Как найти расстояние точки до оси абсцисс

Опубликовано 3 года назад по предмету
Математика
от aleksejkuzmin

  1. Ответ

    Ответ дан
    Opolishuk

    Ось абсцисс – это ось Х
    Чтобы найти расстояние от точки А до оси Х, необходимо опустить перпендикуляр от точки к этой оси и посчитать сколько единичных отрезков вмещается в этот перпендикуляр. 
    Таким образом 1-0=1

  2. Ответ

    Ответ дан
    987oiu789

    на оси абсцисс все точки имеют значение ординат, равное 0
    расстояние от любой точки координатной плоскости с координатами(х;у) до оси абсцисс будет равно I y-0 I =I y (модуль у)
    таким образом. расстояние от т А(-11;1) до оси абсцисс= I 1-0 I =1

Информация

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

Расстояние между двумя фигурами

Общее определение расстояния между двумя произвольными фигурами выходит за рамки школьной программы, и мы его не приводим. Ряд частных случаев, когда расстояние между двумя фигурами можно ввести на базе школьного материала, перечислен в следующей таблице.

Фигуры Рисунок Определение расстояния
Две точки Расстоянием между двумя точками называют длину отрезка AB.
Точка, лежащая на прямой Расстояние равно 0.
Точка, не лежащая на прямой Расстоянием от точки до прямой называют длину перпендикуляра, опущенного из точки на прямую.
Две параллельные прямые Расстоянием между параллельными прямыми называют длину перпендикуляра, опущенного из любой точки одной прямой на другую прямую.
Две пересекающиеся прямые Расстояние равно 0.
Две скрещивающиеся прямые Расстоянием между скрещивающимися прямыми называют длину общего перпендикуляра к этим прямым.
Точка, лежащая на плоскости Расстояние равно 0.
Точка, не лежащая на плоскости Расстоянием от точки до плоскости называют длину перпендикуляра, опущенного из этой точки на плоскость.
Прямая, пересекающая плоскость Расстояние равно 0.
Прямая, лежащая на плоскости Расстояние равно 0.
Прямая, параллельная плоскости Расстоянием от прямой, параллельной плоскости, до плоскости называют длину перпендикуляра, опущенного из любой точки данной прямой на плоскость.
Две пересекающиеся плоскости Расстояние равно 0.
Две параллельные плоскости Расстоянием между параллельными плоскостями называют длину перпендикуляра, опущенного из любой точки одной плоскости на другую плоскость (все такие перпендикуляры имеют одну и ту же длину).
Парабола
y = a x 2 + b x + c ,
не пересекающая ось абсцисс, и ось абсцисс
Расстоянием от параболы, не пересекающей ось абсцисс, до оси абсцисс называют длину кратчайшего отрезка, один из концов которого лежит на параболе, а другой на оси абсцисс.
Этим кратчайшим отрезком является перпендикуляр, опущенный из вершины параболы на ось абсцисс.
Окружность и не пересекающая ее прямая Расстоянием между окружностью и непереcекающей ее прямой называют длину кратчайшего отрезка, один из концов которого лежит на окружности, а другой конец – на прямой.
Если перпендикуляр OB , опущенный из центра O окружности на прямую, пересекает окружность в точке A, то расстояние от окружности до прямой равно длине отрезка AB.
Две непересекающиеся окружности, каждая из которых лежит вне другой Расстоянием между непересекающимися окружностями называют длину кратчайшего отрезка, один из концов которого лежит на одной окружности , а другой конец – на другой окружности.
Если линия центров O1O2 пересекает окружность с центром O1 в точке A1, а окружность с центром O2 – в точке A2, то расстояние между окружностями будет равно длине отрезка A1A2.
Гипербола где k – любое, отличное от нуля, число, и ось абсцисс. Расстояние между гиперболой и осью абсцисс считается равным 0, поскольку гипербола неограниченно приближается к оси абсцисс (длина отрезка, один из концов которого лежит на гиперболе, а другой конец – на оси абсцисс, может быть сколь угодно малой).
Две точки

Определение расстояния:
Расстоянием между двумя точками называют длину отрезка AB.

Точка, лежащая на прямой

Расстояние равно 0.

Точка, не лежащая на прямой

Определение расстояния:
Расстоянием от точки до прямой называют длину перпендикуляра, опущенного из точки на прямую.

Две параллельные прямые параллельные прямые

Определение расстояния:
Расстоянием между параллельными прямыми называют длину перпендикуляра, опущенного из любой точки одной прямой на другую прямую.

Две пересекающиеся прямые пересекающиеся прямые

Расстояние равно 0.

Определение расстояния:
Расстоянием между скрещивающимися прямыми называют длину общего перпендикуляра к этим прямым.

Точка, лежащая на плоскости

Расстояние равно 0.

Точка, не лежащая на плоскости

Определение расстояния:
Расстоянием от точки до плоскости называют длину перпендикуляра, опущенного из этой точки на плоскость.

Расстояние равно 0.

Расстояние равно 0.

Определение расстояния:
Расстоянием от прямой, параллельной плоскости, до плоскости называют длину перпендикуляра, опущенного из любой точки данной прямой на плоскость.

Две пересекающиеся плоскости

Расстояние равно 0.

Две параллельные плоскости

Определение расстояния:
Расстоянием между параллельными плоскостями называют длину перпендикуляра, опущенного из любой точки одной плоскости на другую плоскость (все такие перпендикуляры имеют одну и ту же длину).

