Как определить растворимость кислых солей?
ХимияСольНеорганическая химия
Людмила Лескова
15 ноября 2017 · 11,7 K
Есть такая таблица растворимости. Это справочный материал его выдают на ЕГЭ экзаменах и тд.
Допустим нужно определить растворимости следующих кислых солей, это соли в которых есть катион, анион и катион водорода: гидрокарбонат натрия ( сода пищевая), дигидрофосфат стронция и гидросульфат свинца. Для этого запишем их формулы и посмотрим какие у них анионы и катионы:
NaHCO3 => Na+ и HCO3-
Sr(H2PO4)2=> Sr2+ и 2H2PO4-
Pb(HSO4)2 => Pb2+ и 2HSO4-
Теперь смотрим в волшебную таблицу
Ищем катион ( это тот что с плюсиком) Na+ и потом смотрим анион( с минусом) HCO3- там стоит буква Р значит растворимо. А вот дигидрофосфат стронция, не растворим, там стоит буква Н. Со свинцом аналогично. Вообще по этой таблице можно посмотреть растворимость как и кислот ( там катион H+), так и оснований (OH-), да и вообще любых солей.
4,0 K
Комментировать ответ…Комментировать…
Есть соль – CaF2. Необходимо рассчитать её растворимость при pH = 3.
В теме http://forum.xumuk.r…howtopic=139704 есть описание решения похожей задачи. Просто у меня концентрация ионов водорода будет 10-3 моль/л. (Вот только в той теме всё-таки 1 моль/л, а не 0,1 моль/л, ведь кислота 1М).
Я решил задачу таким способом и получил растворимость 2,78*10–3 моль/л. Но в задачнике по количественному анализу есть другой способ решения этой задачи.
ПР = [Ca2+][F–]2
[Ca2+] = s, [F–] = 2sα.
α – доля ионов фтора от общей концентрации и F– и HF. Вычисляется как KдHF / ( KдHF + [H+] )
В итоге ответ другой – 3,81*10–3 моль/л. Как же правильно решать?
Изменено 13 Января, 2013 в 18:50 пользователем FantomS
Растворимость. Произведение растворимости
Растворение
вещества в заданном количестве
растворителя происходит до состояния
насыщения.
Насыщенный раствор
–
раствор, находящийся в динамическом
равновесии с растворяющимся веществом.
Молярная концентрация растворенного
вещества в насыщенном растворе называется
растворимостью
этого вещества при данной температуре
Р(х) = См(х).
При растворении электролита, например,
соли, в раствор переходят не молекулы,
а ионы. В этом случае в насыщенном
растворе равновесие устанавливается
между солью в кристаллическом состоянии
и ионами, перешедшими в раствор:
СаСО3(кр)
=
Ca2++
СО32-.
Константа равновесия
этого процесса:
Крав.
=
[Ca2+]
•
[СО32-]/
[СаСО3(кр)]
Концентрация
СаСО3(кр)
является величиной постоянной, тогда
Крав.
• [СаСО3(кр)]
=
[Ca2+]
•
[СО32-]
=
ПР или ПР
=
(P(x))2.
ПР – называется
произведением растворимости
труднорастворимого электролита (ТРЭ).
При постоянной
температуре в насыщенном растворе
электролита произведение концентраций
ионов с учетом стехиометрических
коэффициентов в уравнении диссоциации
есть величина постоянная при. Значения
ПР для известных ТРЭ помещены в справочник.
Для
ТРЭ типа А2В3
=
2А+3
+
3В2-
выражение для произведения растворимости
имеет вид:
ПР
=
[Аа+]2
•
[Вв-]3
=
[2Р(х)]2
•
[3Р(х)]3
= 108
Р(х)5.
Исходя из значений
ПР можно количественно оценить условия
образования и растворения осадков,
рассчитать растворимость Р(х) и молярную
концентрацию ионов электролита в его
насыщенном растворе (см. таблицу ниже).
При увеличении
концентрации одного из ионов ТРЭ в его
насыщенном растворе (например, путем
введения хорошо растворимого электролита,
содержащего тот же ион) произведение
концентраций ионов электролита (ПК)
становится больше ПР. При этом равновесие
между твердой фазой и раствором смещается
в сторону образования осадка.
Условием
образования осадка является превышение
произведения концентраций ионов
малорастворимого
электролита
над его произведением растворимости,
т.е.
ПК
> ПР.
Например,
если в насыщенный раствор AgCI
добавить сильный
электролит KCI,
то
появление в растворе одноименного иона
(CI–)
приводит к смещению равновесия в сторону
образования
осадка (←).
