Как найти расстояние встречи при скорости сближения

Для начала следует перевести данные задачи в единую систему измерений. Либо в километры, либо в метры.

Я переведу в километры. Значит, расстояние между машинами – 0,07 км (исходя из того, что в одном километре 1000 метров, высчитываем, что 70 метров – это 70:1000=0,07км).

Далее высчитываем время, через которое произойдет столкновение.

Обозначив это время за х (для обоих машин время будет одинаковое), составим уравнение:

60х+80х=0,07

140х=0,07

х=0,07:140=0,0005

То есть столкновение произойдет через 0,0005 часа.

Теперь высчитаем точку этого столкновения.

Посчитаем, какое расстояние проедет за это время каждый из автомобилей.

Первый двигается со скоростью 60 км/ч, значит он пройдет расстояние 60*0,0005=0,03 километра (или 30 метров).

Теперь высчитываем расстояние второго автомобиля:

80*0,0005=0,04 километра (что равно 40 метрам).

Таким образом, до столкновения первый автомобиль проедет 30 метров, а второй – 40.

Задачи на движение навстречу друг другу (встречное движение) — один из трех основных видов задач на движение.

Если два объекта движутся навстречу друг другу, то они сближаются:

dvizhenie navstrechu drug drugu

Чтобы найти скорость сближения двух объектов, движущихся навстречу друг другу, надо сложить их скорости:  

    [{v_c} = {v_1} + {v_2}]

Скорость сближения больше, чем скорость каждого из них.

Скорость, время и расстояние связаны между собой формулой пути:

    [s = v cdot t]

Рассмотрим некоторые задачи на встречное движение.

Задача 1

Два велосипедиста выехали навстречу друг другу. Скорость одного из низ 12 км/ч, а другого — 10 км/ч. Через 3 часа они встретились. Какое расстояние было между ними в начале пути?

Решение:

zadachi na dvizhenie navstrechu drug drugu v 4 klasse

Условие задач на движение удобно оформлять в виде таблицы:

v, км/ч

t, ч

s, км

I велосипедист

12

3

?

II велосипедист

10

3

?

1) 12+10=22 (км/ч) скорость сближения велосипедистов

2) 22∙3=66 (км) было между велосипедистами в начале пути.

Ответ: 66 км.

Задача 2

Два поезда идут навстречу друг другу. Скорость одного из них 50 км/ч, скорость другого —  60 км/ч. Сейчас между ними 440 км. Через сколько часов они встретятся?

Решение:

zadachi na dvizhenie navstrechu drug drugu

v, км/ч

t, ч

s, км

I поезд

60

?

?

II поезд

50

?

?

1) 60+50=110 (км/ч) скорость сближения поездов

2) 440:110=4 (ч) время, через которое поезда встретятся.

Ответ: через 4 ч.

Задача 3.

Два пешехода находились на расстоянии 20 км друг от друга. Они вышли одновременно навстречу друг другу и встретились через 2 часа. Скорость одного пешехода 6 км/ч. Найти скорость другого пешехода.

dvizhenie navstrechu drug drugu 4 klass

v, км/ч

t, ч

s, км

I пешеход

6

2

?

II пешеход

?

2

?

1) 20:2=10 (км/ч) скорость сближения пешеходов

2) 10-6=4 (км/ч) скорость другого пешехода.

Ответ: 4 км/ч.

задачи на движение в противоположных направленияхЗадачи на движение (скорость, время и расстояние) являются одной из основных типов задач по математике, которые должен уметь решать каждый школьник. В данной статье рассмотрены все типы задач на движение:
— простые задачи на скорость, время и расстояние;
— задачи на встречное и противоположное движение;
— задачи на движение в одном направлении (на сближение и удаление);
— решение задач на движение по реке.

Скорость, время и расстояние: определения, обозначения, формулы

скорость = расстояние: время — формула нахождения скорости;

время = расстояние: скорость — формула нахождения времени;

расстояние = скорость · время — формула нахождения расстояния.