Парабола y = a x 2 + b x + c , не пересекающая ось абсцисс, и ось абсцисс

Определение расстояния:
Расстоянием от параболы, не пересекающей ось абсцисс, до оси абсцисс называют длину кратчайшего отрезка, один из концов которого лежит на параболе, а другой на оси абсцисс.
Этим кратчайшим отрезком является перпендикуляр, опущенный из вершины параболы на ось абсцисс.

Окружность и не пересекающая ее прямая

Определение расстояния:
Расстоянием между окружностью и непереcекающей ее прямой называют длину кратчайшего отрезка, один из концов которого лежит на окружности , а другой конец – на прямой.
Если перпендикуляр OB , опущенный из центра O окружности на прямую, пересекает окружность в точке A , то расстояние от окружности до прямой равно длине отрезка AB.

Две непересекающиеся окружности, каждая из которых лежит вне другой Две непересекающиеся окружности, каждая из которых лежит вне другой

Определение расстояния:
Расстоянием между непересекающимися окружностями называют длину кратчайшего отрезка, один из концов которого лежит на одной окружности, а другой конец – на другой окружности.
Если линия центров O1O2 пересекает окружность с центром O1 в точке A1, а окружность с центром O2 – в точке A2, то расстояние между окружностями будет равно длине отрезка A1A2.

Как найти абсциссу точки окружности

Как найти координаты точки?

О чем эта статья:

3 класс, 4 класс, 9 класс, 11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Понятие системы координат

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.

Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.

Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.

Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.

Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.

  • Координатные оси — это прямые, образующие систему координат.
  • Ось абсцисс Ox — горизонтальная ось.
  • Ось ординат Oy — вертикальная ось.
  • Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
  • Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.

Оси координат делят плоскость на четыре угла — четыре координатные четверти.

У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:

  • верхний правый угол — первая четверть I;
  • верхний левый угол — вторая четверть II;
  • нижний левый угол — третья четверть III;
  • нижний правый угол — четвертая четверть IV;
  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.

Определение координат точки

Каждой точке координатной плоскости соответствуют две координаты.

Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.

Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.

Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.

Смотрим на график и фиксируем: A (1; 2) и B (2; 3).

Особые случаи расположения точек

В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:

  1. Если точка лежит на оси Oy, то ее абсцисса равна 0. Например,
    точка С (0, 2).
  2. Если точка лежит на оси Ox, то ее ордината равна 0. Например,
    точка F (3, 0).
  3. Начало координат — точка O. Ее координаты равны нулю: O (0,0).
  4. Точки любой прямой, которая перпендикулярна оси абсцисс, имеют одинаковые абсциссы.
  5. Точки любой прямой, которая перпендикулярна оси ординат, имеют одинаковые ординаты.
  6. Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0).
  7. Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y).

Способы нахождения точки по её координатам

Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.

Способ первый. Как определить положение точки D по её координатам (-4, 2):

  1. Отметить на оси Ox, точку с координатой -4, и провести через нее прямую перпендикулярную оси Ox.
  2. Отметить на оси Oy, точку с координатой 2, и провести через нее прямую перпендикулярную оси Oy.
  3. Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.

Способ второй. Как определить положение точки D (-4, 2):

  1. Сместить прямую по оси Ox влево на 4 единицы, так как у нас
    перед 4 стоит знак минус.
  2. Подняться из этой точки параллельно оси Oy вверх на 2 единицы, так как у нас перед 2 стоит знак плюс.

Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:

Декартовы координаты точек плоскости. Уравнение окружности

Числовая ось

Определение 1 . Числовой осью ( числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление

указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.

Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .

Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .

Прямоугольная декартова система координат на плоскости

Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).

Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.

Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координатыабсциссу и ординату, которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA1 и AA2 на прямые Ox и Oy соответственно (рис.3).

Определение 4 . Абсциссой точки A называют координату точки A1 на числовой оси Ox , ординатой точки A называют координату точки A2 на числовой оси Oy .

Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y) или A = (x ; y).

Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .

Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).

Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти ( квадранта ), нумерация которых показана на рисунке 5.

Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .

Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.

Формула для расстояния между двумя точками координатной плоскости

Утверждение 1 . Расстояние между двумя точками координатной плоскости

вычисляется по формуле

Доказательство . Рассмотрим рисунок 6.

| A1A2| 2 =
= ( x2x1) 2 + ( y2y1) 2 .
(1)

что и требовалось доказать.

Уравнение окружности на координатной плоскости

Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:

Уравнение (2) и есть искомое уравнение окружности радиуса R с центром в точке A0 (x0 ; y0) .

Следствие . Уравнение окружности радиуса R с центром в начале координат имеет вид

9 класс. Геометрия. Метод координат. Уравнение окружности.

9 класс. Геометрия. Метод координат. Уравнение окружности.

  • Оглавление
  • Занятия
  • Обсуждение
  • О курсе

Вопросы

Задай свой вопрос по этому материалу!

Поделись с друзьями

Комментарии преподавателя

Решение задач

Вы­яс­ни­те, какие из дан­ных урав­не­ний яв­ля­ют­ся урав­не­ни­я­ми окруж­но­сти.

Най­ди­те ко­ор­ди­на­ты цен­тра и ра­ди­ус каж­дой окруж­но­сти.

а)

б)

в)

г) ;

д)

Рас­смот­рим каж­дое урав­не­ние в от­дель­но­сти.

а) – окруж­ность,

б) – окруж­ность,

в)
Вы­де­лим пол­ный квад­рат:

урав­не­ние не яв­ля­ет­ся урав­не­ни­ем окруж­но­сти.

