Как найти расстояние в единичных отрезках

Расстоянием между двумя точками A и B называется длина отрезка, соединяющего эти точки.

Чтобы найти длину отрезка на координатной прямой, надо из координаты его правого конца вычесть координату левого конца.

Примеры.

Найти расстояние в единичных отрезках между точками:

1) A(-11) и B(3);

2) M(-5,1) и N(-7,2);

3) C (0) и D(-12);

    [4)P( - frac{2}{9})uK(frac{5}{{12}});]

    [5)E(3frac{3}{8})uF( - 2frac{1}{6}).]

Решение:

Чтобы найти расстояние между точками на координатной прямой, определим, какая из точек находится правее, и из координаты правого конца отрезка вычтем координату его левого конца.

Из двух точек на координатной прямой точка с большей координатой лежит правее точки с меньшей координатой.

Для точек A(a) и B(b) это означает, что если b>a, то точка B на координатной прямой лежит правее точки A и расстояние между точками A и B равно

    [left| {AB} right| = b - a]

1) Так как 3>11, то на координатной прямой точка B с координатой 3 лежит правее точки A с координатой -11. Следовательно, расстояние между точками A и B

    [left| {AB} right| = 3 - ( - 11) = 3 + 11 = 14.]

2) -5,1>-7,2, поэтому на координатной прямой точка M(-5,1) лежит правее точки N(-7,2). Значит, расстояние между точками M и N равно

    [left| {MN} right| = - {rm{5}},{rm{1}} - ( - {rm{7}},{rm{2}}) = - {rm{5}},{rm{1 + 7}},{rm{2 = 2}}{rm{,1}}{rm{.}}]

3) Так как 0>-12, точка C (0) на координатной прямой лежит правее точки D(-12). Расстояние между точками C и D:

    [left| {CD} right| = 0 - ( - 12) = 0 + 12 = 12.]

    [4)frac{5}{{12}} > - frac{2}{9},]

поэтому точка K на координатной прямой расположена правее, чем точка P.

    [left| {PK} right| = frac{5}{{12}} - ( - frac{2}{9}) = frac{{{5^{backslash 3}}}}{{12}} + frac{{{2^{backslash 4}}}}{9} = frac{{15 + 8}}{{36}} = frac{{23}}{{36}}.]

    [5)3frac{3}{8} > - 2frac{1}{6},]

значит, точка E на координатной прямой находится справа от точки F. Поэтому длина отрезка EF, а значит, и расстояние между точками E и F

    [left| {EF} right| = 3frac{3}{8} - ( - 2frac{1}{6}) = 3frac{{{3^{backslash 3}}}}{8} + 2frac{{{1^{backslash 4}}}}{6} = 5frac{{9 + 4}}{{24}} = 5frac{{13}}{{24}}.]

На первый взгляд может показаться, что математика сложна и коварна, но это далеко не так. Если приложить усилия к её изучению, то можно удивиться тому, насколько быстро вы измените своё мнение о ней. Давайте же разберём одну из тем, которая поможет находить расстояние от точки до точки при различных условиях. После того как вы изучите данную статью, вы можете решить предоставленные задания, чтобы лучше закрепить пройденный материал.

Математические термины

 Для начала введём некоторые определения.

Определения

Расстояние между точками – это измерение отрезка, находящегося между этими точками, составляющего длину расстояния.

Эти отрезки располагаются в определенном масштабе, потому как необходимо знать единицу длины для их измерения, без этого нельзя.

Функция – это связь величин, выражаемая в зависимости одной переменной Y, от второй переменной X.

Произвольная функция (точка) – это такая точка, которую можно расположить в любом месте.

Координатная прямая – это прямая, на которой изображают точку отсчёта 0 и единичные отрезки. Прямой также задают направление.

Действительные числа – это совокупность рациональных и иррациональных чисел.

Рациональное число – это такое число, которое может находиться в виде обыкновенной дроби, в отличие от иррационального числа.

Иррациональное число – это бесконечная непериодическая десятичная дробь. Такое число нельзя представить в виде обыкновенной дроби.

Модуль или же абсолютная величина – это обязательно неотрицательное число, которое является расстоянием определённых точек.

