямая перпендикулярна к плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости;
  • на эпюре проекции прямой, перпендикулярной плоскости, перпендикулярны наклонным проекциям горизонтали и фронтали этой плоскости или одноименным следам плоскости (рис. 1.2) (см. в лекциях Теорему о перпендикуляре к плоскости).

Чтобы найти основание перпендикуляра, необходимо решить задачу на пересечение прямой (в данной задаче такой прямой является перпендикуляр к плоскости) с плоскостью:

1. Заключить перпендикуляр во вспомогательную плоскость, в качестве которой следует взять плоскость частного положения (горизонтально-проецирующую или фронтально-проецирующую, в примере в качестве вспомогательной плоскости взята горизонтально-проецирующая γ, то есть перпендикулярная к π1, ее горизонтальный след γсовпадает с горизонтальной проекцией перпендикуляра);

2. Найти линию пересечения заданной плоскости ∆BCD со вспомогательной γ (MN на рис. 1.2);

3. Найти точку пересечения линии пересечения плоскостей MN с перпендикуляром (точка К на рис. 1.2).

4. Для определения истинной величины расстояния от точки А до заданной плоскости ∆BCD следует воспользоваться методом прямоугольного треугольника: истинная величина отрезка есть гипотенуза прямоугольного треугольника, одним катетом которого является одна из проекций отрезка, а другим – разность расстояний от его концов до плоскости проекций, в которой ведётся построение.

5. Определите видимость участков перпендикуляра методом конкурирующих точек. На примере — точки N и 3 для определения видимости на π1, точки 45 — для определения видимости на π2.

epur1_2_2

Рисунок 1.2 — Построение перпендикуляра к плоскости
zadanie1_2
Рисунок 1.3 — Пример оформления контрольного задания №1

Видеопример выполнения задания №1

1.3. Варианты задания 1

Таблица 1– Значения координат точек

Вариант Координаты (x, y, z) точек
А В С D
1 15; 55; 50 10; 35; 5 20; 10; 30 70; 50; 40
2 80; 65; 50 50; 10; 55 10; 50; 25 75; 25; 0
3 95; 45; 60 130; 40; 50 40; 5; 25 80; 30; 5
4 115; 10; 0 130; 40; 40 40; 5; 25 80; 30; 5
5 55; 5; 60 85; 45; 60 100; 5; 30 50; 25; 10
6 55; 5; 60 70; 40; 20 30; 30; 35 30; 10; 10
7 60; 10; 45 80; 45; 5 35; 0; 15 10; 0; 45
8 5; 0; 0 35; 0; 25 20; 0; 55 40; 40; 0
9 50; 5; 45 65; 30; 10 30; 25; 55 20; 0; 20
10 60; 50; 35 40; 30; 0 30; 15; 30 80; 5; 20
11 65; 35; 15 50; 0; 30 20; 25; 25 5; 0; 10
12 75; 65; 50 45; 10; 35 60; 20; 10 10; 65; 0
13 95; 0; 15 85; 50; 10 10; 10; 10 55; 10; 45
14 45; 40; 40 80; 50; 10 10; 10; 10 55; 10; 45
15 80; 20; 30 55; 30; 60 15; 10; 20 70; 65; 30
16 75; 35; 35 55; 30; 60 25; 10; 20 70; 65; 30
17 75; 65; 50 45; 5; 55 5; 45; 10 70; 20; 0
18 65; 15; 20 40; 5; 60 0; 5; 25 60; 60; 20
19 70; 20; 10 45; 15; 60 5; 10; 20 60; 65; 10
20 20; 50; 45 10; 20; 10 55; 50; 10 80; 0; 60
21 0; 5; 50 50; 50; 40 5; 55; 10 45; 5; 0
22 55; 50; 65 45; 55; 5 0; 10; 45 70; 0; 40
23 65; 5; 15 40; 60; 10 0; 20; 5 60; 20; 60
24 50; 20; 45 45; 60; 30 5; 20; 10 60; 30; 5
25 55; 15; 40 40; 50; 25 5; 15; 10 50; 40; 10
26 15; 45; 40 10; 25; 5 20; 10; 30 65; 40; 35
27 70; 30; 30 55; 30; 60 20; 5; 15 65; 60; 25
28 90; 0; 15 80; 45; 10 10; 10; 10 50; 10; 45
29 110; 10; 0 120; 35; 30 35; 5; 20 70; 20; 5
30 45; 40; 40 80; 45; 10 10; 10; 10 55; 10; 40

По вопросам репетиторства по начертательной геометрии, вы можете связаться любым удобным способом в разделе Контакты. Возможно очное и дистанционное обучение по Skype: 1250 р./ак.ч.

Содержание:

К метрическим задачам относятся задачи на определение натуральной величины отрезков, расстояний углов, площадей плоских фигур.

Определение натуральной величины отрезка и углов наклона к плоскостям проекций методом прямоугольною треугольника Натуральная величина отрезка равна гипотенузе прямоугольного треугольника, одним катетом которого является проекция отрезка, а вторым – разность расстояний концов отрезка от той плоскости, на которой ведется построение. При этом угол между гипотенузой и катетом проекций является углом наклона отрезка к той плоскости, ряльной величины выполнено на горизонтальной проекции. Поэтому одним катетом прямоугольного треугольника, является горизонтальная проекцияРешение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами

Если необходимо определить угол наклона отрезка АВ к плоскостиРешение метрических задач в начертательной геометрии с примерами то построение прямоугольного треугольника ведется на фронтальной проекции.

Решение метрических задач методами преобразовании проекций

Положении геометрических образов, при которых расстоянии и углы не искажаются на плоскостях проекций

Метрические характеристики объектов на чертежах не искажаются, если геометрические образы занимают частное положение относительно плоскостей проекций.

Приведем некоторые из них.

1. Прямая проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.2).

Решение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами– угол наклона к плоскостиРешение метрических задач в начертательной геометрии с примерами

2. Расстояние от точки до прямой проецируется в натуральную величину, если прямая проецирующая (рисунок 3.3).

Решение метрических задач в начертательной геометрии с примерами

3. Расстояние между параллельными прямыми проецируется в натуральную величину, если прямые проецирующие (рисунок 3.4).

Решение метрических задач в начертательной геометрии с примерами

4. Расстояние между скрещивающимися прямыми проецируется в натуральную величину, если одна из прямых проецирующая (рисунок 3.5).

Решение метрических задач в начертательной геометрии с примерами

5.    Угол между плоскостями (двугранный угол) проецируется в натуральную величину, если ребро угла проецирующее (рисунок 3.6).

Решение метрических задач в начертательной геометрии с примерами

6.    Угол наклона плоскости к плоскости проекций проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.7) Решение метрических задач в начертательной геометрии с примерами

7.    Расстояние от точки до плоскости проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.8)

Решение метрических задач в начертательной геометрии с примерами

8.    Любая плоская фигура проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.9а,б)

Решение метрических задач в начертательной геометрии с примерами

Таким образом, для решения метрических задач целесообразно данный объект привести в частное положение с тем, чтобы на одной из новых проекций получить более простое решение задачи.

Для такого перехода и служат способы преобразования проекций.

Существует несколько способов преобразовании проекций: способ вращения вокруг осей перпендикулярных плоскостям проекций, способ плоскопараллельного перемещения, способ замены плоскостей проекций и др.  

Четыре основных задачи преобразовании проекций

Этими способами решаются четыре основные задачи:

  • Задача 1. Прямую общего положения преобразуем в линию уровня (одно преобразование).
  • Задача 2. Прямую общего положения преобразуем в проецирующую (два преобразования)
  • Задача 3. Плоскость общего положения преобразуем в проецирующую (одно преобразование)
  • Задача 4. Плоскость общего положения преобразуем в плоскость уровня (два преобразования)

Решение 1-ой и 2-ой задачи преобразовании проекций методом вращении, плоскопараллельного перемещении и замены плоскостей проекций

Способ вращения

Способ вращения заключается в том, что геометрические образы вращаются вокруг осей перпендикулярных плоскостям проекций до занятия ими какого-либо частного положения относительно плоскостей проекций. При этом одна проекция точки перемещается по окружности, вторая – но прямой параллельной оси проекций.

На рисунке 3.10 вокруг осиРешение метрических задач в начертательной геометрии с примерамивращаем отрезок ЛВ до положения параллельного плоскостиРешение метрических задач в начертательной геометрии с примерами(1 задача). Далее вращением вокруг осиРешение метрических задач в начертательной геометрии с примерамиполученный отрезок до положения перпендикулярного плоскости Решение метрических задач в начертательной геометрии с примерамиНа Решение метрических задач в начертательной геометрии с примерами отрезок с проецируется в точку Решение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами

Способ плоскопараллельного перемещения

Способ плоскопараллельного перемещения является разновидностью способа вращения (вращение без закрепленных осей), т.е. положение объекта можно преобразовывать путем перемещения его параллельно одной плоскости проекций, одновременно изменяя его положение относительно другой плоскости проекций до занятия им какого-либо частного положения.

На рисунке 3.11 сначала АВ переводим из общего положения в положение горизонтальное. При этом Решение метрических задач в начертательной геометрии с примерами должно быть равно по величина Решение метрических задач в начертательной геометрии с примерами находим в пересечении вертикальных линий связи и линий Решение метрических задач в начертательной геометрии с примерамипараллельных оси Решение метрических задач в начертательной геометрии с примерами(1 задача). Далее отрезок Решение метрических задач в начертательной геометрии с примерамиперемещаем до положения перпендикулярного оси Решение метрических задач в начертательной геометрии с примерами При этом Решение метрических задач в начертательной геометрии с примерами На фронтальной проекции отрезок с проецируется в точкуРешение метрических задач в начертательной геометрии с примерами (2 задача).