г) .
Вы­де­лим пол­ный квад­рат:
– окруж­ность,

д)
Вы­де­лим пол­ный квад­рат:
– окруж­ность,

На окруж­но­сти, за­дан­ной урав­не­ни­ем , най­ди­те точки

а) с абс­цис­сой –4; б) с ор­ди­на­той 3.

Ре­ше­ние: по­стро­им окруж­ность с цен­тром (0;0) ра­ди­у­са 5 (рис. 1).

Рис. 1. Ил­лю­стра­ция к за­да­че

а) Ко­ор­ди­на­ты точек окруж­но­сти с абс­цис­сой –4 яв­ля­ют­ся ре­ше­ни­я­ми си­сте­мы:

По­лу­ча­ем точку и точку

Рис. 2. Ил­лю­стра­ция к за­да­че

б) Ко­ор­ди­на­ты точек окруж­но­сти с ор­ди­на­той 3 яв­ля­ют­ся ре­ше­ни­я­ми си­сте­мы:

Рис. 3. Ил­лю­стра­ция к за­да­че

По­лу­ча­ем точку и ту же самую точку

Ответ: .

За­пи­ши­те урав­не­ние окруж­но­сти ра­ди­у­са r с цен­тром в точке А, если

а)

б)

в)

г)

а) Окруж­ность
Ответ:

б) Окруж­ность .
Ответ:

в) Окруж­ность
Ответ:

г) Окруж­ность
Ответ:

На­пи­ши­те урав­не­ние окруж­но­сти с цен­тром в на­ча­ле ко­ор­ди­нат, про­хо­дя­щей через точку

Рис. 4. Ил­лю­стра­ция к за­да­че

Най­дем ра­ди­ус, как рас­сто­я­ние ОВ:

За­пи­шем урав­не­ние окруж­но­сти с цен­тром О(0;0):

Для кон­тро­ля про­ве­рим, удо­вле­тво­ря­ют ли по­лу­чен­но­му урав­не­нию ко­ор­ди­на­ты точки В:

зна­чит, точка В лежит на окруж­но­сти.

Ответ:

На­пи­ши­те урав­не­ние окруж­но­сти, про­хо­дя­щей через точку А(1;3), если из­вест­но, что центр окруж­но­сти лежит на оси абс­цисс, а ра­ди­ус равен 5.

Сколь­ко су­ще­ству­ет таких окруж­но­стей?

Дано: А(1;3) – точка окруж­но­сти,

Найти: урав­не­ние окруж­но­сти (С; r=5).

Ре­ше­ние: центр ис­ко­мой окруж­но­сти уда­лен от точки А(1;3) на рас­сто­я­ние 5, зна­чит, он лежит на окруж­но­сти с цен­тром в точке А(1;3) ра­ди­у­са 5, но он еще лежит и на оси Ох. По­стро­им окруж­ность (А(1;3); r=5) (рис. 5).

Рис. 5. Ил­лю­стра­ция к за­да­че

Точек, удо­вле­тво­ря­ю­щих нашим усло­ви­ям, на оси Ох две:

Для опре­де­ле­ния ко­ор­ди­нат этих точек со­ста­вим си­сте­му:

За­пи­шем урав­не­ния ис­ко­мых окруж­но­стей:

окруж­ность (

окруж­ность ( и по­стро­им эти окруж­но­сти (рис. 6):

Рис. 6. Ил­лю­стра­ция к за­да­че

Ответ: две окруж­но­сти.

На­пи­ши­те урав­не­ние окруж­но­сти, про­хо­дя­щей через две за­дан­ные точки и В(0;9), если из­вест­но, что центр окруж­но­сти лежит на оси ор­ди­нат.

Дано: окруж­но­сти ;

oкруж­но­сти .

за­пи­сать урав­не­ние окруж­но­сти.

Рис. 7. Ил­лю­стра­ция к за­да­че

За­пи­шем урав­не­ние окруж­но­сти так как окруж­ность про­хо­дит через точки А и В, то их ко­ор­ди­на­ты удо­вле­тво­ря­ют урав­не­нию окруж­но­сти:

Под­ста­вим най­ден­ные зна­че­ния в урав­не­ние.

Ответ:

На­пи­ши­те урав­не­ние окруж­но­сти с цен­тром в точке А(6;0), про­хо­дя­щей через точку В(-3;2).

Дано: А(6;0) – центр,

окруж­но­сти.

Найти: урав­не­ние окруж­но­сти.

Рис. 8. Ил­лю­стра­ция к за­да­че

На­хо­дим ра­ди­ус как рас­сто­я­ние АВ:

За­пи­шем урав­не­ние окруж­но­сти:

Ответ:

Заключение

Итак, мы рас­смот­ре­ли серию задач по теме «Окруж­ность» и в каж­дой за­да­че ис­поль­зо­ва­ли урав­не­ние окруж­но­сти.

На сле­ду­ю­щем уроке мы вы­ве­дем урав­не­ние пря­мой.

Что такое эллипс: формула длины окружности эллипса

Понятие о кривых второго порядка

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

,

где A, B, C, D, E, F – числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Понятие алгебраической линии и её порядка

Линию на плоскости называют алгебраической, если в аффинной системе координат её уравнение имеет вид , где , где – многочлен, состоящий из слагаемых вида ( ( – действительное число, – целые неотрицательные числа).

Как видите, уравнение алгебраической линии не содержит синусов, косинусов, логарифмов и прочего функционального бомонда. Только «иксы» и «игреки» в целых неотрицательныхстепенях.