Как определить расстояние между точками, находящимися на координатной прямой

Важно

Чтобы найти расстояние от одной точки до другой, т.е. длину этого отрезка, нужно сравнить его с другим таким отрезком в заданном масштабе.

Действительные числа

Рассмотрим этот способ на примере:

Координатная прямая 1

Здесь мы имеем координатную прямую OX, на которой отмечена точка A. Она произвольная, поэтому мы можем задать ей любое действительное число, пусть это будет 3.

Отрезок – это единица длины, поэтому все отрезки, что мы отложили от точки O нужно сложить, вследствие чего полученное количество единичных отрезков будет равняться длине отрезка OA. В данном случае здесь три отрезка, поэтому и ответ таков.

Координатная прямая 2

Ещё один пример, где точку отсчёта O и произвольную точку A соединяют 2 отрезка. Это значит, что расстояние длин всех единичных отрезков OA равно 2. Если же точка A будет иметь другое число, например: 6, то мы откладываем от точки O именно 6 единичных отрезков и получаем искомое расстояние.

Рациональные числа

С действительным числами всё понятно, а что делать с рациональными? Представим, что координаты точки A равны 5,5. Из этого следует, что нам нужно отложить из точки O сначала 5 единичных отрезков, то есть, целое число, а после прибавить 0,5. Иногда это кажется невозможным, ведь некоторые числа трудно представить в виде отрезка, из-за чего приходится искать самое приближенное значение числа.

Иррациональные числа

Иррациональным числам данный метод не подходит, потому как такие числа нельзя поставить на координатной прямой OX. Для примера приведём числа √5, √8, √17. Здесь можно перейти к отвлечённому представлению и посмотреть на эти числа таким образом:

  • 0>A – если 0 больше A, то A имеет отрицательное значение координат: |OA| = (–A).
  • 0<A – если 0 меньше A, то A имеет положительное значение координат: |OA| = (A).

Также можно сказать, что это подходит и к действительным числами. Если точка A будет находиться на начальной точке O, то и расстояние между ними будет равно 0. Здесь нужно уметь хорошо работать с рисунком, тогда всё будет понятно.

  • Модуль

Важно помнить, что расстояние между точками не может быть отрицательным.

Координатная прямая 3

В данном случае у нас есть модуль числа A, что является расстоянием OA и это число 3.

Координатная прямая 4

Если на координатной прямой будут точки A и B, то их расстояние нужно определить по модулю разности этих координат. Получается, чтобы найти длину отрезка AB, необходимо из числа точки B отнять число точки A:

4-2=2.

Как определить расстояние между двумя точками на плоскости

Представим прямоугольную систему координат и плоскость на ней, с находящимися там точками A и B. Далее проведём прямые от этих точек к осям Ox и Oy, как на изображении. В следствие этого образовались точки Ax и Ay, а также Bx и By.

Из этого можно вывести несколько вариантов:

  • Ось Ox

Координатная прямая 5

В случае расположения точек A и B на прямой, которая в свою очередь перпендикулярна оси Ox – точки A и B совпадают, а модуль AB равен модулю AyBy. Как говорилось ранее, для нахождения длины промежутка (расстояния) между двумя точками, нужно найти разность модуля заданных координат, поэтому можно сказать, что:

|AB| = |AyBy| = |yB – yA|.

При этом совпадении их расстояние равняется 0.

Формула

Формула для нахождения расстояния между двумя точками на плоскости:

[|A B|=sqrt{(} x B-x A)^{2}+(y B-y A)^{2}=sqrt{0}^{2}+(y B-y A)^{2}]

  • Ось Oy

Координатная прямая 6

Теперь рассмотрим тот случай, когда прямая перпендикулярна оси Oy. Находится расстояние таким же образом, но уже с участием xB и xA: |AB| = |AxBx| = |xB – xA|.