Скорость – это расстояние, пройденное за единицу времени: за 1 секунду, за 1 минуту, за 1 час и так далее.
Пример обозначения: 7 км/ч (читается: семь километров в час).
Если весь путь проходится с одинаковой скоростью, то такое движение называется равномерным.

На сайте представлены калькуляторы онлайн, с помощью которых можно перевести скорость, время и расстояние в другие единицы измерения:

1.Конвертер единиц измерения скорости
2.Конвертер единиц измерения времени
3.Конвертер единиц измерения расстояния (длины)

Примеры простых задач.

Задача 1. 

Автомобиль проехал 180 км за 2 часа. Чему равна скорость автомобиля?
Решение: 180:2=90 (км/ч.)
Ответ: Скорость автомобиля равна 90 км/ч.

Задача 2. 

Автобус проехал путь в 240 км со скоростью 80 км/ч. Сколько времени ехал автобус?
Решение: 240:80=3 (ч.)
Ответ: Автобус проехал 3 часа.

Задача 3. 

Грузовик ехал 5 часов со скоростью 70 км/ч. Какое расстояние проехал грузовик за это время?
Решение: 70 · 3 = 350 (км)
Ответ: Грузовик за 5 часов проехал 350 км.

Задачи на встречное движение

В таких задачах два объекта движутся навстречу друг другу.
Задачи на встречное движение можно решать двумя способами:
1. Найти значения скорости, времени и расстояния для каждого объекта.
2. Найти скорость сближения объектов (как сумму их скоростей), общие время и расстояние. Скорость сближения — это расстояние, пройденное двумя объектами навстречу друг другу за единицу времени.

Задача 4. 

Из двух пунктов навстречу друг другу одновременно выехали два поезда и встретились через 3 часа. Первый поезд ехал со скоростью 80 км/ч, а второй – со скоростью 70 км/ч. На каком расстоянии друг от друга находятся пункты?
Решение: 
Первый способ. Найти расстояние, которое проехал каждый автобус, и сложить полученные данные:
80*3=240 (км) – проехал 1й автобус, 70*3=210 (км) – проехал 2й поезд,
240+210=450 (км) – проехали два поезда.
Второй способ. Найти скорость сближения поездов, то есть на сколько сокращалось расстояние между ними каждый час; а затем найти расстояние:
80+70=150 (км/ч), 150*3=450 (км).
Ответ: города находятся на расстоянии 450 км.

Задача 5. 

Из двух городов навстречу друг другу одновременно выехали два автобуса. Первый автобус ехал со скоростью 80 км/ч, а второй – со скоростью 70 км/ч. Какое расстояние будет между ними через 2 часа, если расстояние между городами 450 км?
Решение: 
Первый способ. Определить, сколько километров проехал каждый автобус и найти расстояние, которое осталось проехать:
80*2=160 (км)-проехал 1й автобус, 70*2=140 (км)-проехал 2й автобус,
160+140=300 (км)-проехали два автобуса, 450-300=150 (км)-осталось проехать.
Второй способ. Найти скорость сближения автобусов и умножить ее на время в пути.
80*70=150 (км/ч) – скорость сближения; 150*2=300 (км) – проехали два автобуса; 450-300=150 (км) – осталось проехать.
Ответ: Через 2часа расстояние между автобусами будет 150 км.

Задачи на движение в противоположных направлениях

В таких задачах два объекта движутся в противоположных направлениях, отдаляясь друг от друга. В таком типе задачи используется скорость удаления. Задачи на движение в противоположных направлениях также можно решить двумя способами:
1. Найти значения скорости, времени и расстояния для каждого объекта.
2. Найти скорость удаления объектов (как сумму их скоростей), общие время и расстояние. Скорость удаления — это расстояние, которое увеличивается за единицу времени между двумя объектами, двигающимися в противоположных направлениях.