Далее под словом «линия» по умолчанию будет подразумеваться алгебраическая линия на плоскости

Порядок линии равен максимальному значению входящих в него слагаемых.

По соответствующей теореме, понятие алгебраической линии, а также её порядок не зависят от выбора аффинной системы координат , поэтому для лёгкости бытия считаем, что все последующие выкладки имеют место быть в декартовых координатах .

Общее уравнение линии второго порядка имеет вид , где , где – произвольные действительные числа ( принято записывать с множителем-«двойкой»), причём коэффициенты принято записывать с множителем-«двойкой»), причём коэффициенты не равны одновременно нулю.

Если , то уравнение упрощается до , то уравнение упрощается до , и если коэффициенты одновременно не равны нулю, то это в точности общее уравнение «плоской» прямой , которая представляет собой линию первого порядка.

Многие поняли смысл новых терминов, но, тем не менее, в целях 100%-го усвоения материала сунем пальцы в розетку. Чтобы определить порядок линии, нужно перебрать все слагаемыееё уравнения и у каждого из них найти сумму степенейвходящих переменных.

слагаемое содержит «икс» в 1-й степени;
слагаемое содержит «икс» в 1-й степени;
слагаемое содержит «игрек» в 1-й степени;
в слагаемом переменные отсутствуют, поэтому сумма их степеней равна нулю.

Далее из полученных чисел выбирается максимальное значение, в данном случае единица, – это и есть порядок линии.

Теперь разберёмся, почему уравнение задаёт линию второго порядка:

слагаемое содержит «икс» во 2-й степени;
у слагаемого содержит «икс» во 2-й степени;
у слагаемого сумма степеней переменных: 1 + 1 = 2;
слагаемое содержит «игрек» во 2-й степени;
все остальные слагаемые – меньшей степени.

Максимальное значение: 2

Если к нашему уравнению дополнительно приплюсовать, скажем, , то оно уже будет определять линию третьего порядка. Очевидно, что общий вид уравнения линии 3-го порядка содержит «полный комплект» слагаемых, сумма степеней переменных в которых равна трём:
, то оно уже будет определять линию третьего порядка. Очевидно, что общий вид уравнения линии 3-го порядка содержит «полный комплект» слагаемых, сумма степеней переменных в которых равна трём:
, где коэффициенты не равны одновременно нулю.

В том случае, если добавить одно или несколько подходящих слагаемых, которые содержат , то речь уже зайдёт о линии 4-го порядка, и т.д.

С алгебраическими линиями 3-го, 4-го и более высоких порядков нам придется столкнуться ещё не раз, в частности, при знакомстве с полярной системой координат .

Однако вернёмся к общему уравнению и вспомним его простейшие школьные вариации. В качестве примеров напрашивается парабола и вспомним его простейшие школьные вариации. В качестве примеров напрашивается парабола , уравнение которой легко привести к общему виду , и гипербола , и гипербола с эквивалентным уравнением . Однако не всё так гладко….

Существенный недостаток общего уравнения состоит в том, что почти всегда не понятно, какую линию оно задаёт. Даже в простейшем случае не сразу сообразишь, что это гипербола. Такие расклады хороши только на маскараде, поэтому в курсе аналитической геометрии рассматривается типовая задача приведения уравнения линии 2-го порядка к каноническому виду .

Определение эллипсa

Эллипс — это замкнутая плоская кривая, сумма расстояний от каждой точки которой до двух точек F1 и F2 равна постоянной величине. Точки F1 и F2 называют фокусами эллипса.

Формула площади эллипса через каноническое уравнение

Формула для нахождения площади в этом случае такова:

a , b – большая и мала полуоси эллипса, соответственно.

Решим задачу этим способом.

Дано уравнение эллипса. Найти его площадь и округлить ответ до целого числа.

2 5 x 2 ​ + 9 y 2 ​ = 1

Решение

Для начала найдем длины наших полуосей:

a = a 2 ​ = 2 5 ​ = 5

S = π ⋅ a ⋅ b = π ⋅ 5 ⋅ 3 ≈ 4 7 (см. кв.)

Ответ: 47 см. кв.

Соотношения между элементами эллипса

Элементы эллипсa

А1А2 = 2 a – большая ось эллипса (проходит через фокусы эллипса)

B1B2 = 2 b – малая ось эллипса (перпендикулярна большей оси эллипса и проходит через ее центр)

a – большая полуось эллипса

b – малая полуось эллипса

O – центр эллипса (точка пересечения большей и малой осей эллипса)

Эксцентриситет эллипсa e характеризует его растяженность и определяется отношением фокального расстояния c к большой полуоси a . Для эллипсa эксцентриситет всегда будет 0 e e = 0, для параболы e = 1, для гиперболы e > 1.

Радиус эллипсa R – отрезок, соединяющий центр эллипсa О с точкой на эллипсе.

R = ab = b
√ a 2 sin 2 φ + b 2 cos 2 φ √ 1 – e 2 cos 2 φ

где e – эксцентриситет эллипсa, φ – угол между радиусом и большой осью A1A2.

Коэффициент сжатия эллипсa (эллиптичность) k – отношение длины малой полуоси к большой полуоси. Так как малая полуось эллипсa всегда меньше большей, то k k = 1:

где e – эксцентриситет.

Что такое канонический вид уравнения?

Это общепринятый стандартный вид уравнения, когда в считанные секунды становится ясно, какой геометрический объект оно определяет. Кроме того, канонический вид очень удобен для решения многих практических заданий. Так, например, по каноническому уравнению «плоской» прямой , во-первых, сразу понятно, что это прямая, а во-вторых – элементарно просматривается принадлежащая ей точка «плоской» прямой , во-первых, сразу понятно, что это прямая, а во-вторых – элементарно просматривается принадлежащая ей точка и направляющий вектор .