Решение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами

Способ замены плоскостей проекций

Сущность способа замены плоскостей проекций заключается в том, что старая система плоскостей проекций заменяется на новую, с таким расчетом, чтобы относительно новой системы плоскостей, геометрический образ занял какое-то частное положение. При этом нужно помнить, что линии связи будут перпендикулярны относительно новой оси проекций и расстояния от новой оси проекций до новой проекции точки равно расстоянию от старой проекции точки до старой оси.

На рисунке 3.12 произведена первая замена плоскость Решение метрических задач в начертательной геометрии с примерами заменена на новую фронтальную плоскость Решение метрических задач в начертательной геометрии с примерамипараллельную прямой АВ. При этом новая осьРешение метрических задач в начертательной геометрии с примерами проводится параллельно проекции Решение метрических задач в начертательной геометрии с примерамиЛинии связи проводятся перпендикулярно осиРешение метрических задач в начертательной геометрии с примерами и на них от Решение метрических задач в начертательной геометрии с примерами откладываются координаты z точек А и В (1 задача).

Решение метрических задач в начертательной геометрии с примерами

Далее прямую АВ преобразуем в проецирующую. Для этого проводим новую ось Решение метрических задач в начертательной геометрии с примерами перпендикулярно проекцииРешение метрических задач в начертательной геометрии с примерами. Т.к. Решение метрических задач в начертательной геометрии с примерами параллельна оси Решение метрических задач в начертательной геометрии с примерами, расстояние до проекций Решение метрических задач в начертательной геометрии с примерами будет одинаковое и прямая спроецируется в точкуРешение метрических задач в начертательной геометрии с примерами (2 задача)  

Решение 3-ой и 4-ой задачи преобразовании проекций методом плоскопараллельного перемещения и замены плоскостей проекций

Так как метод вращения является более громоздким, рассмотрим решение 3-ей и 4-ой задачи преобразования методом плоскопараллельного перемещения и методом замены плоскостей проекций.

Способ плоскопараллельного перемещения

Решение метрических задач в начертательной геометрии с примерами

Для того чтобы плоскость из общего положения перевести в проецирующее, нужно иметь ввиду, что при этом ее горизонталь или фронталь должна быть перпендикулярна плоскости проекций. Поэтому на рисунке 3.13 проведена горизонталь Решение метрических задач в начертательной геометрии с примерамиДалее Решение метрических задач в начертательной геометрии с примерами располагаем перпендикулярно оси Решение метрических задач в начертательной геометрии с примерами Откладываем на ней отрезок Решение метрических задач в начертательной геометрии с примерамии циркулем строим треугольник Решение метрических задач в начертательной геометрии с примерами равный по величине Решение метрических задач в начертательной геометрии с примерами На фронтальной проекции треугольник проецируется в линию (3 задача).

Чтобы плоскость треугольника перевести в положение плоскости уровня, достаточно полученную фронтальную проекцию Решение метрических задач в начертательной геометрии с примерами расположить параллельно оси Решение метрических задач в начертательной геометрии с примерамипри этом на горизонтальной проекции треугольник проецируется в натуральную величину (4-я задача)

Способ замены плоскостей проекций

При решении задачи методом замены (рисунок 3.14) новую ось Решение метрических задач в начертательной геометрии с примерами проводим перпендикулярно горизонтали Решение метрических задач в начертательной геометрии с примерами тогда на новую фронтальную плоскость Решение метрических задач в начертательной геометрии с примерами треугольник спроецируется в линию, т.е. станет перпендикулярным (3-я задача). Чтобы плоскость перевести в положение плоскости уровня, необходимо новую осьРешение метрических задач в начертательной геометрии с примерами провести параллельно плоскостиРешение метрических задач в начертательной геометрии с примерами На новую плоскость Решение метрических задач в начертательной геометрии с примерами треугольник спроецируется в натуральную величину.

Решение метрических задач в начертательной геометрии с примерами

Для того, чтобы методами преобразования решить любую метрическую задачу, необходимо определить какую из четырех основных задач преобразования необходимо решать в каждом конкретном случае.

Метрические задачи

Метрические задачи – это задачи на определение линейных или угловых размеров геометрических объектов, а также расстояний и углов между ними.

Главным вопросом метрических задач является вопрос о построении перпендикуляра к прямой или плоскости. Построение взаимно перпендикулярных прямых было рассмотрено ранее.

Из элементарной геометрии известно, что прямая перпендикулярна к плоскости, если она перпендикулярна двум пересекающимся прямым, принадлежащим этой плоскости. В качестве этих пересекающихся прямых наиболее целесообразно использовать горизонталь и фронталь плоскости. Это объясняется тем, что только в этом случае прямой угол будет проецироваться в натуральную величину на соответствующие плоскости проекций. На рисунке 5.1 приведен пространственный чертеж, на котором из плоскости а (из точки А) восстановлен перпендикуляр АВ. Из приведенного изображения можно выяснить методику построения проекций перпендикуляра к плоскости:    горизонтальная проекция перпендикуляра к плоскости проводится перпендикулярно горизонтальной проекции горизонтали или горизонтальному следу плоскости, а фронтальная проекция перпендикуляра проводится перпендикулярно фронтальной проекции фронтали или фронтальному следу плоскости. Таким образом, необходимо выполнить следующий алгоритм проведения проекций перпендикуляра к плоскости:

Решение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами

Построение перпендикуляра к плоскость и восстановление перпендикуляра из плоскости называется прямой задачей, а построение плоскости, перпендикулярной к прямой – обратной задачей. Обе задачи решаются по одному и тому же вышеописанному алгоритму. При этом плоскость, перпендикулярную заданной прямой, можно задать следами или пересекающимися горизонталью и фронталью.

На рисунке 5.2 показано решение прямой (а) и обратной (б) задач. В прямой задаче из точки A треугольника AВС восстановлен перпендикуляр, в обратной задаче через точку К проведена плоскость, перпендикулярная прямой АВ. Плоскость задана пересекающимися горизонталью и фронталью.

Здесь же приведены примеры прямой и обратной задач, если плоскость задана следами. В прямой задаче (в) из точки Л построен перпендикуляр на плоскость, в обратной (г) – через точку К проведена плоскость перпендикулярно прямой АВ. Решение метрических задач в начертательной геометрии с примерами

Определение расстояний между геометрическими объектами

Среди этих задач можно выделить следующие задачи: расстояние от точки до плоскости, расстояние от точки до прямой, расстояние между двумя параллельными прямыми, расстояние между двумя скрещивающимися прямыми, расстояние между двумя параллельными плоскостями и другие. В общем случае все задачи сводятся к определению расстояний между двумя точками.  

Чтобы определить расстояние от точки до плоскости, необходимо выполнить ряд логических действий:

  1. Из точки опустить перпендикуляр на заданную плоскость;
  2. Найти точку встречи перпендикуляра с плоскостью;
  3. Определить НВ расстояния между заданной и найденной точками.

Задача на определение расстояния от точки до прямой решается по следующему плану:

  1. Через точку к провести плоскость, перпендикулярную заданной прямой;
  2. Найти точку встречи М заданной прямой с проведенной плоскостью;
  3. Соединить полученные точки (это будет перпендикуляр из точки на прямую);
  4. Определить НВ перпендикуляра.

Пространственная модель решения второй задачи представлена на рисунке 5.3. Рассмотренная задача относится также к задачам на перпендикулярность двух прямых.

Решение метрических задач в начертательной геометрии с примерами

Другие упомянутые задачи на определение расстояний легче решаются методами преобразования эпюра, которые будут рассмотрены в последующих разделах.

Перпендикулярность плоскостей

Плоскость перпендикулярна другой плоскости, если она содержит прямую, перпендикулярную другой плоскости (рисунок 5.4а). Таким образом, для того, чтобы провести плоскость, перпендикулярную другой, необходимо сначала провести перпендикуляр к заданной плоскости, а затем через него провести искомую плоскость. На рисунке 5.46 представлена задача:    через точку К провести плоскость, перпендикулярную плоскости треугольника AВС. Искомая плоскость задана двумя пересекающимися прямыми, одна из которых перпендикулярна заданной плоскости.

Решение метрических задач в начертательной геометрии с примерами

Если две плоскости являются одноименными плоскостями частного положения (например, горизонтально- или фронтально-проецирующими), то при перпендикулярности плоскостей их собирательные следы будут перпендикулярны друг другу (рисунок 5.4в,г).

Если плоскости являются плоскостями общего положения, то при их перпендикулярности одноименные следы не будут взаимно перпендикулярны. Другими словами, перпендикулярность одноименных следов плоскостей общего положения не является достаточным условием для перпендикулярности самих плоскостей.

Определение углов между прямой и плоскостью и между двумя плоскостями

Определение углов между геометрическими объектами является трудоемкой задачей, если её решать традиционными геометрическими способами. Так, например, задачу на определение угла между прямой и плоскостью (рисунок 5.5) можно решить способом, алгоритм которого содержит следующие операции:

  1. Определить точку встречи прямой АВ с плоскостью а;
  2. Из точки В построить перпендикуляр на плоскость;
  3. Найти точку встречи перпендикуляра с плоскостью;
  4. Точки К и N соединить и определить НВ угла BKN.

Решение метрических задач в начертательной геометрии с примерами

Однако задача может быть значительно упрощена, если использовать способ решения задачи с помощью дополнительного угла. Дополнительным углом назовем угол между заданной прямой АВ и перпендикуляром BN, обозначенный через Решение метрических задач в начертательной геометрии с примерами Из приведенного рисунка видно, что, если из точки В прямой построить на плоскость перпендикуляр, определить НВ дополнительного угла Решение метрических задач в начертательной геометрии с примерами то искомый угол определится по формуле:

Решение метрических задач в начертательной геометрии с примерами

которую можно решить графически, достроив угол Решение метрических задач в начертательной геометрии с примерами до 90°.