Формула

Формула для нахождения расстояния между двумя точками на плоскости:

[left.|A B|=sqrt{(} x B-x A)^{2}+(y B-y A)^{2}=sqrt{(} x B-x Aright)^{2}+0^{2}]

  • Точки не лежат на прямой, которая перпендикулярна оси Ox и Oy

Координатная прямая 7

Теперь поговорим о прямоугольном треугольнике ABC. Чтобы найти расстояние на плоскости между точкой A и точкой B, необходимо воспользоваться формулой:

|AB| = √(xB – xA)² + (yB – yA)².

 Эта формула доказывает правильность ранее написанных утверждений к тем заданиям, на графиках которых точки лежат на прямой, перпендикулярной Ox и Oy.

Если точки совпадают, к ним справедливо равенство:

|AB| = √(xB – xA)² + (yB – yA)² = √0² + 0² = 0.

По рисунку видно, что:

|AC| = |AxBx|, а также |BC|=|AyBy|. Далее вспомним теорему Пифагора и с её помощью запишем равенство:

|AB|² = |AC|² + |BC|²

|AB|² = |AxBx|² + |AyBy|²

√|AxBx|² + |AyBy|²

√|xB – xA|² + |yB – yA|²

√(xB – xA)² + (yB – yA)²

Пример

Найдите расстояние между двумя точками на плоскости, если известно, что они находятся на прямоугольной системе координат со значениями: A (3, –1), а также B (X + 3, 7). Также надо найти значение действительного числа X, зная, что при них расстояние между точками будет равно 10.

Чтобы решить эту задачу, необходимо использовать формулу:

|AB| = √(xB – xA)² + (yB – yA)².

После этого действия подставляем вышеприведённые числа:

√(X + 3 – 3)² + (7 – ( – 1))² = √X² + 64.

Далее обратим внимание на то, что |AB| = 10 и составим равенство:

√X² + 64 = 10

X² + 64 = 100

X = ± 6

Ответ: |AB| = 10, при X = ±6.

Нет времени решать самому?

Наши эксперты помогут!

Как определить расстояние между точками в пространстве

Более сложным заданием на нахождение расстояния является то, где точки расположены в пространстве, а не на плоскости.

Возьмём точки, имеющие свои координаты: A (xA, yA, zA), B (xB, yB, zB). Они размещены на прямоугольной системе координат Oxyz. Имея эти данные, мы можем приступить к поиску расстояния между этими точками.  

Итак, проведём плоскости через наши точки A и B, которые должны быть перпендикулярными осям с заданными координатами. Таким образом мы получаем точки точки проекции: Ax, Ay, Az, Bx, By, Bz. Так и получился параллелепипед, диагональ которого равна расстоянию точек.

Правило

Для нахождения диагонали нужно вспомнить, что она находится путем сложения квадратных измерений точек проекции:

[|A B|^{2}=|A x B x|^{2}+|A y B y|^{2}+left.|A| z B zright|^{2}]

После чего выполним такие действия:

|AxBx| = |xB – xA|

|AyBy| = |yB – yA|

|AzBz| = |zB – zA|

Теперь выполним преобразование получившегося выражения:

|AB|² = |AxBx|² + |AyBy|² + |AzBz|² = |xB – xA|² + |yB – yA|² + |zB – zA|² = (xB – xA)² + (yB – yA)² + (zB – zA)².

После всех этих действий мы можем выделить основную формулу, которая применяется для нахождения расстояния точек в пространстве:

=√(xB – xA)² + (yB – yA)² + (zB – zA)².

Её можно применять в тех случаях, когда точки располагаются на прямой, которая параллельна координатной оси или же они находятся на этой координатной оси. При совпадении точек эта формула также действительна.

Пример

Найдите расстояние между точками, которые лежат на прямоугольной системе координат в трёхмерном пространстве, координаты которых: A (2, 3, 4), а также B (-6, -1, 5).

Перейдём к решению, воспользовавшись формулой:

√(xB – xA)² + (yB – yA)² + (zB – zA)².

Подставляем имеющиеся значения:

√(–6 – 2)² + (–1 – 3)² + (5 – 4)² = √64 + 16 + 1 = √81 = 9.

Ответ: расстояние |AB| равно 9.