Очевидно, что любая линия 1-го порядка представляет собой прямую. На втором же этаже нас ждёт уже не вахтёр, а гораздо более разнообразная компания из девяти статуй:

Связанные определения

  • Отрезок AB, проходящий через фокусы эллипса, концы которого лежат на эллипсе, называется большой осью данного эллипса. Длина большой оси равна 2a в вышеприведённом уравнении.
  • Отрезок CD, перпендикулярный большой оси эллипса, проходящий через центральную точку большой оси, концы которого лежат на эллипсе, называется малой осью эллипса.
  • Точка пересечения большой и малой осей эллипса называется его центром.
  • Точка пересечения эллипса с осями называются его вершинами.
  • Отрезки, проведённые из центра эллипса к вершинам на большой и малой осях называются, соответственно, большой полуосью и малой полуосью эллипса, и обозначаются a и b.
  • Расстояния r1 и r2 от каждого из фокусов до данной точки на эллипсе называются фокальными радиусами в этой точке.
  • Расстояние называется фокальным расстоянием.
  • Эксцентриситетом эллипса называется отношение . Эксцентриситет (также обозначается ε) характеризует вытянутость эллипса изменяется. Чем эксцентриситет ближе к нулю, тем эллипс больше напоминает окружность и наоборот, чем эксцентриситет ближе к единице, тем он более вытянут.
  • Фокальным параметромназывается половина длины хорды , проходящей через фокус и перпендикулярной большой оси эллипса.
  • Отношение длин малой и большой полуосей называется коэффициентом сжатия эллипса или эллиптичностью: . Величина, равная называется сжатием эллипса. Для окружности коэффициент сжатия равен единице, сжатие — нулю. Коэффициент и эксцентриситет эллипса связаны соотношением

Расчет площади

  • Большая полуось эллипса является максимальным расстоянием от его центра до края. [1]

  • Малая полуось эллипса расположена под прямым углом 90º к его большой полуоси, однако для нахождения площади нет необходимости определять углы.
  • Малая полуось эллипса является минимальным расстоянием от его центра до края.

  • Например, если большая полуось эллипса равна 5 единицам, а малая 3 единицам длины, то получим площадь 5 x 3 x π, или около 47 квадратных единиц длины.
  • Если у вас нет под рукой калькулятора или на калькуляторе нет символа π, используйте вместо этого числа значение “3,14”.

Объяснение метода

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

,

где a и b (a > b) – длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a, О) и (- a, О), а ось ординат – в точках (b, О) и (- b, О). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат – малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность – частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a/b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия – эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось – это a = 5 , меньшая полуось – это b = 4 . Получаем каноническое уравнение эллипса:

.

Точки и и , обозначенные зелёным на большей оси, где

,

называются фокусами.

называется эксцентриситетом эллипса.

Отношение b/a характеризует “сплюснутость” эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

– если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

– если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат – каноническое уравнение эллипса:

.

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c, нужное для вычисления длины меньшей полуоси:

.

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c, определяющее первые координаты фокусов эллипса:

.

Получаем фокусы эллипса:

Классификация линий второго порядка

С помощью специального комплекса действий любое уравнение линии второго порядка приводится к одному из следующих видов:

( и и – положительные действительные числа)

1) – каноническое уравнение эллипса;

2) – каноническое уравнение гиперболы;

3) – каноническое уравнение параболы;

4) мнимый эллипс;

5) – пара пересекающихся прямых;

6) – пара мнимых пересекающихся прямых (с единственной действительной точкой пересечения в начале координат);

7) – пара параллельных прямых;

– пара мнимых параллельных прямых;

9) – пара совпавших прямых.

У ряда читателей может сложиться впечатление неполноты списка. Например, в пункте № 7 уравнение задаёт пару прямых задаёт пару прямых , параллельных оси , и возникает вопрос: а где же уравнение , и возникает вопрос: а где же уравнение , определяющее прямые , параллельные оси ординат? Ответ: оно не считается каноническим. Прямые , параллельные оси ординат? Ответ: оно не считается каноническим. Прямые представляют собой тот же самый стандартный случай , повёрнутый на 90 градусов, и дополнительная запись , повёрнутый на 90 градусов, и дополнительная запись в классификации избыточна, поскольку не несёт ничего принципиально нового.

Таким образом, существует девять и только девять различных видов линий 2-го порядка, но на практике наиболее часто встречаются эллипс, гипербола и парабола .

Сначала рассмотрим эллипс. Как обычно, я акцентирую внимание на тех моментах, которые имеют большое значение для решения задач, и если вам необходим подробный вывод формул, доказательства теорем, пожалуйста, обратитесь, например, к учебнику Базылева/Атанасяна либо Александрова.

Что такое эллипс и фокусное расстояние

Внимание!

Если вам нужна помощь с академической работой , то рекомендуем обратиться к профессионалам. Более 70 000 экспертов готовы помочь вам прямо сейчас.

Эллипс – это множество точек плоскости, сумма расстояний которых от двух заданных точек, что называются фокусами, есть постоянная величина и равна .

Обозначим фокусы эллипса и . Допустим, что расстояние = – фокусное расстояние.

– половина расстояния между фокусами;

– большая полуось;

– малая полуось.