Задача 6. 

Два автомобиля выехали одновременно из одного и того же пункта в противоположных направлениях. Скорость первого автомобиля 100 км/ч, скорость второго – 70 км/ч. Какое расстояние будет между автомобилями через 4 часа?
Решение: 
Первый способ. Определить расстояние, которое проехал каждый автомобиль и найти сумму полученных результатов:
1) 100 · 4 = 400 (км) – проехал первый автомобиль
2) 70 · 4 = 280 (км) – проехал второй автомобиль
400 + 280 = 680 (км)
Второй способ. Найти скорость удаления, то есть значение увеличения расстояния между автомобилями за каждый час, а затем скорость удаления умножить на время в пути.
100 + 70= 170 км/ч – это скорость удаления автомобилей.
170 · 4 = 680 (км)
Ответ: Через 4 часа между автомобилями будет 680 км.

Задача 7. 

Из двух населённых пунктов, расстояние между которыми 40 км, вышли в противоположных направлениях два туриста. Первый турист шёл со скоростью 4 км/ч, а второй — 5 км/ч. Какое расстояние между туристами будет через 5 часов?
Решение: 
Первый способ. Определить сколько километров прошёл каждый из туристов за 5 часов, сложить полученные результаты, а затем к полученному расстоянию прибавить расстояние между населенными пунктами.
1) 4 · 5 = 20 (км) – прошёл первый турист;
2) 5 · 5 = 25 (км) – прошёл второй турист;
3) 20 + 25 = 45 (км);
4) 45 + 40 = 85 (км).
Второй способ. Найти скорость удаления пешеходов, затем найти пройденное расстояние, к полученному результату прибавить расстоянием между населёнными пунктами.
4 + 5 = 9 (км/ч);
9 · 5 = 45 (км);
45 + 40 = 85 (км);
Ответ: Через 5 часов расстояние между пешеходами будет 85 км.

Задачи на движение в одном направлении

В таких задачах два объекта движутся в одном направлении с разной скоростью, при этом они сближаются друг с другом или отдаляются друг от друга. Соответственно находится скорость сближения или скорость удаления объектов.

Формула нахождения скорости сближения или удаления двух объектов, которые движутся в одном направлении: из большей скорости вычесть меньшую.

Задача 8. 

Из города выехал автомобиль со скоростью 40 км/ч. Через 4 часа вслед за ним выехал второй автомобиль со скоростью 60 км/ч. Через сколько часов второй автомобиль догонит первый?,
Решение: 
Задачу можно решить с помощью уравнения.
В этом случае скорость первого автомобиля 40 км/час, время в пути на 4 часа больше, чем время второго автомобиля (или t+4). Скорость второго автомобиля 60 км/час, время в пути – t. Расстояние оба автомобиля проехали одинаковое. Поэтому можно составить уравнение: 40*(t+4)=60*t. Отсюда получаем t=8 (часов) – время в пути второго автомобиля, за которое он догонит первый.
Решение задачи без использования уравнения.
Так как на момент выезда второго автомобиля из города первый уже был в пути 4 часа, то за это время он успел удалиться от города на: 40 · 4 = 160 (км).
Второй автомобиль движется быстрее первого, значит, каждый час расстояние между автомобилями будет сокращаться на разность их скоростей: 60 — 40 = 20 (км/ч) – это скорость сближения.
Разделив расстояние между автомобилями на скорость их сближения, можно узнать, через сколько часов они встретятся: 160 : 20 = 8 (ч)
Ответ: Второй автомобиль догонит первый через 8 часов.

Задача 9. 