То же самое можно сказать о задаче на определение двугранного угла, то есть угла между двумя плоскостями (рисунок 5.66). Первый способ (геометрический) достаточно трудоемок. Он заключается в пересечении угла вспомогательной плоскостью а, перпендикулярной ребру АВ, построении линий пересечения KN и KL и определении натуральной величины угла NKL.

Решение метрических задач в начертательной геометрии с примерами

С помощью дополнительного угла задача решается следующим образом. В растворе двугранного угла (рисунок 5.6в) берут любую точку К и строят из неё перпендикуляры на обе плоскости двугранного угла, которые образуют дополнительный угол Решение метрических задач в начертательной геометрии с примерамиДалее определяют НВ дополнительного угла и дополняют его (графически) до 180 градусов, исходя из формулы:

Решение метрических задач в начертательной геометрии с примерами

Дополненный угол будет искомым.

Натуральную величину дополнительного углаРешение метрических задач в начертательной геометрии с примерами в обеих задачах наиболее целесообразно определять методом вращения вокруг горизонтали или фронтали, который будет изложен в последующих темах.

Пример: Из любой вершины треугольника АВС восстановить перпендикуляр длиной 40 мм.

Решение метрических задач в начертательной геометрии с примерами

Решение: Сначала необходимо в плоскости треугольника АВС провести горизонталь и фронталь для того, чтобы построить проекции восстановленного перпендикуляра. Далее из точки С проводим проекции перпендикуляра согласно рассмотренному выше алгоритму о перпендикуляре к плоскости. Для того, чтобы отложить 40 мм, необходимо определить НВ ограниченного отрезка перпендикуляра CF (точку F берем произвольно). НВ отрезка CF определяем методом прямоугольного треугольника на горизонтальной проекции CF. Полученную точку К возвращаем на проекции по теореме Фалеса. Получаем проекции перпендикуляра длиной 40 мм (рисунок. 5.7).

Пример: Найти расстояние от точки А до плоскости, заданной следами

Решение метрических задач в начертательной геометрии с примерами

Решение: Из точки А строим перпендикуляр на заданную плоскость. Проекции перпендикуляра проводим перпендикулярно следам. Далее находим точку встречи перпендикуляра с заданной плоскостью с помощью вспомогательной фронтально-проецирующей плоскости Решение метрических задач в начертательной геометрии с примерамиНаходим линию пересечения плоскостей Решение метрических задач в начертательной геометрии с примерами (линия 1-2) и точку встречи Решение метрических задач в начертательной геометрии с примерами в месте пересечения горизонтальной проекции перпендикуляра с линией 1-2. Методом прямоугольного треугольника определяем НВ расстояния АК (рисунок 5.8).

Пример: Определить расстояние от точки К до прямой AВ.

Решение метрических задач в начертательной геометрии с примерами

Решение: Через точку К проводим плоскость, перпендикулярную заданной прямой. Плоскость задаем пересекающимися горизонталью и фронталью. Их проекции проводим согласно алгоритму о перпендикуляре к плоскости (обратная задача). Далее находим точку встречи прямой с проведенной плоскостью (точка М). Определяем натуральную величину КМ методом прямоугольного треугольника (рисунок 5.9).

Примеры метрических задач

Задачи, в которых определяются различные геометрические величины -расстояния между объектами, длины отрезков, углы, площади и т.д. называются метрическими. Решение многих метрических задач, например задач на определение кратчайших расстояний, требует построения перпендикулярных прямых и плоскостей.

Перпендикулярность является частным случаем пересечения прямых, прямой и плоскости или двух плоскостей. Необходимо установить соотношения, по которым строятся проекции перпендикулярных прямых и плоскостей.

Теорема о проекциях прямого угла

Прямой угол проецируется на плоскость без искажения, если одна из его сторон параллельна этой плоскости (рис. 10.1).

Решение метрических задач в начертательной геометрии с примерами

Рис. 10.1. Теорема о проекциях прямого угла

Дано :Решение метрических задач в начертательной геометрии с примерамиBAC = 90°; AB || П’
 

Доказать, что C’A’Решение метрических задач в начертательной геометрии с примерамиA’B’
 

Доказательство: если AB||П’, то A’B’||AB, но AA’Решение метрических задач в начертательной геометрии с примерамиП’^AA’Решение метрических задач в начертательной геометрии с примерамиA’B’ значит ABРешение метрических задач в начертательной геометрии с примерамиAA,AB Решение метрических задач в начертательной геометрии с примерамиплоскости CAA’C’, тогда и A’B’Решение метрических задач в начертательной геометрии с примерами CAA’C’. Следовательно,CA’Решение метрических задач в начертательной геометрии с примерамиA’B’.

На основании этой теоремы две взаимно перпендикулярные прямые (пересекающиеся или скрещивающиеся) проецируются на П1 в виде взаимно перпендикулярных прямых, если одна из них горизонталь, на П2 – если одна из них фронталь (рис. 10.2,а).

Условие перпендикулярности скрещивающихся прямых (рис. 10.2,б) сводятся к условиям перпендикулярности пересекающихся прямых, поведенных через произвольную точку и соответственно параллельных скрещивающимся прямым. Таким образом, понятие перпендикулярности можно отнести как к пересекающимся, так и к скрещивающимся прямым.

Решение метрических задач в начертательной геометрии с примерами

Рис. 10.2. Перпендикулярные прямые:
а -пересекающиеся a1 Решение метрических задач в начертательной геометрии с примерами h1 Решение метрических задач в начертательной геометрии с примерами a Решение метрических задач в начертательной геометрии с примерами h ;
б -скрещивающиеся b2 Решение метрических задач в начертательной геометрии с примерами Решение метрических задач в начертательной геометрии с примерами2 Решение метрических задач в начертательной геометрии с примерами b Решение метрических задач в начертательной геометрии с примерами Решение метрических задач в начертательной геометрии с примерами

Линии наибольшего наклона плоскости

Прямые, лежащие в плоскости и перпендикулярные линиям уровня этой плоскости, называются линиями наибольшего наклона к соответствующей плоскости проекций (рис. 10.3). Так, прямая, лежащая в плоскости и перпендикулярная горизонтали плоскости, называется линией наибольшего наклона к горизонтальной плоскости проекций, а прямая, перпендикулярная фронтали – линией наибольшего наклона к фронтальной плоскости проекций.

Угол между линией наибольшего наклона и ее проекцией на соответствующую плоскость равен углу наклона плоскости к плоскости проекций (см. рис. 9.15).
Решение метрических задач в начертательной геометрии с примерами

Рис. 10.3. Линия наибольшего наклона плоскости а к П1:
а – плоскость общего положения; h ∈α – горизонталь плоскости а; AB Решение метрических задач в начертательной геометрии с примерами h – линия наибольшего наклона;
φ = Решение метрических задач в начертательной геометрии с примерамиAB, AB 1 – угол наклона плоскости а к П1

Перпендикулярность прямой и плоскости

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым этой плоскости. На основании теоремы о проекциях прямого угла можно получить условие перпендикулярности прямой общего положения и плоскости общего положения:
Если прямая а перпендикулярна плоскости α(ABC), то ее горизонтальная проекция перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция – фронтальной проекции фронтали плоскости.

Например, при построении прямой а, перпендикулярной плоскости α(ABC) (рис. 10.4,а), в плоскости строятся линии уровня – горизонталь и фронталь, затем через произвольную точку в плоскости, в данном случае точку K(h×Решение метрических задач в начертательной геометрии с примерами), строится прямая, горизонтальная проекция которой перпендикулярна горизонтальной проекции горизонтали плоскости α(ABC), а фронтальная проекция – фронтальной проекции фронтали плоскости.

Решение метрических задач в начертательной геометрии с примерами

Рис. 10.4. Перпендикулярность прямой и плоскости:

а -построение прямой, перпендикулярной плоскости:  Решение метрических задач в начертательной геометрии с примерами

б -построение плоскости, перпендикулярной прямой: Решение метрических задач в начертательной геометрии с примерами

Аналогично решается задача о построении плоскости, перпендикулярной прямой общего положения (рис. 10.4,б)

Если плоскость проецирующая, проекции линий уровня совпадают со следом плоскости, перпендикулярность устанавливается по отношению к следу плоскости. Горизонтальная проекция перпендикуляра к горизонтально-проецирующей плоскости строится перпендикулярно горизонтальному следу плоскости (рис. 10.5,а). Прямая, перпендикулярная горизонтально-проецирующей плоскости, занимает положение горизонтальной линии уровня.
Аналогично, фронтальная проекция перпендикуляра к фронтально-проецирующей плоскости строится перпендикулярно фронтальному следу плоскости (рис. 10.5,б). Прямая, перпендикулярная фронтально-проецирующей плоскости, занимает положение фронтали.

Решение метрических задач в начертательной геометрии с примерами

Рис. 10.5. Перпендикулярность прямой и проецирующей плоскости:
а -построение прямой, перпендикулярной плоскости;
б -построение плоскости, перпендикулярной прямой

Взаимная перпендикулярность плоскостей

Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Таким образом, построение взаимно перпендикулярных плоскостей сводится к построению перпендикулярных прямой и плоскости. Например, чтобы через произвольную точку А провести плоскость, перпендикулярную плоскости a(Решение метрических задач в начертательной геометрии с примерами× h) (рис. 10.6), достаточно построить прямую n,перпендикулярную плоскости α(Решение метрических задач в начертательной геометрии с примерами×h): n1Решение метрических задач в начертательной геометрии с примерамиh1; n2Решение метрических задач в начертательной геометрии с примерамиРешение метрических задач в начертательной геометрии с примерами2. Вторая прямая m, определяющая искомую плоскость, может быть задана произвольно – как пересекающая прямую n или параллельная ей.