Задачи для самостоятельного решения

  1. Задача
    Найдите расстояние между точками на плоскости, если известно, что они находятся на прямоугольной системе координат со значениями: A (2, 5), а также B (6, 4).
  2. Задача
    Найдите расстояние между точками на плоскости, если известно, что они находятся на прямоугольной системе координат со значениями: A (1, 6), а также B (1, 25).
  3. Задача
    Найдите расстояние между точками, которые лежат на прямоугольной системе координат в трёхмерном пространстве, координаты которых: A (1, -3, 4), а также B (4, 1, 4).
  4. Задача
    Найдите расстояние между точками, которые лежат на прямоугольной системе координат в трёхмерном пространстве, координаты которых: A (2, -2, 7), а также B (6, 2, 5).

Ответы с решением:

  1. Решение первой задачи

    Для решения понадобится формула:
    |AB| = √(xB – xA)² + (yB – yA)².
    Далее подставляем числа:
    |AB| = √(6 – 2)² + (4 – 5)² = √4² + (–1)² = √16 + 1 = √17.
    Ответ: |AB| равен √17.

  2. Решение второй задачи

    Формула для нахождения:
    |AB| = √(xB – xA)² + (yB – yA)².
    Подставляем:
    |AB| = √(1 – 1)² + (25 – 6)² = √(0)² + (19)² = √0 + 361 = √361 = 19
    Ответ: |AB| равен 19.

  3. Решение третьей задачи
    Запишем формулу:
    √(xB – xA)² + (yB – yA)² + (zB – zA)².
    Подставим числа:
    √(4 – 1)² + (1 – (–3))² + (4 – 4)² = √(3)² + (4)² + (0)² = √9 + 16 + 0 = √25 = 5.
    Ответ: |AB| равняется 5.
  4. Решение четвертой задачи
    Записываем формулу для решения:
    √(xB – xA)² + (yB – yA)² + (zB – zA)²
    Заменим на координаты точек:
    √(6 – 2)² + (2 – (–2))² + (5 – 7)² = √(4)² + (4)² + (–2)² = √16 + 16 + 4= √36 = 6.
    Ответ: |AB| равняется 6.

Математика

6 класс

Урок № 75

Длина отрезка

Перечень рассматриваемых вопросов:

  • длина отрезка;
  • единицы измерения длины;
  • способы измерения длины отрезка;
  • решение задач на вычисление длины отрезка.

Тезаурус

Отрезок – это часть прямой, ограниченная двумя точками.

Длина отрезка – это расстояние между его концами.

Измерение длины отрезка – это сравнение длины отрезка с выбранной единицей измерения.

Длиной отрезка называется положительная величина, определённая для каждого отрезка.

Любой отрезок имеет определённую длину, большую нуля.

Обязательная литература:

  1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 258.

Дополнительная литература:

  1. Чулков П. В. Математика: тематические тесты.5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.

Теоретический материал для самостоятельного изучения

Что такое отрезок?

Отрезок – это часть прямой, ограниченная двумя точками.

Как отрезки обозначаются на чертежах?

Отрезок можно обозначить двумя заглавными буквами – отрезок АВ. Или можно обозначить отрезок одной строчной буквой – отрезок с.

Любой отрезок имеет определённую длину, большую нуля.

Длина может быть выражена натуральным или дробным числом.

Измерить отрезок – значит найти его длину.

Длина отрезка – это расстояние между его концами.

Свойства длин отрезков:

– равные отрезки имеют равные длины;

– если отрезок состоит из двух отрезков, то его длина равна сумме длин его частей.

Эти свойства длины отрезка используются при её измерении. Чтобы измерить длину отрезка, нужно выбрать единицу длины.

Такой единицей может быть длина произвольного отрезка. В мультфильме «38 попугаев» герои измеряли длину удава в попугаях.

Для определения длины отрезка надо узнать, сколько раз в данном отрезке помещается выбранная единица измерения.

Можно сравнивать длины отрезков, не имея под рукой линейки. Например, прикладывать к отрезкам один и тот же карандаш, ластик или использовать циркуль. Для этого нужно установить иглу в начало отрезка, провести дугу, пересекающую отрезок, затем, не меняя расстояния между иглой и карандашом циркуля, переставить иглу в точку пересечения и повторить действия.