Из двух посёлков между которыми 5 км, одновременно в одном направлении вышли два пешехода. Скорость пешехода, идущего впереди, 4 км/ч, а скорость пешехода, идущего позади 5 км/ч. Через сколько часов после выхода второй пешеход догонит первого?
Решение: Так как второй пешеход движется быстрее первого, то каждый час расстояние между ними будет сокращаться. Значит можно определить скорость сближения пешеходов: 5 — 4 = 1 (км/ч).
Оба пешехода вышли одновременно, значит расстояние между ними равно расстоянию между посёлками (5 км). Разделив расстояние между пешеходами на скорость их сближения, узнаем через сколько второй пешеход догонит первого: 5 : 1 = 5 (ч)
Ответ: Через 5 часов второй пешеход догонит первого.

Задача 10. 

Два автомобиля выехали одновременно из одного и того же пункта в одном направлении. Скорость первого автомобиля 80 км/ч, а скорость второго – 40 км/ч.
1) Чему равна скорость удаления между автомобилями?
2) Какое расстояние будет между автомобилями через 3 часа?
3) Через сколько часов расстояние между ними будет 200 км?
Решение: 
1) 80 — 40 = 40 (км/ч) — скорость удаления автомобилей друг от друга.
2) 40 · 3 = 120 (км) – расстояние между ними через 3 часа./
3) 200 : 40 = 5 (ч) – время, через которое расстояние между автомобилями станет 200 км.
Ответ:
1) Скорость удаления между автомобилями равна 40 км/ч.
2) Через 3 часа между автомобилями будет 120 км.
3) Через 5 часов между автомобилями будет расстояние в 200 км.

Задачи на движение по реке

Рассмотрим задачи, в которых речь идёт о движении объекта по реке. Скорость любого объекта в стоячей воде называют собственной скоростью этого объекта.

Чтобы узнать скорость объекта, который движется по течению реки, надо к собственной скорости объекта прибавить скорость течения реки. Чтобы узнать скорость объекта, который движется против течения реки, надо из собственной скорости объекта вычесть скорость течения реки.

Задача 11. 

Лодка движется по реке. За сколько часов она преодолеет расстояние 120 км, если ее собственная скорость 27 км/ч, а скорость течения реки 3 км/ч?
Решение: 
1) лодка движется по течению реки.
27 + 3 = 30 (км/ч) – скорость лодки по течению реки.
120 : 30 = 4 (ч) – проплывет путь.
2) лодка движется против течения реки.
27 — 3 = 24 (км/ч) — скорость лодки против течения реки
120 : 24 = 5 (ч) – проплывет путь.
Ответ:
1) При движении по течению реки лодка потратит 4 часа на путь.
2) При движении против течения реки лодка потратит 5 часов на путь.

Итак, для решения задач на движение:

  1. Основная формула:S=ν*t;
  2. Нужно сделать чертеж, который поможет определить тип задачи.
  3. Все цифры нужно привести в единые единицы измерения: длина и время

Заключение.

Решая много задач по данной теме, ученик обязательно научится быстро ориентироваться в понятиях «скорость», «время» и «расстояние» и быстро решать задачи всех типов.

Весь курс начальной школы (за 1-4 классы) в краткой форме на сайте edu.intmag24.ru. С помощью курса можно быстро повторить основные моменты и правила по предметам: русский язык, математика, окружающий мир.

Для решения более сложных задач на движение посмотрите, как составлять схемы и таблицы данных для наглядного представления и структурирования данных.

Задачи на движение в одном направлении

Рассмотрим задачи, в которых речь идёт о движении в одном направлении. В таких задачах два каких-нибудь объекта движутся в одном направлении с разной скоростью, отдаляясь друг от друга или сближаясь друг с другом.

Задачи на скорость сближения

Скорость сближения — это скорость, с которой объекты сближаются друг с другом.

Чтобы найти скорость сближения двух объектов, которые движутся в одном направлении, надо из большей скорости вычесть меньшую.