Решение метрических задач в начертательной геометрии с примерами

Рис. 10.6. Перпендикулярность двух плоскостей

Дано: α(h × Решение метрических задач в начертательной геометрии с примерами ) ; A (A1, A2).
 

Построить: A ∈ β Решение метрических задач в начертательной геометрии с примерами α .

Решение:
A ∈ n;

Решение метрических задач в начертательной геометрии с примерами

Определение метрических задач

Традиционно задачи, связанные с измерением длин, углов, площадей и объемов относят к метрическим. В основе решения этих задач лежит определение длины отрезка и, как производной от этого, площади плоской фигуры.

Определение длины отрезка

Одним из наиболее распространенных методов (рисунок 5.1) является метод прямоугольного треугольника (так его называют в начертательной геометрии) или метод ортогональных дополнений (название, принятое в линейной алгебре).
Решение метрических задач в начертательной геометрии с примерами

Идея метода базируется на следующем. Истинная величина отрезка AВ является гипотенузой прямоугольного треугольника, один из катетов которого, является проекцией отрезка AВ на плоскость проекции Решение метрических задач в начертательной геометрии с примерами а второй катет -разница координат Решение метрических задач в начертательной геометрии с примерамиконцов отрезка для оси, отсутствующей в рассматриваемой плоскости проекции (ортогональное дополнение). Угол между проекцией и гипотенузой этого треугольника (а) определяет наклон прямой к соответствующей плоскости проекции.

На комплексном чертеже возможно решение как на плоскости Решение метрических задач в начертательной геометрии с примерами так и на плоскости Решение метрических задач в начертательной геометрии с примерами При правильных построениях Решение метрических задач в начертательной геометрии с примерами. Углы а и Решение метрических задач в начертательной геометрии с примерами -углы наклона отрезка прямой АВ к плоскости Решение метрических задач в начертательной геометрии с примерами соответственно.

Определение площади треугольника

Определение площади треугольника и величины плоского угла можно свести к известной задаче построения треугольника по трем сторонам.

Для этого достаточно, используя рассмотренный выше способ прямоугольного треугольника, найти по порядку истинные величины сторон Решение метрических задач в начертательной геометрии с примерами (в соответствии с рисунком 5.2), а затем на свободном месте построить треугольник по трем сторонам.

Решение метрических задач в начертательной геометрии с примерами
Величина плоского угла между двумя любыми сторонами этой фигуры может быть измерена на истинной величине треугольника.

Проецирование прямого угла

Решение многих задач Начертательной геометрии связано с необходимостью построения на чертеже взаимно перпендикулярных прямых и плоскостей. Базой для этого служит умение строить прямые углы на комплексном чертеже.

Решение метрических задач в начертательной геометрии с примерами
Известная в теории чертежа теорема (приведем ее без доказательства) утверждает, что прямой угол (в соответствии с рисунком 5.3) проецируется на

соответствующую плоскость проекций вез искажения, если одна из его сторон параллельна этой плоскости проекций, а вторая – ей не перпендикулярна.

  • Заказать чертежи

Перпендикулярность прямых и плоскостей

Выше уже отмечалось, что в трехмерном Евклидовом пространстве отсутствует полная параллельность, то же самое можно сказать и о перпендикулярности. Понятие перпендикулярности так же, как и параллельности, вводится через определение.

Перпендикулярность прямой и плоскости

Считают, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся (любым) прямым этой плоскости.

При решении задачи возможны два варианта: проведение перпендикулярной прямой к плоскости из внешней точки и из точки, лежащей в плоскости.
Рассмотрим возможность проведения перпендикуляра из точки К, лежащей в плоскости общего положения Р, заданной следами (рисунок 5.4).

Решение метрических задач в начертательной геометрии с примерами
Рисунок 5.4 – Перпендикулярность прямой и плоскости

В плоскости Р (через точку К) проводятся горизонталь h и фронталь f. Прямые, перпендикулярные соответствующим проекциям линий уровня Решение метрических задач в начертательной геометрии с примерамив соответствии с теоремой о проецировании прямого угла и данным выше определением, могут быть приняты за проекции прямой Решение метрических задач в начертательной геометрии с примерами.

В том случае, когда точка К не лежит в плоскости Р, решение задачи аналогично (рисунок 5.5).

Поскольку положение точки пересечения искомого перпендикуляра не определено, решение соответствует следующей схеме:

а) в плоскости проводятся горизонталь h (через точку В) и фронталь f (через точку A), в случае задания плоскости следами за фронталь и горизонталь принимаются соответствующие следы плоскости Решение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами

Рисунок 5.5 – Перпендикуляр к плоскости

б)    из внешней точки К к соответствующим проекциям линий уровня (следам) проводятся перпендикулярные прямыеРешение метрических задач в начертательной геометрии с примерами– Линия t принимается за перпендикуляр, опущенный из точки К к плоскости Р;

в)    определяется точка S пересечения этого перпендикуляра t и плоскости.

Расстояние от точки до плоскости

Решение метрических задач в начертательной геометрии с примерами
Рисунок 5.6 – Расстояние от точки до плоскости

Задачу на определение расстояние от точки до плоскости (рисунок 5.6) можно свести к решению уже известных задач на построение перпендикуляра к плоскости (рисунок 5.5) и определения натуральной величины отрезка прямой (рисунок 5.1)

Перпендикулярность плоскостей

Считают, что две плоскости взаимно перпендикулярны, если одна из них проходит через прямую, перпендикулярную другой плоскости.

Задача может ставиться, как проведение плоскости, перпендикулярной заданной, проходящей через точку или прямую.

При проведении искомой плоскости через точку, как и в предыдущем случае, возможны два варианта проведения плоскости перпендикулярной заданной: через точку, лежащую в плоскости и через точку вне ее (рисунок 5.7).

Точно такой же вариант возникает и при проведении перпендикулярной плоскости через прямую (лежащую в исходной плоскости или не лежащую).

Рассмотрим вариант построения плоскости, проходящей через точку. Пусть точка А лежит в плоскости Р. Линии Решение метрических задач в начертательной геометрии с примерами перпендикулярные соответствующим проекциям линий уровня (следам), определят перпендикуляр t к плоскости Р.

Решение метрических задач в начертательной геометрии с примерами
Рисунок 5.7 – Перпендикулярность плоскостей
Проведение через точку А произвольной прямой s позволяет определить плоскость Q, которая будет перпендикулярна плоскости Р.

Если точка А лежит вне плоскости Р, то решение аналогично. Проведение через точку А перпендикуляра t и произвольной прямой s определит плоскость Q, которая также, по определению, будет перпендикулярна плоскости Р.

Решение задачи на проведение плоскости через прямую аналогично решению задачи по проведению плоскости через точку. Достаточно вместо произвольной прямой s использовать заданную прямую АВ. И тогда, в соответствии с рисунком 5.8, задача сведется к проведению перпендикуляра t к плоскости Р (из точки, лежащей в плоскости или лежащей вне ее).
Решение метрических задач в начертательной геометрии с примерами

Рисунок 5.8 – Перпендикулярность плоскостей

Определение натуральных величин геометрических элементов

1. Определить натуральную величину отрезка общего положения:

  • способом прямоугольного треугольника;
  • способом замены плоскостей проекций преобразовать в прямую уровня;
  • способом вращения вокруг проецирующей оси преобразовать в прямую уровня.

2. Определить натуральную величину плоскости общего положения (замкнутого отсека):

  • способом замены плоскостей проекций преобразовать в плоскость уровня;
  • способом вращения вокруг линии уровня преобразовать в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать в плоскость уровня.

Определение расстояния между геометрическими элементами (образами)

1. Определить расстояние от точки до прямой общего положения:

  • способом замены плоскостей проекций преобразовать плоскость, заданную прямой и точкой, в плоскость уровня (задачи 3 и 4 преобразования; прямую и точку рассматривать как плоскость);
  • способом замены плоскостей проекций преобразовать прямую общего положения в проецирующую прямую (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить через заданную точку плоскость, перпендикулярную к прямой, и определить точку пересечения последней с плоскостью.

2. Определить расстояние между параллельными прямыми:

  • способом замены плоскостей проекций преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня (задачи 3 и 4 преобразования);
  • способом замены плоскостей проекций преобразовать две параллельные общего положения в проецирующие прямые (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня, ограничив ее замкнутым отсеком;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить плоскость через любую точку, принадлежащую одной из прямых, перпендикулярную ко второй прямой, и определить точку пересечения этой плоскости со второй прямой.

3. Определить расстояние между скрещивающимися прямыми, преобразовав одну из прямых в проецирующую (задачи 1 и 2 преобразования).

4. Определить расстояние от точки до плоскости:

  • по теме «Перпендикулярность» – провести перпендикуляр к плоскости, построить точку пересечения этого перпендикуляра с заданной плоскостью и найти любым способом натуральную величину построенного отрезка (см. пункт 1);
  • способом замены плоскостей проекций преобразовать плоскость общего положения в плоскость проецирующую.

5. Определить расстояние от точки до поверхности вращения:

  • способом замены плоскостей проекций преобразовать плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня (задача 4 преобразования);
  • способом вращения вокруг проецирующей оси повернуть плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня.

Определение углов наклона геометрических элементов к плоскостям проекций H и V

1. Определить углы наклона прямой общего положения к плоскостям проекций H и V:

  • способом прямоугольного треугольника построить на двух проекциях натуральные величины отрезка и определить углы наклона прямой;
  • способом замены плоскостей проекций преобразовать прямую общего положения в горизонтальную, а затем во фронтальную прямую (задача 1 преобразования);
  • способом вращения вокруг соответствующей проецирующей оси преобразовать прямую общего положения в горизонтальную и во фронтальную прямые.