В десятичной системе мер единицами измерения длины являются 1 мм, 1 см, 1 дм, 1 м и т. д.

Рассмотрим несколько примеров измерения длины отрезка. Измерения небольших отрезков удобно производить с помощью линейки.

Прикладываем линейку так, чтобы один конец отрезка совместился с нулём. Единичный отрезок 1 см отложился 7 раз, значит, длина отрезка АВ = 7 см.

Если единичный отрезок 1 см отложился n раз, и осталась часть меньшая 1 см, то откладываем отрезки равные 1/10 см. Длина отрезка СD = 8,7 см.

При необходимости можно продолжить откладывать по 1/100 части единичного отрезка и т. д.

Алгоритм измерения длины отрезков:

– выбрать какой-либо отрезок и принять его за единицу длины;

– от одного из концов отрезка отложить последовательно отрезки, равные единичному;

– если единичные отрезки отложились n раз и конец последнего совпал с концом измеряемого отрезка, то значение его длины равно n единиц длины;

– если отрезок или его часть меньше единичного отрезка, то нужно отложить отрезки, равные 1/10 части единичного отрезка;

– если десятые части единичного отрезка отложились ровно n раз, то длина измеряемого отрезка есть конечная десятичная дробь, в которой целая часть равна количеству целых единичных отрезков, а после запятой в разряде десятых стоит количество десятых частей единичного отрезка;

– при необходимости можно откладывать 1/100 часть единичного отрезка и т. д.

Таким образом, для каждого положительного действительного числа существует отрезок, длина которого выражается этим числом.

И для каждого положительного действительного числа существует отрезок, длина которого выражается этим числом.

На практике используют приближённое значение длин отрезков, например, с точностью 1/10 или 1/100 части единичного отрезка, но точность приближения зависит от поставленной задачи.

Рассмотрим фигуры, составленные из отрезков.

Возьмем на плоскости несколько точек и соединим их отрезками. Если никакие два из этих отрезков, имеющих общие точки, не лежат на одной прямой, то линию называют ломаной.

Отрезки, из которых состоит ломаная, называются звеньями, а концы этих отрезков – вершинами ломаной.

Длина ломаной – это сумма длин всех её звеньев.

Если концы ломаной совпадают, то такая ломаная называется замкнутой.

Замкнутая ломаная линия, у которой звенья не пересекаются между собой, называется многоугольником.

Периметр многоугольника равен сумме длин всех его сторон.

Разбор заданий тренировочного модуля

Тип 1. Ввод с клавиатуры пропущенных элементов в тексте.

Впишите верный ответ.

Точка P лежит на отрезке AB. Известно, что отрезок AP больше отрезка PB на 3,6 см, а отрезок AB = 10,4 см. Найдите длину отрезка PB.

Решение:

Пусть PB = x, тогда AP = x + 3,6 см.

По условию AB = 10,4 см.

Если отрезок состоит из двух отрезков, то его длина равна сумме длин его частей.

PB + AP = AB.

Составим и решим уравнение:

x + x + 3,6 = 10,4,

2x + 3,6 = 10,4,

2x = 10,4 – 3,6,

2x = 6,8,

x = 3,4.

Значит, длина отрезка PB = 3,4 см.

Ответ: 3,4 см.

Тип 2. Множественный выбор

Выберите верные ответы.

Задача 2

Известно, что отрезок AС = 3,6 см, а отрезок BС = 7,5 см. Найдите длину отрезка АB, если все три точки лежат на одной прямой.

Варианты ответов: 3,9; 11,1; 4,8; 13,2; 16,5; 2,9.

Первый вариант решения

В этом случае АВ = АС + ВС = 3,6 + 7,5 = 11,1 (см).

Второй вариант

BC = AB + AC,

АВ = ВС – АС = 7,5 – 3,6 = 3,9 (см).

Значит, длина отрезка АВ может быть равна 11,1 см или 3,9 см. Выбираем эти варианты.

Ответ: 11,1; 3,9.

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,655
  • гуманитарные
    33,653
  • юридические
    17,917
  • школьный раздел
    611,939
  • разное
    16,901

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Добавить комментарий