Когда устанавится
новое равновесие, при котором произведение
концентраций ионов электролита вновь
становится равным ПР, то в растворе
появится осадок,
концентрация ионов Ag+
будет меньше, а концентрация ионов CI–
– больше, чем было до добавления KCI.
AgCI↓
<=> AgCI <=> Ag+
+ CI–
Осадок нас.р-р
раствор
Напротив, если в
насыщенном растворе электролита
уменьшить концентрацию одного из ионов
(например, связав его каким-либо другим
ионом), произведение концентраций ионов
будет меньше значения ПР, раствор станет
ненасыщенным, а равновесие между жидкой
фазой и осадком сместится в сторону
растворения осадка (→).
Условием
растворения
осадка малорастворимого электролита
является недонасыщение раствора, т.е
при условии, когда произведение
концентраций его ионов меньше значения
ПР
т.е.
ПК
< ПР.
Пример
1.
Растворимость Аg3РО4
в воде при
20°C равна
0.0065 г/л.
Рассчитайте значение ПР (Аg3РО4).
Решение.
Растворимость Аg3РО4
или молярная концентрация соли в
насыщенном
растворе, равна:
т
(Аg3РО4)
0.0065
Р
(Аg3РО4)
= ——————————— = ——————
=
l,6
•l0-5
моль/л
М
(Аg3РО4)
• V(z)
418,58 • 1
Диссоциации
фосфата серебра идет по уравнению:
Аg3РО4
=
3Ag+
+
РО43–.
Видно,
что из
1
моля соли образуется
3
моля ионов
Ag+
и
1
моль ионов
Р043–,
поэтому [Р043–]
=
P(x), a [Ag+]
=
3Р(х).
Отсюда находим ПР:
ПР
=
[Ag+]3
•
[РО43–]
=
(3Р)3
•
Р
= (4,8 •10-5)
3
•l,6•10–5
=
1,77
•10–18.
Пример
2.
Произведение растворимости йодида
свинца при 20°С равно
8•10–9.
Вычислить
растворимость соли (в моль/л и в г/л) при
указанной
температуре.
Решение.
Обозначим искомую растворимость через
Р
(моль/л). Тогда в насыщенном растворе
РbI2
содержится
Р
моль/л ионов Рb2+
и
2Р
моль/ л ионов
I–.Отсюда
ПР(РbI2)
=
[Рb2+]
[I–]2
= Р(2Р)2
=
4 Р3
и
Р
= (
ПР(РbI2)/4
)1/3
=
(
8
•
10-9/
4)1/3
= 1,3
10-3
моль/л.
Молярная
масса РbI2
равна
461
г/моль, поэтому растворимость РbI2,
выраженная в г/л, составит 1,3
10-3
моль/ л • 461 г/ моль = 0,6
г/л.
Пример
3.
Во сколько раз растворимость оксалата
кальция СаС2О4
в
0,1
М
растворе оксалата аммония
(NH4)2С2О4
меньше, чем в воде? Диссоциацию оксалата
аммония на ионы считать полной.
Решение.
Вычислим сначала растворимость оксалата
кальция в воде. Обозначив концентрацию
соли в насыщенном растворе через
Р
(моль/ л), можем записать:
ПР(СаС2О4)
=
[Са2+]
[С2О42-]
= Р2
.
Отсюда,
используя значение ПР(СаС2О4)=
2 10-9,
Р
=
(ПР(СаС2О4)1/2
=
( 2
10-9
)1/2
=
4,5 •
10-5
моль/л.
Теперь
найдем растворимость той же соли в
0,1
М раствора (NH4)2С2О4;
обозначим ее через
Р‘.
Концентрация ионов Са2+
в насыщенном растворе тоже будет равна
Р’,
а концентрация ионов С2О42-составит
(0,1 + Р’).
Поскольку
Р‘<<0,1,
то
величиной
Р’
по сравнению с
0,1М
можно пренебречь и считать, что [С2О42-]
= 0,1
моль/л. Тогда можно записать:
ПР(СаС2О4)
= 2
•10-9
= Р’
•
0,1
и
Р’
= 2 •
10-9/
0,1
=
2 •
10-8
моль/л.
Таким
образом, в присутствии (NH4)2С2О4
растворимость СаС2О4
уменьшилась в
4,5•10-5
/
(2•10-8)
раз,т. е. приблизительно в
2200
раз.
Пример
4.
Смешаны равные объемы
0,01
М. растворов хлорида кальция и сульфата
натрия. Образуется ли осадок сульфата
кальция?
Решение.