2. Определить угол наклона прямой к заданной плоскости общего положения:

  • из любой точки прямой опустить перпендикуляр к плоскости;
  • способом вращения вокруг линии уровня преобразовать построенную плоскость, заданную прямой и перпендикуляром, в плоскость уровня;
  • искомый угол будет дополнять построенный угол до 90°.

3. Определить величину двухгранного угла, если на чертеже есть линии пересечения плоскостей, образующих двухгранный угол (ребро):

  • способом замены плоскостей проекций преобразовать ребро двухгранного угла в проецирующую прямую (задачи 1 и 2 преобразования).

4. Определить угол между двумя плоскостями общего положения, если на чертеже нет линии пересечения заданных плоскостей (ребра):

  • задача решается косвенным путем, для чего из любой точки пространства следует опустить перпендикуляры к заданным плоскостям, которые, в свою очередь, задают вспомогательную плоскость, перпендикулярную к этим плоскостям;
  • эту вспомогательную плоскость способом вращения вокруг линии уровня следует преобразовать в плоскость уровня, определив угол между перпендикулярами (преобразование вспомогательной плоскости в плоскость уровня возможно и другими способами – ее плоскопараллельным перемещением или заменой плоскостей проекций);
  • искомый угол будет дополнять построенный угол до 180° (углом между плоскостями считают угол острый).

Структуризация материала тринадцатой лекции в рассмотренном объеме схематически представлена на рис. 13.1 (лист 1). На последующих листах 2–7 компактно приведены иллюстрации к этой схеме для визуального повторения изученного материала при его повторении (рис. 13.2–13.7).

Метрические задачи:

Решение метрических задач в начертательной геометрии с примерами

Определение натуральной величины геометрических элементов:

1. Определение длины отрезка

Способ прямоугольного треугольника

Решение метрических задач в начертательной геометрии с примерами

Способ замены плоскостей проекций (задача 1)

Решение метрических задач в начертательной геометрии с примерами

Способ вращения вокруг проецирующей оси

Решение метрических задач в начертательной геометрии с примерами

2. Определение площади замкнутого отсека

Способ замены плоскостей проекций (задачи 3 и 4)

Решение метрических задач в начертательной геометрии с примерами

Способ вращения вокруг прямой уровня (горизонтали)

Решение метрических задач в начертательной геометрии с примерами

Способ вращения вокруг проецирующей оси i(i Решение метрических задач в начертательной геометрии с примерамиV)

Решение метрических задач в начертательной геометрии с примерами

Способ плоско-параллельного перемещения (переноса)

Решение метрических задач в начертательной геометрии с примерами

Определение расстояний:

1. Расстояние между точками – определяется величиной отрезка, соединяющего эти точки

См. рис. 13.2, а, б, в

2. Расстояние от точки до прямой – определяется величиной перпендикуляра, опущенного из точки к прямой

а. Прямой путь (перпендикулярность)

б. Способ замены плоскостей проекций: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис. 13.2, г) 

в. Способ вращения вокруг прямой уровня: определить натуральную величину  плоскости, которую определяют точка и прямая (см.рис.13.2, д)

г. Способ плоскопараллельного переноса: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис.13.2, ж)

Решение метрических задач в начертательной геометрии с примерами

3. Расстояние между параллельными прямыми – определяется величиной перпендикуляра, проведённого из произвольной точки одной прямой к другой прямой

а. Способ замены плоскостей проекции (рассматриваем две прямые) – задачи 1 и 2 (преобразовать прямые общего положения AB и CD в проецирующие)

б. Способ замены плоскостей проекции (рассматриваем плоскость, которую определяют параллельные прямые) – задачи 3 и 4 (определить натуральную величину плоскости ? (AB//СВ))

Решение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами

4. Расстояние между скрещивающимися прямыми – определяется  величиной перпендикуляра, проведённого от одной из прямых, преобразованной в точку, к другой прямой (задачи 1 и 2 замены плоскостей проекции).

Способ замены плоскостей проекций – задачи 1 и 2

Решение метрических задач в начертательной геометрии с примерами

5. Расстояние от точки до плоскости – определяется величиной перпендикуляра, проведённого из точки на плоскость до точки его пересечения с этой плоскостью.

а. Прямой путь (перпендикулярность)

Решение метрических задач в начертательной геометрии с примерами

б. Способ замены плоскостей проекций (плоскость преобразовать в проецирующую – задача 3)

Решение метрических задач в начертательной геометрии с примерами

6. Расстояние между прямой и параллельной ей плоскостью – определяется величиной перпендикуляра, проведённого из произвольной точки на прямой к плоскости.

См. рис. 13.4, б, в

7. Расстояние между параллельными плоскостями – определяется величиной отрезка перпендикуляра, опущенного из точки одной плоскости на другую плоскость (до точки пересечения с другой плоскостью).

См. рис. 13.4, б, в

8. Расстояние от точки до поверхности

a. Cпособ вращения вокруг проецирующей оси

Решение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами

б. Способ замены плоскостей проекции

Решение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами

Определение величин углов:

1. Угол φ между скрещивающимися прямыми – определяется плоским углом, образованным  двумя пересекающимися прямыми, проведёнными из произвольной точки пространства параллельно скрещивающимся прямым (рис. 13.6, а)

Способ вращения вокруг линии уровня

Дано:
а и b – скрещивающиеся прямые
Требуется:

φ – ?
 

Решение:
1.
Решение метрических задач в начертательной геометрии с примерами
2. φ – вращением вокруг фронтали, проведённой в построенной плоскости α(d с)

Решение метрических задач в начертательной геометрии с примерами

2. Угол φ между прямой и плоскостью – определяется углом между прямой и её проекцией на эту плоскость.

Дано:
 α(h ∩ f);
AB – прямая общего положения
Требуется:
φ – ?

Решение метрических задач в начертательной геометрии с примерами

Решение:
1. l Решение метрических задач в начертательной геометрии с примерами α(h ∩ f);
  lРешение метрических задач в начертательной геометрии с примерамиРешение метрических задач в начертательной геометрии с примерами f”;
  lРешение метрических задач в начертательной геометрии с примерамиРешение метрических задач в начертательной геометрии с примерами h’;
2. ∠φ  – вращением вокруг фронтали, проведённой в построенной плоскости β(AB∩l)

3. Угол φ между плоскостями α и β – определяется линейным углом, образованным двумя прямыми, по которым некоторая плоскость γ, перпендикулярная плоскостям (или их ребру), пересекает эти плоскости (углом между плоскостями считают острый угол).

а. Если на чертеже нет ребра (линии пересечения заданных плоскостей) – угол φ определяется способом вращения вокруг линии уровня (рис. а)

Решение метрических задач в начертательной геометрии с примерами

Дано:
 (m // h);   (а 
∩ b).
Требуется:
 
φ – ?
Решение:
1. провести в заданной плоскости фронтали и горизонтали;

2. из произвольной точки пространства D (D’, D”) провести перпендикуляры l1 и l2 к заданными плоскостям, которые определяют плоскость γ(l1 ∩ l2);
3.
φ – вращением вокруг горизонтали h3, проведённой в построенной плоскости γ(l1 ∩ l2).

Решение метрических задач в начертательной геометрии с примерами

б. Если на чертеже есть ребро (линия пересечения заданных плоскостей) – угол φ определяется способом замены плоскостей проекций (задачи 1 и 2, рис. б)

Решение метрических задач в начертательной геометрии с примерами

Решение:

ребро АВ двугранного угла преобразовать двумя заменами в проецирующую прямую.

  • Тени в ортогональных проекциях
  • Кривые поверхности
  • Пересечения криволинейных поверхностей
  • Пересечения поверхностей с прямой и плоскостью
  • Пересечение поверхности плоскостью и прямой
  • Развертки поверхностей
  • Способы преобразования проекций
  • Взаимное положение прямой и плоскости

Добавил:

Upload

Опубликованный материал нарушает ваши авторские права? Сообщите нам.

Вуз:

Предмет:

Файл:

Скачиваний:

171

Добавлен:

12.03.2015

Размер:

4.24 Mб

Скачать

2. «ТОЧКА, ПРЯМАЯ, ПЛОСКОСТЬ И ИХ ВЗАИМОРАСПОЛОЖЕНИЕ»

Каждый след плоскости представляет собой прямую, для построения которой нужно знать либо две точки, либо одну точку и направление. Двумя точками, с помощью которых определяется положение следа плоскости, могут быть одноименные следы двух прямых, принадлежащих плоскости. В качестве одной из точек может быть использована точка схода следов на оси проекций.

На рис. 2.1 показано построение следов плоскости, заданной треугольником BCD. Чтобы построить фронтальный след РV плоскости BCD, находим фронтальные следы прямых CD и ВС (точки N и N1) в следующей последовательности:

а) продолжаем горизонтальную проекцию cd стороны треугольника CD до пересечения с осью Ох в точке п;

б) из точки п восстанавливаем перпендикуляр к оси Ох;

в) продолжаем фронтальную проекцию CD (c’d’) до пересечения с перпендикуляром;

г) на пересечении получаем фронтальный след прямой CD точку Nп’. Затем аналогично строим фронтальный след прямой ВС

точку N1п1. Фронтальный след РV плоскости Р будет проходить через

точки N и N1.

Горизонтальный след плоскости РН строится аналогично. Следует отметить, что в данном случае для построения следа РН достаточно иметь горизонтальный след только одной прямой, например, ВD – точку М. Второй точкой, определяющей положение следа РН, будет точка схода следов РХ (точка пере-

Рис. 2.1 сечения ранее построенного следа РV с осью Ох).