Фокусное расстояние и полуоси связаны соотношением:

Если точка находится на пересечении эллипса с вертикальной осью, (теорема Пифагора). Если же точка находится на пересечении эллипса с вертикальной осью, (теорема Пифагора). Если же точка находится на пересечении его с горизонтальной осью, . Так как по определению сумма – постоянная величина, то приравнивая получается:

Как построить эллипс?

Да, вот взять его и просто начертить. Задание встречается часто, и значительная часть студентов не совсем грамотно справляются с чертежом:

Построить эллипс, заданный уравнением

Решение: сначала приведём уравнение к каноническому виду:

Зачем приводить? Одно из преимуществ канонического уравнения заключается в том, что оно позволяет моментально определить вершины эллипса, которые находятся в точках заключается в том, что оно позволяет моментально определить вершины эллипса, которые находятся в точках . Легко заметить, что координаты каждой из этих точек удовлетворяют уравнению .

В данном случае :
:

Отрезок называют большой осью эллипса;
отрезок называют большой осью эллипса;
отрезок малой осью;
число называют большой полуосью эллипса;
число называют большой полуосью эллипса;
число малой полуосью.
в нашем примере: .

Чтобы быстро представить, как выглядит тот или иной эллипс достаточно посмотреть на значения «а» и «бэ» его канонического уравнения.

Всё ладно, складно и красиво, но есть один нюанс: я выполнил чертёж с помощью программы . И вы можете выполнить чертёж с помощью какого-либо приложения. Однако в суровой действительности на столе лежит клетчатый листок бумаги, и на наших руках водят хороводы мыши. Люди с художественным талантом, конечно, могут поспорить, но мыши есть и у вас тоже (правда, поменьше). Таки не зря человечество изобрело линейку, циркуль, транспортир и другие нехитрые приспособления для черчения.

По этой причине нам вряд ли удастся аккуратно начертить эллипс, зная одни вершины. Ещё куда ни шло, если эллипс небольшой, например, с полуосями . Как вариант, можно уменьшить масштаб и, соответственно, размеры чертежа. Но в общем случае крайне желательно найти дополнительные точки.

Существует два подхода к построению эллипса – геометрический и алгебраический. Построение с помощью циркуля и линейки мне не нравится по причине не самого короткого алгоритма и существенной загроможденности чертежа. В случае крайней необходимости, пожалуйста, обратитесь к учебнику, а в реальности же гораздо рациональнее воспользоваться средствами алгебры. Из уравнения эллипса на черновике быстренько выражаем:
на черновике быстренько выражаем:

Далее уравнение распадается на две функции:
– определяет верхнюю дугу эллипса;
– определяет верхнюю дугу эллипса;
– определяет нижнюю дугу эллипса.

Заданный каноническим уравнением эллипс симметричен относительно координатных осей, а также относительно начала координат. И это отлично – симметрия почти всегда предвестник халявы. Очевидно, что достаточно разобраться с 1-й координатной четвертью, поэтому нам потребуется функция . Напрашивается нахождение дополнительных точек с абсциссами . Напрашивается нахождение дополнительных точек с абсциссами . Настукаем три смс-ки на калькуляторе:

Безусловно, приятно и то, что если допущена серьёзная ошибка в вычислениях, то это сразу выяснится в ходе построения.

Отметим на чертеже точки (красный цвет), симметричные точки на остальных дугах (синий цвет) и аккуратно соединим линией всю компанию:
(красный цвет), симметричные точки на остальных дугах (синий цвет) и аккуратно соединим линией всю компанию:

Первоначальный набросок лучше прочертить тонко-тонко, и только потом придать нажим карандашу. В результате должен получиться вполне достойный эллипс. Кстати, не желаете ли узнать, что это за кривая?

Свойства

  • Фокальное свойство. Если F1 и F2 — фокусы эллипса, то для любой точки X, принадлежащей эллипсу, угол между касательной в этой точке и прямой (F1X) равен углу между этой касательной и прямой (F2X) .
  • Прямая, проведённая через середины отрезков, отсечённых двумя параллельными прямыми, пересекающими эллипс, всегда будет проходить через центр эллипса. Это позволяет построением с помощью циркуля и линейки легко получить центр эллипса, а в дальнейшем оси, вершины и фокусы.
  • Эволютой эллипса является астроида .

Эллипс также можно описать как

  • фигуру, которую можно получить из окружности , применяя аффинное преобразование
  • ортогональную проекцию окружности на плоскость .
  • Пересечение плоскости и кругового цилиндра

Формула длины окружности эллипса

Хотя рассматриваемая фигура является достаточно простой, длину ее окружности точно можно определить, если вычислить так называемые эллиптические интегралы второго рода. Однако, индусский математик-самоучка Рамануджан еще в начале XX века предложил достаточно простую формулу длины эллипса, которая приближается к результату отмеченных интегралов снизу. То есть рассчитанное по ней значение рассматриваемой величины будет немного меньше, чем реальная длина. Эта формула имеет вид: P ≈ pi * [3 * (a+b) – √((3 * a + b) * (a + 3 * b))], где pi = 3,14 – число пи.

Например, пусть длины двух полуосей эллипса будут равны a = 10 см и b = 8 см, тогда его длина P = 56,7 см.

Каждый может проверить, что если a = b = R, то есть рассматривается обычная окружность, тогда формула Рамануджана сводится к виду P = 2 * pi * R.

Отметим, что в школьных учебниках часто приводится другая формула: P = pi * (a + b). Она является более простой, но и менее точной. Так, если ее применить для рассмотренного случая, то получим значение P = 56,5 см.