Задача 1. Из города выехал автомобиль со скоростью 40 км/ч. Через 4 часа вслед за ним выехал второй автомобиль со скоростью 60 км/ч. Через сколько часов второй автомобиль догонит первый?

zadachi odno napr

Решение: Так как на момент выезда второго автомобиля из города первый уже был в пути 4 часа, то за это время он успел удалиться от города на:

Второй автомобиль движется быстрее первого, значит каждый час расстояние между автомобилями будет сокращаться на разность их скоростей:

Разделив расстояние между автомобилями на скорость их сближения, можно узнать, через сколько часов они встретятся:

Решение задачи по действиям можно записать так:

1) 40 · 4 = 160 (км) — расстояние между автомобилями,

Ответ: Второй автомобиль догонит первый через 8 часов.

Задача 2. Из двух посёлков между которыми 5 км, одновременно в одном направлении вышли два пешехода. Скорость пешехода, идущего впереди, 4 км/ч, а скорость пешехода, идущего позади 5 км/ч. Через сколько часов после выхода второй пешеход догонит первого?

zadachi odno napr2

Решение: Так как второй пешеход движется быстрее первого, то каждый час расстояние между ними будет сокращаться. Значит можно определить скорость сближения пешеходов:

Оба пешехода вышли одновременно, значит расстояние между ними равно расстоянию между посёлками (5 км). Разделив расстояние между пешеходами на скорость их сближения, узнаем через сколько второй пешеход догонит первого:

Решение задачи по действиям можно записать так:

Ответ: Через 5 часов второй пешеход догонит первого.

Задача на скорость удаления

Скорость удаления — это скорость, с которой объекты отдаляются друг от друга.

Чтобы найти скорость удаления двух объектов, которые движутся в одном направлении, надо из большей скорости вычесть меньшую.

Задача. Два автомобиля выехали одновременно из одного и того же пункта в одном направлении. Скорость первого автомобиля 80 км/ч, а скорость второго — 40 км/ч.

zadachi odno napr3

1) Чему равна скорость удаления между автомобилями?

2) Какое расстояние будет между автомобилями через 3 часа?

3) Через сколько часов расстояние между ними будет 200 км?

Решение: Сначала узнаем скорость удаления автомобилей друг от друга, для этого вычтем из большей скорости меньшую:

Каждый час автомобили отдаляются друг от друга на 40 км. Теперь можно узнать сколько километров будет между ними через 3 часа, для этого скорость удаления умножим на 3:

Чтобы узнать через сколько часов расстояние между автомобилями станет 200 км, надо расстояние разделить на скорость удаления:

1) Скорость удаления между автомобилями равна 40 км/ч.

2) Через 3 часа между автомобилями будет 120 км.

3) Через 5 часов между автомобилями будет расстояние в 200 км.

Источник

Как найти на каком расстоянии встретятся автомобили

Расстояние между городами A и B равно 470 км. Из города A в город B со скоростью 60 км/ч выехал первый автомобиль, а через три часа после этого навстречу ему из города B выехал со скоростью 85 км/ч второй автомобиль. На каком расстоянии от города A автомобили встретятся? Ответ дайте в километрах.

Это задание ещё не решено, приводим решение прототипа.

Расстояние между городами 7fc56270e7a70fa81a5935b72eacbe29и 9d5ed678fe57bcca610140957afab571равно 435 км. Из города 7fc56270e7a70fa81a5935b72eacbe29в город 9d5ed678fe57bcca610140957afab571со скоростью 60 км/ч выехал первый автомобиль, а через час после этого навстречу ему из города 9d5ed678fe57bcca610140957afab571выехал со скоростью 65 км/ч второй автомобиль. На каком расстоянии от города 7fc56270e7a70fa81a5935b72eacbe29автомобили встретятся? Ответ дайте в километрах.