2.2. Определение расстояния от точки до плоскости

Расстояние от точки до плоскости определяется длиной перпендикуляра, опущенного из точки на плоскость. Таким образом поставленная задача сводится к проведению через точку А прямой, перпендикулярной к плоско-

11

сти, нахождению точки встречи этой прямой с плоскостью и определению истинной величины отрезка прямой, заключенного между точкой А и точкой встречи. Как известно, если прямая перпендикулярна плоскости, то ее проекции перпендикулярны одноименным следам или соответствующим проекциям линий уровня этой плоскости (горизонтали и фронтали).

2.2.1. Определение расстояния от точки А до плоскости треугольника BCD

Проведем в плоскости треугольника BCD (рис. 2.2) горизонталь ВI (b1; b1) и фро нталь СII (с2; с2) и опустим из точки аперпендикуляр на

прямую с2, а из точки а – перпендикуляр на прямую b1. Основанием перпендикуляра является точка его пересечения с плоскостью BCD.

Для того, чтобы найти точку пересечения перпендикуляра с плоскостью заключаем перпендикуляр в горизонтально проецирующую плоскость R, которая пересекает плоскость треугольника BCD по прямой MN (mn; mn’). На пересечении mn’ с фронталь-

Рис. 2.2 ной проекцией перпендикуляра находим фронтальную проекцию его осно-

вания – точку k. Спроецировав точку

kна горизонтальную проекцию линии MN (mn), получим точку k. Натуральную величину перпендикуляра АК определим способом прямoугольного треугольника как длину гипотенузы

A0kтреугольника A0 ak.

2.2.2 Определение расстояния от точки А до плоскости Р, заданной следами

Строим проекции перпендикуля-

ра к плоскости. Горизонтальную про-

екцию перпендикуляра проводим из

точки а перпендикулярно горизон-

тальному следу плоскости PH, а

фронтальную проекцию из точки а

перпендикулярно PV (рис. 2.3). Осно-

ванием перпендикуляра является точ-

Рис. 2.3

ка его пересечения с плоскостью P.

12

Чтобы ее найти, заключаем перпендикуляр в горизонтально проецирующую

плоскость T, которая пересекает плоскость Р по прямой MN (mn; mn’). На пересечении фронтальной проекции прямой с фронтальной проекцией пер-

пендикуляра находим фронтальную проекцию его основания – точку k.

Спроецировав точку kна горизонтальную проекцию линии MN (mn), получим точку k. Натуральную величину перпендикуляра АК определим способом прямoугольного треугольника.

2.3.Построение плоскости S (SH; SV), параллельной плоскости Р

иотстоящей от нее на три масштабные единицы

На натуральной величине перпендикуляра АК (рис. 2.4) откладываем от точки kтри масштабные единицы (30 мм) – получаем точку 30. Опустив из этой точки перпендикуляр на фронтальную проекцию отрезка а’k, получим

точку 3, а затем в проекционной связи точку 3 на горизонтальной проекции перпендикуляра аk.

Рис. 2.4

Проводим через точку (3, 3′) горизонталь искомой плоскости S параллельно произвольной горизонтали плоскости Р. Ее горизонтальная проекция должна проходить через точку 3, параллельно следу РН, а фронтальная проекция – через точку 3′, параллельно оси проекций. Найдя фронтальный след

этой горизонтали N2п2, проводим следы искомой плоскости: сначала фронтальный след SV через точку N2п2‘, параллельно следу РV до пересечения с

13

осью проекций в точке SХ, а затем через эту точку – горизонтальный след SH,

параллельно следу РН.

2.4. Проведение через произвольно взятую точку Е плоскости R, перпендикулярной к заданной прямой

Первый способ. При решении

этой задачи

необходимо

выполнить

требование

о

том, чтобы прямая

(например, сторона треугольника BD)

была перпендикулярна к двум пересе-

кающимся прямым плоскости (кото-

рую предстоит построить). В соответ-

ствии с теоремой об ортогональной

проекции прямого угла в качестве

двух пересекающихся прямых следует

выбрать прямые уровня – горизонталь

и фронталь, а их соответствующие

проекции построить так, чтобы вы-

полнились требования: h bd, fbd.

Рис. 2.5

Именно так

построена

плоскость

R(h×f), проведенная через произвольную точку Е (е; е), на рис. 2.5. Нахож-

дение точки К(k, k) пересечения стороны BD с плоскостью R показано на рисунке.

Второй способ. Через произвольно взятую точку Е проводим горизонталь: фронтальную проекцию горизонтали параллельно оси проекций Ох, а горизонтальную проекцию – перпендикулярно (рис. 2.6). Через фронтальный след гори-

зонтали Nnпроводим фронтальный след

плоскости RV перпендикулярно bс. Из точки RХ проводим горизонтальный след плоскости RН перпендикулярно . Для нахождения точки пересечения прямой ВС с плоскостью R заключаем прямую ВС в горизонтально проецирующую плоскость Т. Находим линию пересечения

M1N1 (m1n1, m1n1) плоскостей R и Т. От-

мечаем точку К (k, k) на пересечении

Рис. 2.6

прямых ВС и M1N1.

14

Рис. 2.7

2.5. Определение угла наклона плоскости к горизонтальной плоскости проекций

Для определения угла α наклона плоскости треугольника BCD к горизонтальной плоскости проекций Н используем линию наибольшего наклона (ската) плоскости.

Линиями наибольшего ската называют прямые данной плоскости, перпендикулярные к линиям уровня этой плоскости. Поэтому из точки d проводим горизонтальную проекцию линии наибольшего ската (ГП ЛНС) плоскости BCD под прямым углом к горизонтальной проекции горизонтали – получаем точку 2 (рис. 2.7). Затем строим фронтальную проек-

цию этой точки – 2. Фронтальная проекция линии наибольшего ската (ФП ЛНС) пройдет через точки dи

2. Натуральную величину линии наибольшего ската DII определим способом прямoугольного треуголь-

ника. Угол α между линией наибольшего ската и ее горизонталь-

ной проекцией определяет наклон плоскости BCD к плоскости Н.

15

3. СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИЙ

Наиболее простое и точное решение задач удается получить, если заданные геометрические фигуры приведены в определенное частное положение относительно плоскостей проекций. Это достигается следующими способами:

1.оставляя проецируемый объект (фигуру) в заданном полож ении, изменяют положение плоскостей проекций относительно объекта (способ замены плоскостей проекций);

2.оставляя плоскости проекций в заданном положении, из меняют положение проецируемого объекта (фигуры) относительно этих плоскостей (способ вращения).

3.1.Способзаменыплоскостейпроекций

Сущность способа замены плоскостей проекций состоит в том, что заданную систему плоскостей проекций заменяют новой системой так, что геометрические фигуры оказываются в частном положении относительно новой системы плоскостей проекций.

Рис. 3.1

Проследим, как изменятся проекции точки B, если плоскость V заменить на новую плоскость проекций V1 (рис. 3.1, а) . Плоскость V1 проводим перпендикулярно плоскости Н, положение которой остается без изменения. Плоскости Н и V1 пересекутся по прямой 1, определяющей новую ось проекций. В новой системе плоскостей проекций вместо проекций b и b’ получим новые проекции b и b1. Легко убедиться, что расстояние от новой проекции точки b1до новой оси 1

16

(координата Z) равно расстоянию от заменяемой проекции b’ до заменяемой оси . Чтобы перейти от пространственного чертежа к эпюру, нужно совместить плоскость V1 с плоскостью Н. На эпюре (рис. 3.1, 6) для построения новой проекции b1используем неизменность координаты Z точки B. Для этого достаточно из горизонталь ной про-

екции b провести перпендикуляр к новой оси 1 и от точки bX1 от-

ложить координату Z, определяемую расстоянием b’bx (ZB) в прежней

системе.

горизонтальной плоскости Н новой плоскостью Н1

Замена

(рис. 3.1, в)

производится аналогично, с той лишь разницей, что т е-

перь не изменяется фронтальная проекция точки b’, для построения новой горизонтальной проекции b1 необходимо из сохраняемой фронтальной проекции b’ провести линию связи к новой оси 1 и отложить от новой оси расстояние, равное расстоянию от заменяемой проекции b до заменяемой оси .

Замена плоскостей проекций может осуществляться только п о- следовательно, нельзя менять обе плоскости сразу.

Рассмотрим на примерах, как производится з амена плоскостей проекций и строятся новые проекции фигур.

Задача 1. Определить длину отрезка прямой АВ общего положе-

ния.

Заменяем плоскость V плоскостью V1, параллельной отрезку АВ (рис. 3.2, а). Проводим новую ось Х1 параллельно ab и на перпендикулярах, проведенных к ней из точек а и b, откладыва-

ем аX1а1′ = аxа’ и bX1b1′ =

bxb’. Получаем новую про-

екцию a1′b1′ = AB и одновременно угол α

наклона прямой к пло с- кости Н.

Если плоскость Н заменим плоскостью H1 параллельной отрезку АВ (рис. 3.2, б), то получим

а1b1 = АВ и угол β накло- Рис. 3.2 на прямой к плоскости V.

Задача 2. Определить

натуральную величину треугольника ABC.

Задача решается последовательной заменой двух плоскостей проек-

ций.

17

Рис. 3.3

Сначала плоскость V заменяем плоскостью V1, перпендикулярной к плоскости треугольника (рис. 3.3). Для этого в плоскости треугольника проводим горизонталь

AD (ad, a’d’) и новую ось

Х1 располагаем перпендикулярно к ad. На новой плоскости проек-ций треугольник спроецируется в прямую b1а1 с1 . На втором этапе плоскость Н заменяем плоскостью Н1,

параллельной плоскости треугольника, располагая ось Х2 параллельно прямой b1а1 с1. По-строенная проекция a1b1с1 определяет нату-ральную величину и форму треугольника ABC.