[spoiler title=”источники:”]

http://b4.cooksy.ru/articles/kak-nayti-abstsissu-tochki-okruzhnosti

http://exceltut.ru/chto-takoe-ellips-formula-dliny-okruzhnosti-ellipsa/

[/spoiler]


СДАМ ГИА:

РЕШУ ЕГЭ

Образовательный портал для подготовки к экзаменам

Математика профильного уровня

Математика профильного уровня

≡ Математика

Базовый уровень

Профильный уровень

Информатика

Русский язык

Английский язык

Немецкий язык

Французский язык

Испанский язык

Физика

Химия

Биология

География

Обществознание

Литература

История

Сайты, меню, вход, новости

СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ

Об экзамене

Каталог заданий

Варианты

Ученику

Учителю

Школа

Эксперту

Справочник

Карточки

Теория

Сказать спасибо

Вопрос — ответ

Чужой компьютер

Зарегистрироваться

Восстановить пароль

Войти через ВКонтакте

Играть в ЕГЭ-игрушку

Новости

1 мая

Новый сервис: можно исправить ошибки!

29 апреля

Разместили актуальные шкалы ЕГЭ  — 2023

24 апреля

Учителю: обновленный классный журнал

7 апреля

Новый сервис: ссылка, чтобы записаться к учителю

30 марта

Решения досрочных ЕГЭ по математике

31 октября

Сертификаты для учителей о работе на Решу ЕГЭ, ОГЭ, ВПР

НАШИ БОТЫ

Все новости

ЧУЖОЕ НЕ БРАТЬ!

Экзамер из Таганрога

10 апреля

Предприниматель Щеголихин скопировал сайт Решу ЕГЭ

Наша группа

Каталог заданий.
Координатная плоскость


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Задания Д5 № 27647

Из точки А(6; 8) опущен перпендикуляр на ось абсцисс. Найдите абсциссу основания перпендикуляра.

Аналоги к заданию № 27647: 57657 57659 57661 … Все

Решение

·

Помощь


2

Задания Д5 № 27648

Через точку А(6; 8) проведена прямая, параллельная оси абсцисс. Найдите ординату ее точки пересечения с осью Oy.

Аналоги к заданию № 27648: 57707 57709 57711 … Все

Решение

·

Помощь


3

Задания Д5 № 27649

Найдите расстояние от точки A с координатами (6; 8) до оси абсцисс.

Аналоги к заданию № 27649: 57757 57759 57761 … Все

Решение

·

Помощь


4

Задания Д5 № 27650

Найдите расстояние от точки A с координатами (6; 8) до оси ординат.

Аналоги к заданию № 27650: 57807 57809 57811 … Все

Решение

·

Помощь


5

Задания Д5 № 27651

Найдите расстояние от точки A с координатами (6; 8) до начала координат.

Аналоги к заданию № 27651: 57857 57859 57861 … Все

Решение

·

Помощь

Пройти тестирование по этим заданиям

О проекте · Редакция · Правовая информация · О рекламе

© Гущин Д. Д., 2011—2023

ГДЗ (готовое домашние задание из решебника) на Номер №939 по учебнику Геометрия 7-9 классы: учебник для общеобразовательных организаций / Л.С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. – 2-е издание. Просвещение, 2014-2019г.

Условие

Найдите расстояние от точки М (3; -2): а) до оси абсцисс; б) до оси ординат; в) до начала координат.

Решение 1

Фото решения 1: Номер №939 из ГДЗ по Геометрии 7-9 класс: Атанасян Л.С. г.

Решение 2

Подробное решение

Рекомендовано

Белый фонпереписывать в тетрадь

Цветной фонтеория и пояснения

Фото подробного решения: Номер №939 из ГДЗ по Геометрии 7-9 класс: Атанасян Л.С.

Решение 3

Фото решения 3: Номер №939 из ГДЗ по Геометрии 7-9 класс: Атанасян Л.С. г.

Решение 4

Фото решения 2: Номер №939 из ГДЗ по Геометрии 7-9 класс: Атанасян Л.С. г.

Популярные решебники

Ваше сообщение отправлено
и скоро будет рассмотрено

Длина отрезка. Существует целая группа заданий (входящих в экзаменационные типы задач), связанная с координатной плоскостью. Это задачи начиная с самых элементарных, которые  решаются устно (определение ординаты или абсциссы заданной точки, либо точки симметричной заданной и другие), заканчивая задачами в которых требуется качественное знание, понимание и хорошие навыки (задачи связанные с угловым коэффициентом прямой).

Постепенно мы с вами рассмотрим все их. В этой статье начнём с элементарных. Это простые задачи на определение: абсциссы и ординаты точки, длинны отрезка, середины отрезка, синуса или косинуса угла наклона прямой. Большинству эти задания будут не интересны. Но изложить их считаю необходимым.

Дело в том, что не все учатся в школе. Очень многие сдают ЕГЭ спустя 3-4 и более лет после её окончания и что такое абсцисса и ордината помнят смутно. Будем разбирать и другие задачи, связанные с координатной плоскостью, не пропустите, подпишитесь, на обновление блога. Теперь немного теории.

Построим на координатной плоскости точку А с координатами х= 6, y=3.

Длина отрезка

Говорят, что абсцисса точки А равна шести, ордината точки А равна трём.

Если выразиться просто, то ось ох это ось абсцисс, ось оу это ость ординат.

То есть, абсцисса это точка на оси ох в которую проецируется точка заданная на координатной плоскости; ордината это точка на оси оу в которую проецируется оговоренная точка.