Найдем произведение концентраций ионов
Са2+
и
SO42-
и сравним его с произведением растворимости
сульфата кальция. Исходные молярные
концентрации растворов
CaCl2
и
Na2S04
одинаковы и равны
0,01
моль/л. Поскольку при смешении исходных
растворов общий объем раствора вдвое
возрастет, то концентрации ионов [Са2+]
и
[SО42-]
вдвое уменьшатся по сравнению с исходными.
Таким
образом, [Са2+]
=
[SО42-]
=
0,005 = 5 •
10–3
моль/л.
Находим
произведение концентраций ионов ПК
= [Са2+]
[SО42-]
=
(5 •
10–3)2
= 2,5 •
10–5.
ПР(CaSO4)
=
1,3•10–4.
Найденное значение произведения
концентрации ионов меньше этой величины;
следовательно, раствор
будет
ненасыщенным относительно сульфата
кальция, и осадок не образуется.
Для решения
задач на ПР , ПК, растворимость можно
воспользоваться таблицей, приведенной
ниже.
Параметры го раствора |
Тип электролита |
|||
АВ |
А2В |
А3В |
А2В32А+3В |
|
См (эл-та), моль/л |
Р |
Р |
Р |
Р |
См (А), моль/л |
Р |
2 Р |
3 Р |
2 Р |
См (В), моль/л |
Р |
Р |
Р |
3 Р |
Масса эл-та, г/л |
М(АВ) Р |
М(А2В) |
М(А3В) |
М(А2В3) |
Масса (А)эл-та, |
М(А) Р |
2М(А) Р |
3М(А) Р |
2М(А) Р |
Масса (В), г/л |
М(В) Р |
М(В) Р |
М(В) Р |
3М(В) Р |
ПР электролита |
Из справочника |
Из справочника |
Из справочника |
Из справочника |
ПР электролита |
Р2 |
4Р3 |
27Р4 |
108Р5 |
Р |
(ПР)1/2 |
(ПР/4)1/3 |
(ПР/27)1/4 |
(ПР/108)1/5 |
ЗАДАЧИ
-
Вычислить
произведение растворимости РbВr2
при 25°С,
если
растворимость соли при этой температуре
равна 1,32
•
10-2
моль/л. -
В
500
мл воды при 18°С растворяется
0,0166
г
Ag2CrО4
.Чему
равно произведение растворимости этой
соли? -
Для
растворения
1,16
г РbI2
потребовалось
2
л воды. Найти
произведение
растворимости соли. -
Исходя
из произведения растворимости карбоната
кальция,
найти
массу СаСО3,
которая содержится в
100
мл его насыщенного
раствора. -
Вычислить
объем воды, необходимый для растворения
при
25°С
1
г
BaSО4. -
Рассчитайте
молярную концентрацию ионов свинца
(Pb2+)
в
насыщенном
растворе иодида свинца. ПР
(PbJ2)
= 10-8. -
Рассчитайте
ПР соли
NiC2O4,
если в
100
мл насыщенного раствора этой соли
содержится
0,001174
г ионов никеля. -
Для
растворения
0,72
г карбоната кальция потребовалось
15
л
воды.
Вычислите ПР карбоната кальция, считая,
что объем раствора равен
объему
растворителя. -
Рассчитайте,
в каком объеме насыщенного раствора
хлорида
свинца
(II)
содержится
0,1
г ионов свинца, ПР
(PbCl2)
= l,6•10-5. -
Рассчитайте
массу кальция в виде ионов Са+2
которая находится
в
500
мл насыщенного раствора сульфата
кальция, ПР (СаSО4)
= 1,3 •
10-4. -
Рассчитайте
массу кальция в виде ионов Са+2
которая находится
в
500
мл насыщенного раствора сульфата
кальция, ПР (СаSО4)
= 1,3 •
10-4. -
Сколько
литров воды потребуется для растворения
0,1
г хлорида
серебра
для получения насыщенного раствора,
ПР
(AgCl) = 1
•
10–10
. -
Выпадет
ли осадок сульфата кальция, если к
200
мл
0,002
молярного раствора хлорида кальция
добавить
2000
мл
0,00001
молярного
раствора
сульфата калия, ПР(СаSО4)
=
10–4. -
14.