Задача 3. Определить расстояние от точки А (а, а’) до плоскости Р, заданной следами PH и PV (рис. 3.4).

Задача решается путем замены одной из плоскостей проекций новой, относительно которой плоскость Р будет проецирующей.

Заменим, например, плоскость V плоскостью V1, перпендикулярной к плоскости Р. Новую ось X1 проводим перпендикулярно к следу РН. Выбираем на следе PV произвольную точку N (п, п’) и находим ее новую проекцию п1 ,

откладывая nX1n1′ = nxn’ = yN. Через точки PX1 и п1 проводим новый след PV1. По-

строив новую проекцию a1 и опустив из нее перпендикуляр на PV1, определяем расстояние от точки А до плоскости Р, которое равно отрезку a1k1. После этого опре-деляем на первона- чаль-ном чертеже положение проекции основания перпендикуляра (k, k).

Рис.3.4

18

3.2. Способ вращения

Сущность способа вращения состоит в изменении положения объекта, заданного на эпюре, таким образом, чтобы определенные его элементы заняли относительно плоскостей проекций частное положение и проецировались без искажений.

Рассмотрим следующие разновидности способа вращения: вращение вокруг линий уровня и совмещение.

При вращении важно правильно определить его элементы: ось, а также плоскость, центр, радиус и угол вращения.

3.2.1. Вращение вокруг линий уровня

Одним поворотом вокруг горизонтали или фронтали можно расположить плоскую фигуру или плоский угол параллельно одной из плоскостей проекций и тем самым определить их натуральную величину.

На рис. 3.5 показаны построения при вращении точки D вокруг горизонтали до положения, при котором радиус вращения RD = DO становится параллельным плоскости H и проецируется на нее в натуральную величину, т.е. d1o = D1O = DO.

Рис. 3.5

Построения на эпюре сводятся к определению способом прямоугольного треугольника длины радиуса вращения RD и откладыванию ее на перпендикуляре, проведенном из точки d к горизонтали I (i, i). Точка D (d, d’) перемещается в положение D1 (d1, d1).

Задача. Определить натуральную величину треугольника ABC

(рис. 3.6).

В плоскости треугольника АВС (аbс, аb’с’) проводим горизонталь СD (cd, c’d’) и вращаем вокруг нее заданный треугольник до положения, при котором он станет параллельным плоскости Н. Точки С (с, с’) и D (d, d’) неподвижны. Для определения повернутого положения вершины А определяем

19

величину радиуса RA способом прямоугольного треугольника и откладываем ее на перпендикуляре к cd, опущенном из точки а. Получаем точку а1.

Положение точки b1 определяем, проводя прямую а1d до пересечения с перпендикуляром, опущенным из точки b на cd.

Горизонтальная проекция треугольника а1b1c1 по величине равна треугольнику AВС. Новая фронтальная проекция представляет собой прямую, совпадающую с с’d’.

3.2.2. Способ совмещения

Вращение плоскости вокруг оси,

совпадающей с плоскостью проекций,

Рис. 3.6

т.е. вокруг следа плоскости, является

частным случаем вращения вокруг ли-

нии уровня плоскости.

Способ совмещения заключается в том, что заданную плоскость Р вместе с расположенными в ней геометрическими элементами вращают вокруг одного из ее следов РН или РV до совмещения с соответствующей плоскостью проекций Н или V.

Все геометрические элементы (прямые и другие линии, фигуры), лежащие в заданной плоскости, изображаются в натуральную величину на плоскости проекций, с которой производится совмещение. Совмещение позволяет найти величину плоской фигуры по ее проекциям или построить проекции плоской фигуры, лежащей в какой-либо плоскости, по заданным ее размерам.

Если плоскость задана следами, то задача совмещения ее с плоскостью проекций сводится к построению совмещенного положения одного из следов, так как другой след, принимаемый за ось вращения, не мен я- ет своего положения.

Как видно из рис. 3.7 , для определения совмещенного следа Pv0 при вращении плоскости Р вокруг следа РH достаточно найти совмещенное положение N0 любой точки N следа РV. На рис. 3.7 показано также совмещение точки А (а, а’), лежащей в плоскости Р, с плоскостью Н при использовании горизонтали.

Задача. Найти натуральную величину треугольника ABC, расположенного в плоскости Р общего положения (рис. 3.8).

20

Рис. 3.7

Плоскость Р совмещаем с плоскостью Н вращением вокруг следа РН.. Используя горизонталь плоскости, на которых лежат вершины треугольника, находим совмещенные положения В0, С0 этих вершин и получаем треугольник А0В0С0, равный заданному.

Рис. 3.8

21

4. ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ ГЕОМЕТРИЧЕСКИХ ТЕЛ ПЛОСКОСТЯМИ

4.1.Общие сведения

Вобщем случае, для того чтобы построить линию пересечения поверхности с плоскостью, нужно найти ряд точек, принадлежащих как поверхности, так и плоскости, а затем эти точки соединить плавной кривой или ломаной линией.

Для нахождения произвольной точки линии пересечения, необходимо: 1. рассечь заданные фигуры вспомогательной плоскостью; 2. найти линии пересечения этой плоскости с поверхностью и с задан-

ной плоскостью; 3. на пересечении найденных линий получить искомые точки (чаще

всего – две).

Последовательно проводя ряд вспомогательных плоскостей, можно найти необходимое число точек.

Вспомогательную плоскость следует выбирать так, чтобы ее линия пересечения с поверхностью проецировалась на плоскости проекций в виде простейших линий – прямой или окружности.

При построении линии пересечения находят, прежде всего, ее характерные (опорные) точки, а затем, по мере необходимости, промежуточные точки.

Характерные точки определяют характер линии пересечения и ее видимость. К ним относятся: экстремальные точки (высшая и низшая, крайняя левая и крайняя правая, ближняя и дальняя); точки, лежащие на проекциях очерка поверхности; точки, лежащие на проекциях осей поверхности.

Среди характерных точек выделяются очевидные точки, которые для своего нахождения не требуют дополнительных построений, а определяются при помощи линий проекционной связи. В некоторых случаях одна и та же точка может выполнять несколько функций.

Промежуточные точки выделяются на заданной линии для более точного графического построения искомой проекции линии.

Если заданная поверхность имеет прямолинейные образующие, то линию пересечения можно найти также следующим образом: нанести на поверхности ряд образующих и найти точки их пересечения с плоскостью, а затем соединить эти точки плавной кривой линией.

При построении сечения гранных поверхностей плоскостью используют два способа: способ граней – определяются стороны многоугольника сечения; способ ребер – определяются вершины многоугольника сечения.

Построение сечений значительно упрощается, если секущая плоскость является проецирующей. В этом случае одна проекция сечения совпадает с проецирующим следом плоскости.

22

Определение расстояния от точки до плоскости

Расстояние от точки до плоскости равно длине перпендикуляра, опущенного из точки на плоскость, и в начертательной геометрии определяется графически согласно следующему алгоритму.

Алгоритм построения

  1. Плоскость переводят в проецирующее положение с помощью методов преобразования ортогональных проекций.
  2. Из точки на плоскость опускают перпендикуляр и находят его длину. Направление проекции перпендикуляра определяется на основании теоремы о проецировании прямого угла.

Задача № 1

Рассмотрим, как реализуется составленный нами алгоритм на практике. На рисунке ниже представлены графические построения, необходимые для определения расстояния между точкой N и плоскостью α, заданной треугольником ABC.

Определение расстояния от точки до плоскости

Ход решения

  • Через вершину B” треугольника A”B”C” проводим проекцию h” горизонтали h. По линиям связи находим h’.
  • Переводим ABC в проецирующее положение. Для этого перпендикулярно h вводим новую фронтальную плоскость П4. Проецируем на неё точку N и треугольник ABC.
  • Из точки N”1 проводим N”1M”⊥ A”1C”1. Длина отрезка N”1M”1 – искомое расстояние между плоскостью треугольника ABC и точкой N.

Задача № 2

Требуется определить величину расстояния между точкой K и плоскостью β, заданной следами. В отличие от предыдущей задачи здесь нет необходимости проводить линию уровня, так как её роль выполняет проекция h.

Расстояние до плоскости, заданной следами

Ход решения

  • Переводим плоскость β в проецирующее положение. Для этого перпендикулярно следу h0β вводим дополнительную фронтальную плоскость П4. На прямой f0β берем произвольную точку E, определяем её проекции E”, E’ и E”1. Через E”1 и X0α1 проводим прямую f0β1, которая является следом плоскости β на П4. По линии связи определяем проекцию K”1 точки K.
  • Из K”1 проводим перпендикуляр K”1M”1 в направлении прямой f0β1. Длина отрезка K”1M”1 – величина искомого расстояния от K до β.

Если требуется перевести отрезок KM в исходную систему плоскостей, то это делается с помощью обратных преобразований, как показано на следующем рисунке.

Определение проекций отрезка KM

Похожие задачи:

  • Определение расстояния от точки до прямой
  • Расстояние между параллельными плоскостями
  • Определение натуральной величины отрезка

Определение расстояния между: 1 – точкой и плоскостью; 2 – прямой и плоскостью; 3 – плоскостями; 4 – скрещивающимися прямыми рассматривается совместно, так как алгоритм решения для всех этих задач по существу одинаков и состоит из геометрических построений, которые нужно выполнить для определения расстояния между заданными точкой А и плоскостью α. Если и есть какое-то различие, то оно состоит лишь в том, что в случаях 2 и 3 прежде чем приступить к решению задачи, следует на прямой m (случай 2) или плоскости β (случай 3) отметить произвольную точку А. При определении расстояния между скрещивающимися прямыми предварительно заключаем их в параллельные плоскости α и β с последующим определением расстояния между этими плоскостями.