Длина отрезка на координатной плоскости

Формула для определения длины отрезка, если известны координаты его концов:

Формула длины отрезка на координатной плоскости

Как вы видите, длина отрезка — это длина гипотенузы в прямоугольными треугольнике с катетами равными

ХВ – ХА     и    УВ – УА     

* * *

Середина отрезка. Её Координаты.

Формула для нахождения координат середины отрезка:

Уравнение прямой проходящей через две данные точки

Формула уравнения прямой походящей через две данные точки имеет вид:

где  (х11) и (х22)  координаты заданных точек.     

Подставив значения координат в формулу, она приводится к виду:

y = kx + b, где k — это угловой коэффициент прямой

Эта информация нам понадобиться  при решении другой группы задач связанных с координатной плоскостью. Статья об этом будет, не пропустите!

Что ещё можно добавить?

Угол наклона прямой (или отрезка) это угол между осью оХ и этой прямой, лежит в пределах от 0 до 180 градусов.

Рассмотрим задачи.

Из точки (6;8) опущен перпендикуляр на ось ординат. Найдите ординату основания перпендикуляра.

Основание перпендикуляра опущенного на ось ординат будет иметь координаты  (0;8). Ордината равна восьми.

Ответ: 8

Найдите расстояние от точки A с координатами (6;8) до оси ординат.

Расстояние от точки А до оси ординат равно абсциссе точки А.

Ответ: 6.

Найдите ординату точки, симметричной точке A(6;8) относительно оси Ox.

Точка симметричная точке А относительно оси оХ имеет координаты (6;– 8).

Ордината равна минус восьми.

Ответ: – 8

Найдите ординату точки, симметричной точке A(6;8) относительно начала координат.

Точка симметричная точке А относительно начала координат имеет координаты (– 6;– 8).

Её ордината равна  – 8.

Ответ: –8

Найдите абсциссу середины отрезка, соединяющего точки (0;0) и A(6;8).

Для того, решить поставленную задачу необходимо найти координаты середины отрезка. Координаты концов нашего отрезка (0;0) и (6;8).

Вычисляем по формуле:

Получили (3;4). Абсцисса равна трём.

Ответ: 3

*Абсциссу середины отрезка можно определить без вычисления по формуле, построив данный отрезок на координатной плоскости на листе в клетку. Середину отрезка несложно будет определить по клеткам.

Найдите абсциссу середины отрезка, соединяющего точки A(6;8) и B(–2;2).

Для того, решить поставленную задачу необходимо найти координаты середины отрезка. Координаты концов нашего отрезка (–2;2) и (6;8).

Вычисляем по формуле:

Получили (2;5). Абсцисса равна двум.

Ответ: 2

*Абсциссу середины отрезка можно определить без вычисления по формуле, построив данный отрезок на координатной плоскости на листе в клетку.

Найдите длину отрезка, соединяющего точки (0;0) и (6;8).

Длина отрезка при данных координатах его концов вычисляется по формуле:

в нашем случае имеем О(0;0) и А(6;8). Значит,

*Порядок координат при вычитании не имеет значения. Можно из абсциссы и ординаты точки О вычесть абсциссу и ординату точки А:

Ответ:10

Найдите косинус угла наклона отрезка, соединяющего точки (0;0) и (6;8), с осью абсцисс.

Угол наклона отрезка – это угол между этим отрезком и осью оХ.

Из точки А опустим перпендикуляр на ось оХ:

То есть, угол наклона отрезка это  угол ВОА в прямоугольном треугольнике АВО.

Косинусом острого угла в прямоугольном треугольнике является

отношение прилежащего катета к гипотенузе

Необходимо найти гипотенузу ОА.

По теореме Пифагора: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Таким образом, косинус угла наклона равен 0,6

Ответ: 0,6

Из точки (6;8) опущен перпендикуляр на ось абсцисс. Найдите абсциссу основания перпендикуляра.

Посмотреть решение

Через точку (6;8) проведена прямая, параллельная оси абсцисс. Найдите ординату ее точки пересечения с осью оУ.

Посмотреть решение

Найдите расстояние от точки A с координатами (6;8) до оси абсцисс.

Посмотреть решение

Найдите расстояние от точки A с координатами (6;8) до начала координат.

Посмотреть решение

Найдите абсциссу точки, симметричной точке A(6,8) относительно оси оУ.

Посмотреть решение

Найдите абсциссу точки, симметричной точке A(6,8) относительно начала координат.

Посмотреть решение

Найдите ординату середины отрезка, соединяющего точки (0;0) и (6;8).

Посмотреть решение

Найдите ординату середины отрезка, соединяющего точки (6;8) и (-2;2).

Посмотреть решение

Найдите ординату точки пересечения оси оУ и отрезка, соединяющего точки (6;8) и (- 6;0).

Посмотреть решение

 Найдите длину отрезка, соединяющего точки А(6;8) и В(-2;2).

Посмотреть решение

Найдите синус угла наклона отрезка, соединяющего точки (0;0) и (6;8), с осью абсцисс. 

Посмотреть решение

Это даже не задача, а вопрос. 

Частенько Александр Васильевич Суворов, встречая любого подчинённого, который случайно попадался ему на глаза задавал вопрос, порой неожиданный. Однажды спросил офицера своей армии:”Сколько вёрст до луны?”. Что тот ответил?

Первый, кто даст правильный ответ получит поощрительный приз — 100 рублей. Ответы пишите в комментариях.

На этом всё. Успехов вам!

С уважением, Александр Крутицких. 

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Добавить комментарий