Пусть автомобили встретятся на расстоянии 5dbc98dcc983a70728bd082d1a47546eкм от города 4675773653557201b63811ae89973c60тогда второй автомобиль пройдет расстояние 87661a8d6e23312d0fb052b367f14bedкм. Второй автомобиль находился в пути на 1 час меньше первого, отсюда имеем:

Источник

Как найти на каком расстоянии встретятся автомобили

Задание B14 (Лысенко, ЕГЭ 2012)

На сбор 2400 бонусов первый геймер тратит времени на 20 минут меньше, чем второй. Сколько бонусов в минуту собирает второй геймер, если первый собирает в минуту на 20 бонусов больше?

b13 11

b13 12

Прототип Задания B14 (№99591)

Расстояние между городами A и B равно 470 км. Из города A в город B выехал первый автомобиль, а через 3 часа после этого навстречу ему из города B выехал со скоростью 60 км/ч второй автомобиль. Найдите скорость первого автомобиля, если автомобили встретились на расстоянии 350 км от города A. Ответ дайте в км/ч.

Скорость второго автомобиля равна 60 км/ч. Он проехал до встречи 470-350 = 120 км. Время, затраченное вторым автомобилем на дорогу, равно 120:60 = 2 (часа).

Так как второй автомобиль выехал на 3 часа позже первого ии находлися в пути 2 часа. то первый автомобиль ехал до встречи 2+3 = 5 часов. Составим и решим уравнение:

Т.е. скорость первого автомобиля равна 70 км/ч.

Прототип Задания B14 (№99590)

Расстояние между городами A и B равно 435 км. Из города A в город B со скоростью 60 км/ч выехал первый автомобиль, а через час после этого навстречу ему из города B выехал со скоростью 65 км/ч второй автомобиль. На каком расстоянии от города A автомобили встретятся? Ответ дайте в километрах.

Скорость первого автомобиля равна 60 км/ч. Первый автомобиль проехал до встречи x км (т.к. он выехал из города А). Тогда время в пути, затраченное им до встречи, равно x/60.

Скорость второго автомобиля равна 65 км/ч. Так как первый автомобиль проехал до встречи x км, то второй автомобиль проехал (435-x). Время в пути, затраченное им до встречи, равно (435-x)/65.

Второй автомобиль выехал на 1 час позже первого, а значит он был в пути на 1 час меньше. Составим и решим следующее уравнение:

Прототип Задания B14 (№99589)

Из городов A и B, расстояние между которыми равно 330 км, навстречу друг другу одновременно выехали два автомобиля и встретились через 3 часа на расстоянии 180 км от города B. Найдите скорость автомобиля, выехавшего из города A. Ответ дайте в км/ч.

Тогда, так как автомобили выехали одновременно и встретились через 3 часа, то каждый из них ехал 3 часа. Автомобиль, который выехал из города А, проехал 330-180 = 150 (км) до встречи, т.е.

Прототип Задания B14 (№99588)

Из двух городов, расстояние между которыми равно 560 км, навстречу друг другу одновременно выехали два автомобиля. Через сколько часов автомобили встретятся, если их скорости равны 65 км/ч и 75 км/ч?

Скорость сближения автомобилей равна 65+75 = 140 км/ч (т.е. за час в сумме автомобили проезжают 140 км). Тогда время, через которое встретятся автомобили, равно

Прототип Задания B14 (№99587)

Компания «Альфа» начала инвестировать средства в перспективную отрасль в 2001 году, имея капитал в размере 5000 долларов. Каждый год, начиная с 2002 года, она получала прибыль, которая составляла 200% от капитала предыдущего года. А компания «Бета» начала инвестировать средства в другую отрасль в 2003 году, имея капитал в размере 10000 долларов, и, начиная с 2004 года, ежегодно получала прибыль, составляющую 400% от капитала предыдущего года. На сколько долларов капитал одной из компаний был больше капитала другой к концу 2006 года, если прибыль из оборота не изымалась?

если прибыль составляла 200%, значит капитал каждый год увеличивался в 3 раза (200% прибыль+сам капитал 100%, итого: 300%).

С 2002 по 2006 компания получала прибыль, т.е. в течение 5 лет. Значит, капитал компании вырос в 3^5 = 243 раза.