Рассчитайте, в каком объеме насыщенного
раствора содержится
0.1
г иодида серебра,
ПP(AgI)=8,3•10-17. -
15.В
насыщенном растворе хромата серебра
молярная концентрация
иона
СrО-2
равна
0.0001
моль/л. Рассчитайте ПР хромата серебра
и молярную концентрацию иона серебра
в этом растворе.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Расчеты с участием понятия растворимости солей в рамках ЕГЭ
В ходе подготовки к ЕГЭ по химии постоянно приходится сталкиваться с понятием «раствор». Обычно под этим словом подразумевают абсолютно однородную на любом уровне, гомогенную смесь веществ. Растворы бывают самые разные по агрегатному состоянию, но в рамках экзаменов встречаем в основном растворы жидкие. Среда, в которой что-то растворяем, в таком случае будет жидкостью. Давайте введем сразу несколько понятий, которые пригодятся в дальнейшем.
Растворитель – жидкость, которая выполняет роль среды, в которой что-то растворяют. В рамках задач ЕГЭ и ДВИ практически всегда используют воду.
Растворенное вещество – вещество, которое добавили в растворитель, и оно с ним полностью смешалось. Может быть в любом агрегатном состоянии.
Растворимость – способность вещества смешиваться с растворителем. Также под растворимостью понимают массу вещества, которое может раствориться в определенной массе раствора при данных условиях.
Разбавленный раствор – раствор, содержание растворителя в котором значительно превышает содержание растворенного вещества. Например, 0,1%-ный раствор хлорида натрия.
Концентрированный раствор – раствор, содержание растворенного вещества в котором сопоставимо или превышает содержание растворителя. Например, 65%-ный раствор азотной кислоты.
Насыщенный раствор – раствор, в котором больше нельзя растворить такое вещество. Достигнут предел по растворимости.
Пересыщенный раствор – неустойчивая система, в которой содержание растворенного вещества превышает растворимость при данных условиях. На экзаменах не встречается.
В расчетных задачах ЕГЭ или ДВИ часто фигурирует растворимость тех или иных веществ. Она зависит от многих факторов. Например, природы растворителя и растворенного вещества. Очень важным фактором является температура. Для подавляющего большинства солей растворимость в воде больше при высокой температуре и меньше при низкой. Например, у хлорида калия при 80˚С растворимость равна 51,3 г/100 г воды, а при 0˚С уже станет 28 г/100 г воды. Растворимость является индивидуальной физико-химической характеристикой вещества. Итого можно отметить следующие факты, значимые для решения задач:
- Растворимость вещества при определенных условиях является постоянной величиной и приведена в качестве справочного данного.
- Растворимость при заданной температуре обычно приводится в формате массы растворенного вещества в 100 г чистого растворителя (воды). Не раствора, а именно чистого растворителя!
- Горячий насыщенный раствор содержит больше растворенного вещества, чем холодный.
- При охлаждении горячего насыщенного раствора из него начнет выпадать избыток растворенного вещества до достижения значения растворимости при более низкой температуре.
- Избыток растворенного вещества может выпасть как в безводном состоянии, так и в виде кристаллогидрата. Во втором случае он уносит с собой часть растворителя.
Рассмотрим основные расчетные приемы с участием растворимости.
Задача №1
Растворимость хлорида калия при 0˚С равна 28 г/100 г воды. Вычислите массовую долю соли в таком растворе.
Решение:
Пусть было 28 г соли и 100 г воды. Тогда можно найти массу раствора:
m(p-pa) = m(соли) + m(воды) = 28 + 100 = 128 г
Вычислим массовую долю соли в растворе:
ω(соли) = m(соли)/m(p-pa)·100% = 28/128·100% = 21,88%
Ответ: 21,88%
Задача №2
Вычислите растворимость сульфата аммония при 20˚С, если массовая доля соли в его насыщенном растворе при данной температуре равна 42,86%. Плотность раствора равна 1,25 г/мл.
Решение:
Пусть было 100 мл раствора. Тогда можно вычислить его массу:
m(p-pa) = ρ(p-pa)·V(p-pa) = 1,25·100 = 125 г
Далее вычислим массу соли и воды в растворе:
m(соли) = m(p-pa)·ω(соли)/100% = 125·42,86%/100% = 53,58 г
m(воды) = m(p-pa) — m(соли) = 125 – 53,58 = 71,42 г
Растворимость соли на 100 г воды можно найти по пропорции:
53,58 г соли – 71,42 г воды
х г соли – 100 г воды
х = 53,58·100/71,42 = 75 г
Ответ: 75 г/100 г воды.
Задача №3
Насыщенный при 20˚С раствор нитрата бария массой 218 г нагрели до 60˚С. Вычислите массу соли, которую можно дополнительно растворить в горячем растворе, если растворимость нитрата бария при 20˚С равна 9 г/100 г воды, а при 60˚С – 20 г/100 г воды.