Рассмотрим каждый из отмеченных случаев решения задач.

1. Определение расстояния между точкой и плоскостью.

Расстояние от точки до плоскости определяется длиной отрезка перпендикуляра, опущенного из точки на плоскость.

Поэтому решение этой задачи состоит из последовательного выполнения следующих графических операций:

1) из точки А опускаем перпендикуляра на плоскость α (рис. 269);

2) находим точку М пересечения этого перпендикуляра с плоскостью М = а ∩ α;

3) определяем длину отрезка [AM].

Если плоскость α общего положения, то для того чтобы опустить на эту плоскость перпендикуляр, необходимо предварительно определить направление проекций горизонтали и фронтали этой плоскости. Нахождение точки встречи этого перпендикуляра с плоскостью также требует выполнения дополнительных геометрических построений.

Рис 269-270.Определение расстояния между точкой и плоскостью, прямой и плоскостью,между плоскостями и скрещивающимися прямыми
Рис 271-272.Определение расстояния между точкой и плоскостью, прямой и плоскостью,между плоскостями и скрещивающимися прямыми

Решение задачи упрощается, если плоскость α занимает частное положение относительно плоскостей проекций. В этом случае и проведение проекций перпендикуляра, и нахождение точки его встречи с плоскостью осуществляется без каких-либо дополнительных вспомогательных построений.

ПРИМЕР 1. Определить расстояние от точки А до фронтально проецирующей плоскости α (рис. 270).

РЕШЕНИЕ. Через А’ проводим горизонтальную проекцию перпендикуляра l’ ⊥ h, а через А” – его фронтальную проекцию l” ⊥ f. Отмечаем точку M” = l” ∩ f. Так как AM || π2, то [А” М”] == |АМ| = d.

Из рассмотренного примера видно, насколько просто решается задача, когда плоскость занимает проецирующее положение. Поэтому, если в исходных данных будет задана плоскость общего положения, то, прежде чем приступить к решению, следует перевести плоскость в положение, перпендикулярное к какой-либо плоскости проекции.

ПРИМЕР 2. Определить расстояние от точки К до плоскости, заданной ΔАВС (рис. 271).

РЕШЕНИЕ.

1. Переводим плоскость ΔАВС в проецирующее положение *. Для этого переходим от системы xπ21 к x1π31: направление новой оси х1 выбирается перпендикулярным к горизонтальной проекции горизонтали плоскости треугольника.

2. Проецируем ΔАВС на новую плоскость π3 (плоскость ΔАВС спроецируется на π3, в [ С”1В”1] ).

3. Проецируем на ту же плоскость точку К (К’ → К”1).

4. Через точку К”1 проводим (К”1М”1 )⊥ отрезку [С”1В”1]. Искомое расстояние d = |K”1M”1| .

Решение задачи упрощается, если плоскость задана следами, так как отпадает необходимость в проведении проекций линий уровня.

ПРИМЕР 3. Определить расстояние от точки К до плоскости α, заданной следами (рис. 272) .

* Наиболее рациональным путем перевода плоскости треугольника в проецирующее положение является способ замены плоскостей проекций, так как в этом случае достаточно построить только одну вспомогательную проекцию.

РЕШЕНИЕ. Заменяем плоскость π1 плоскостью π3, для этого проводим новую ось x1 ⊥ f. На h отмечаем произвольную точку 1′ и определяем ее новую горизонтальную проекцию на плоскости π3 (1′1). Через точки Xα1α1 = h1 ∩ x1 ) и 1′1 проводим h1. Определяем новую горизонтальную проекцию точки К → К’1. Из точки К’1 опускаем перпендикуляр на h1 и отмечаем точку его пересечения с h1 – М’1. Длина отрезка K’1M’1 укажет искомое расстояние.

2. Определение расстояния между прямой и плоскостью.

Расстояние между прямой и плоскостью определяется длиной отрезка перпендикуляра, опущенного из произвольной точки прямой на плоскость (см. рис. 248).

Поэтому решение задачи по определению расстояния между прямой m и плоскостью α ничем не отличается от рассмотренных в п. 1 примеров на определение расстояния между точкой и плоскостью (см. рис. 270 … 272). В качестве точки можно брать любую точку, принадлежащую прямой m.

3.Определение расстояния между плоскостями.

Расстояние между плоскостями определяется величиной отрезка перпендикуляра, опущенного из точки, взятой на одной плоскости, на другую плоскость.

Из этого определения вытекает, что алгоритм решения задачи по нахождению расстояния между плоскостями α и β отличается от аналогичного алгоритма решения задачи по определению расстояния между прямой m и плоскостью α лишь тем, что прямая m должна принадлежать плоскости α, т. е., чтобы определить расстояние между плоскостями α и β, следует:

1) взять в плоскости α прямую m;

2) выделить на прямой m произвольную точку А;

3) из точки А опустить перпендикуляр l на плоскость β;

4) определить точку М – точку встречи перпендикуляра l с плоскостью β;

5) определить величину отрезка [AM] .

На практике целесообразно пользоваться другим алгоритмом решения, который будет отличаться от приведенного лишь тем, что, прежде чем приступить к выполнению первого пункта, следует перевести плоскости в проецирующее положение.

Включение в алгоритм этой дополнительной операции упрощает выполнение всех без исключения остальных пунктов, что, в конечном счете, приводит к более простому решению.

ПРИМЕР 1. Определить расстояние между плоскостями α и β (рис. 273).

РЕШЕНИЕ. Переходим от системы xπ21 к x1π13. По отношению к новой плоскости π3 плоскости α и β занимают проецирующее положение, поэтому расстояние между новыми фронтальными ,следами f1 и f1 является искомым.

В инженерной практике часто приходится решать задачу на построение плоскости, параллельной данной и удаленной от нее на заданное расстояние. Приведенный ниже пример 2 иллюстрирует решение такой задачи.

ПРИМЕР 2. Требуется построить проекции плоскости β, параллельной данной плоскости α (m || n), если известно, что расстояние между ними равно d (рис. 274).

РЕШЕНИЕ.

1. В плоскости α проводим произвольные горизонталь h (1, 3) и фронталь f (1,2).

2. Из точки 1 восставляем перпендикуляр l к плоскости α(l’ ⊥ h’, l” ⊥ f”).

3. На перпендикуляре l отмечаем произвольную точку А.

4. Определяем длину отрезка [1А] – [1’А0] (положение [1’А0] указывает на эпюре метрически неискаженное направление прямой l).

Рис 273-274.Определение расстояния между точкой и плоскостью, прямой и плоскостью,между плоскостями и скрещивающимися прямыми

5. Откладываем на прямой (1’А0) от точки 1′ отрезок [1’В0] = d.

6. Отмечаем на проекциях l’ и l” точки В’ и В”, соответствующие точке В0.

7. Через точку В проводим плоскость β (h1 ∩ f1). Чтобы β || α, необходимо coблюдать условие h1 || h и f1 || f.

4. Определение расстояния между скрещивающимися прямыми.

Расстояние между скрещивающимися прямыми определяется длиной перпендикуляра, заключенного между параллельными плоскостями, которым принадлежат скрещивающиеся прямые.

Для того чтобы через скрещивающиеся прямые m и f провести взаимно параллельные плоскости α и β, достаточно через точку А (А ∈ m) провести прямую р, параллельную прямой f, а через точку В (В ∈ f) – прямую k, параллельную прямой m. Пересекающиеся прямые m и р, f и k определяют взаимно параллельные плоскости α и β (см. рис. 248, е). Расстояние между плоскостями α и β равно искомому расстоянию между скрещивающимися прямыми m и f.

Можно предложить и другой путь для определения расстояния между скрещивающимися прямыми, который состоит в том, что с помощью какого-либо способа преобразования ортогональных проекций одна из скрещивающихся прямых переводится в проецирующее положение. В этом случае одна проекция прямой вырождается в точку. Расстояние между новыми проекциями скрещивающихся прямых (точкой A’2 и отрезком C’2D’2) является искомым.

На рис. 275 приведено решение задачи на определение расстояния между скрещивающимися прямыми а и b, заданными отрезками [АВ] и [ CD]. Решение выполняют в следующей последовательности:

1. Переводят одну из скрещивающихся прямых (а) в положение, параллельное плоскости π3; для этого переходят от системы плоскостей проекции xπ21 к новой x1π13 , ось x1 проводят параллельно горизонтальной проекции прямой а . Определяют а”1 [А”1В”1] и b”1 [C”1D”1].

2. Путем замены плоскости π1 плоскостью π4 переводят прямую

Рис 275.Определение расстояния между точкой и плоскостью, прямой и плоскостью,между плоскостями и скрещивающимися прямыми

а в положение а’2, перпендикулярное плоскости π4 (новую ось х2 проводят перпендикулярно а”1).

3. Строят новую горизонтальную проекцию прямой b’2 – [ C’2D’2].

4. Расстояние от точки А’2 до прямой C’2D’2 ( отрезок ( А’2М’2] (является искомым.

Следует иметь в виду, что перевод одной из скрещивающихся прямых в проецирующее положение является ничем иным, как переводом плоскостей параллелизма, в которые можно заключить прямые а и b, также в проецирующее положение.

В самом деле, переведя прямую а в положение, перпендикулярное плоскости π4, мы обеспечиваем перпендикулярность любой плоскости, содержащей прямую а, плоскости π4, в том числе и плоскости α, определяемой прямыми а и m (а ∩ m, m || b). Если мы теперь проведем прямую n, параллельную а и пересекающую прямую b, то мы получим плоскость β, являющуюся второй плоскостью параллелизма, в которую заключены скрещивающиеся прямые а и b. Так как β || α, то и β ⊥ π4.

Добавить комментарий