Значит, к концу 2006 года капитал компании «Альфа» составлял 5000*243 = 1215000.

С 2004 по 2006 получала прибыль, т.е. в течение 3 лет. Прибыль составляла 400%, т.е. каждый год капитал увеличивался в 5 раз. Значит к концу 2006 года капитак компании вырос в 5^3 = 125 раз и составлял:

10000*125 = 1250000.

Прототип Задания B14 (Лысенко, 2013, № 390)

Количество элементов выпускаемой продукции неудачного предприятия с момента открытия ежемесячно падало на 40% по отношению к предыдущему месяцу. В последний, пятый месяц работы предприятие выпустило 324 элемента продукции, после чего было закрыто. Сколько элементов продукции было выпущено предприятием за время своего существования?

b13 19

b13 20

Прототип Задания B14 (Лысенко, 2013, № 391)

Два литра шестипроцентного уксуса разбавили тремя литрами однопроцентного уксуса. Каково процентное содержание уксуса в полученном растворе?

Источник

Два автомобиля одновременно выехали навстречу друг другу

Два автомобиля одновременно выехали навстречу друг другу. Первый ехал со скоростью 75 км/ч, второй со скоростью 65 км/ч. Какое расстояние было между ними, если они встретились через 3 часа?

s87406981

75 + 65 = 140 км/ч — скорость сближения

140 х 3 = 420 км — расстояние между ними.

Задача 2. Два автомобиля одновременно выезжают навстречу друг другу из двух городов, расстояние между которыми 456 км. Скорость первого автомобиля 68 км/ч а скорость второго на 16 км/ч больше. Через сколько часов они встретятся?

s36163093

Скорость второго: 68 + 16 = 84 км/ч

68 + 84 = 152 км/ч — общая скорость

456 : 152 = 3 часа — через это время автомобили встретятся.

Задача 3. Два автомобиля выехали одновременно навстречу друг другу и через три часа встретились. Один автомобиль ехал со скоростью 80 километров час другой 90 километров час. Какое расстояние было между ними в начале пути Решите задачу двумя способами

s65653261

80 + 90 = 170 км/ч — скорость сближения

170 х 3 = 510 км — первоначальное расстояние между автомобилями.

80 х 3 = 240 км — проехал первый автомобиль.

90 х 3 = 270 — проехал второй автомобиль

240 + 270 = 510 км — между пунктами отправления

Источник

Как найти на каком расстоянии встретятся автомобили

Расстояние между городами A и B равно 400 км. Из города A в город B выехал первый автомобиль, а через три часа после этого навстречу ему из города B выехал со скоростью 75 км/ч второй автомобиль. Найдите скорость первого автомобиля, если автомобили встретились на расстоянии 250 км от города A. Ответ дайте в км/ч.

Это задание ещё не решено, приводим решение прототипа.

Расстояние между городами 7fc56270e7a70fa81a5935b72eacbe29и 9d5ed678fe57bcca610140957afab571равно 470 км. Из города 7fc56270e7a70fa81a5935b72eacbe29в город 9d5ed678fe57bcca610140957afab571выехал первый автомобиль, а через 3 часа после этого навстречу ему из города 9d5ed678fe57bcca610140957afab571выехал со скоростью 60 км/ч второй автомобиль. Найдите скорость первого автомобиля, если автомобили встретились на расстоянии 350 км от города e1354cc842cc323c307b3424ed3dfa81Ответ дайте в км/ч.

Пусть 69f77ced6efe37343b3dd84b7465a324км/ч – скорость первого автомобиля. Автомобиль, выехавший из города d6f81c56fe7a3129122604426390ebdaпреодолел расстояние (470 – 350) км = 120 км. Первый автомобиль находился в пути на 3 часа больше, чем второй. Таким образом,

Источник

Задачи на движение в одном направлении

  • Задачи на скорость сближения
  • Задача на скорость удаления

Рассмотрим задачи, в которых речь идёт о движении в одном направлении. В таких задачах два каких-нибудь объекта движутся в одном направлении с разной скоростью, отдаляясь друг от друга или сближаясь друг с другом.