Решение:
Вычислим массы соли и воды в изначальном растворе:
9 г соли – 109 г раствора
х г соли – 218 г раствора
х = 18 г
m1(соли) = 18 г
m(воды) = m(p-pa) – m1(соли) = 218 – 18 = 200 г
Далее вычислим, сколько соли может раствориться в имеющемся количестве воды при 60˚С:
20 г соли – 100 г воды
х г соли – 200 г воды
х = 40 г
m2(соли) = 40 г
Найдем массу соли, которую можно дополнительно растворить в горячем растворе:
Δm = m2(соли) — m1(соли) = 40 – 18 = 22 г
Ответ: 22 г.
Задача №4
Рассчитайте массу безводной соли, которая получится при охлаждении до 10˚С насыщенного при 80˚С раствора дихромата аммония массой 430 г. Растворимость соли при 80˚С равна 115 г/100 г воды, а при 10˚С – 25,5 г/100 г воды.
Решение:
Вычислим массу соли и воды в исходном растворе:
115 г соли – 215 г раствора
х г соли – 430 г раствора
х = 230 г
m1(соли) = 230 г
m(воды) = m(p-pa) – m1(соли) = 430 – 230 = 200 г
Далее вычислим, сколько соли может раствориться в имеющемся количестве воды при 10˚С:
25,5 г соли – 100 г воды
х г соли – 200 г воды
х = 51 г
m2(соли) = 51 г
Найдем массу соли, которая выпадет при охлаждении горячего раствора:
Δm = m1(соли) – m2(соли) = 230 – 51 = 179 г
Ответ: 179 г.
Задача №5
При охлаждении до 0˚С 31 г горячего насыщенного раствора сульфата меди (II) в осадок выпал медный купорос (CuSO4·5H2O). Определите массу образовавшегося кристаллогидрата, если растворимость сульфата меди (II) при 80˚С равна 55 г/100 г воды, а при 0˚С равна 15 г/100 г воды.
Решение:
Выразим массовую долю сульфата меди в составе медного купороса:
ω(CuSO4) = m(CuSO4)/m(CuSO4·5H2O)·100% = М(CuSO4)/М(CuSO4·5H2O)·100%
ω(CuSO4) = 160/250·100% = 64% или 0,64
Пусть масса осадка была х г. Тогда в его составе оказалось 0,64х г безводной соли. Вычислим массу безводной соли в изначальном растворе:
55 г соли – 155 г раствора
у г соли – 31 г раствора
у = 11
m1(соли) = 11 г
При охлаждении часть безводной соли перешла в состав кристаллогидрата. Охлажденный раствор по растворимости должен соответствовать справочным данным. Можно записать это так:
(11 – 0,64х)/(31 – х) = 15/115
115·(11 – 0,64х) = 15·(31 – х)
1265 – 73,6х = 465 – 15х
800 = 58,6х
х = 13,65 г
Ответ: 13,65 г.
Способность веществ растворяться в каком-либо растворителе называется растворимостью.
У каждого вещества есть своя способность растворяться, и у неё есть определённый предел. По способности веществ растворяться в воде их делят на:
- практически нерастворимые (хлорид серебра — (0,0015) г/л);
- малорастворимые (гипс — (2) г/л);
- хорошо растворимые (сахар — (2000) г/л).
Растворимость кислот, оснований и солей можно определить, пользуясь таблицей растворимости на форзаце учебника химии.
При повышении температуры растворимость большинства твёрдых веществ (кроме гипса, извести и некоторых других) увеличивается.
Коэффициент растворимости — это отношение массы вещества, образующего насыщенный при данной температуре раствор, к объёму растворителя.
Растворимость зависит от природы растворителя и растворяемого вещества, их агрегатного состояния, температуры и давления (для газов).
Растворение жидких веществ в основном зависит от природы растворённого вещества и растворителя.
Растворимость твёрдых и жидких веществ практически не зависит от давления.
Но растворимость газообразных веществ увеличивается при повышении давления (и уменьшается при понижении давления).
При понижении температуры растворимость газообразных веществ увеличивается.
Со времён алхимии известно «золотое правило» — подобное растворяется в подобном. Так, в полярных растворителях (вода и др.) хорошо растворяются вещества с ионной и ковалентной полярной связями (кислоты, соли, щёлочи, аммиак, хлороводород). В неполярных растворителях, как правило, растворяются вещества с неполярной связью (водород, сера, углерод и др.).
Пример:
жир практически нерастворим в воде, но в таких растворителях, как бензин и хлороформ растворяется хорошо.