Задачи на скорость сближения

Скорость сближения — это скорость, с которой объекты сближаются друг с другом.

Чтобы найти скорость сближения двух объектов, которые движутся в одном направлении, надо из большей скорости вычесть меньшую.

Задача 1. Из города выехал автомобиль со скоростью  40  км/ч. Через  4  часа вслед за ним выехал второй автомобиль со скоростью  60  км/ч. Через сколько часов второй автомобиль догонит первый?

решение задач на движение в одном направлении

Решение: Так как на момент выезда второго автомобиля из города первый уже был в пути  4  часа, то за это время он успел удалиться от города на:

40 · 4 = 160 (км).

Второй автомобиль движется быстрее первого, значит каждый час расстояние между автомобилями будет сокращаться на разность их скоростей:

60 – 40 = 20 (км/ч)  — это скорость сближения автомобилей.

Разделив расстояние между автомобилями на скорость их сближения, можно узнать, через сколько часов они встретятся:

160 : 20 = 8 (ч).

Решение задачи по действиям можно записать так:

1) 40 · 4 = 160 (км)  — расстояние между автомобилями,

2) 60 – 40 = 20 (км/ч)  — скорость сближения автомобилей,

3) 160 : 20 = 8 (ч).

Ответ: Второй автомобиль догонит первый через  8  часов.

Задача 2. Из двух посёлков между которыми  5  км, одновременно в одном направлении вышли два пешехода. Скорость пешехода, идущего впереди,  4  км/ч, а скорость пешехода, идущего позади  5  км/ч. Через сколько часов после выхода второй пешеход догонит первого?

задачи на сближение

Решение: Так как второй пешеход движется быстрее первого, то каждый час расстояние между ними будет сокращаться. Значит можно определить скорость сближения пешеходов:

5 – 4 = 1 (км/ч).

Оба пешехода вышли одновременно, значит расстояние между ними равно расстоянию между посёлками  (5  км). Разделив расстояние между пешеходами на скорость их сближения, узнаем через сколько второй пешеход догонит первого:

5 : 1 = 5 (ч).

Решение задачи по действиям можно записать так:

1) 5 – 4 = 1 (км/ч)  — это скорость сближения пешеходов,

2) 5 : 1 = 5 (ч).

Ответ: Через  5  часов второй пешеход догонит первого.

Задача на скорость удаления

Скорость удаления — это скорость, с которой объекты отдаляются друг от друга.

Чтобы найти скорость удаления двух объектов, которые движутся в одном направлении, надо из большей скорости вычесть меньшую.

Задача. Два автомобиля выехали одновременно из одного и того же пункта в одном направлении. Скорость первого автомобиля  80  км/ч, а скорость второго —  40  км/ч.

задачи на удаление

1) Чему равна скорость удаления между автомобилями?

2) Какое расстояние будет между автомобилями через  3  часа?

3) Через сколько часов расстояние между ними будет  200  км?

Решение: Сначала узнаем скорость удаления автомобилей друг от друга, для этого вычтем из большей скорости меньшую:

80 – 40 = 40 (км/ч).

Каждый час автомобили отдаляются друг от друга на  40  км. Теперь можно узнать сколько километров будет между ними через  3  часа, для этого скорость удаления умножим на  3:

40 · 3 = 120 (км).

Чтобы узнать через сколько часов расстояние между автомобилями станет  200  км, надо расстояние разделить на скорость удаления:

200 : 40 = 5 (ч).

Ответ:

1) Скорость удаления между автомобилями равна  40  км/ч.

2) Через  3  часа между автомобилями будет  120  км.

3) Через  5  часов между автомобилями будет расстояние в  200  км.

Добавить комментарий