Как найти равенство модулей числа

Как решать уравнения с модулем: основные правила

30 декабря 2016

Модуль — одна из тех вещей, о которых вроде-бы все слышали, но в действительности никто нормально не понимает. Поэтому сегодня будет большой урок, посвящённый решению уравнений с модулями.

Сразу скажу: урок будет несложный. И вообще модули — вообще тема относительно несложная. «Да конечно, несложная! У меня от неё мозг разрывается!» — скажут многие ученики, но все эти разрывы мозга происходят из-за того, что у большинства людей в голове не знания, а какая-то хрень. И цель этого урока — превратить хрень в знания.:)

Немного теории

Итак, поехали. Начнём с самого важного: что такое модуль? Напомню, что модуль числа — это просто то же самое число, но взятое без знака «минус». Т.е., например, $left| -5 right|=5$. Или $left| -129,5 right|=129,5$.

Вот так всё просто? Да, просто. А чему тогда равен модуль положительного числа? Тут ещё проще: модуль положительного числа равен самому этому числу: $left| 5 right|=5$; $left| 129,5 right|=129,5$ и т.д.

Получается любопытная вещь: разные числа могут иметь один тот же модуль. Например: $left| -5 right|=left| 5 right|=5$; $left| -129,5 right|=left| 129,5 right|=129,5$. Нетрудно заметить, что это за числа, у которых модули одинаковые: эти числа противоположны. Таким образом, отметим для себя, что модули противоположных чисел равны:

[left| -a right|=left| a right|]

Ещё один важный факт: модуль никогда не бывает отрицательным. Какое бы число мы ни взяли — хоть положительное, хоть отрицательное — его модуль всегда оказывается положительным (или в крайнем случае нулём). Именно поэтому модуль часто называют абсолютной величиной числа.

Кроме того, если объединить определение модуля для положительного и отрицательного числа, то получим глобальное определение модуля для всех чисел. А именно: модуль числа равен самому этому числу, если число положительное (или ноль), либо равен противоположному числу, если число отрицательное. Можно записать это в виде формулы:

[left| a right|=left{ begin{align}& a,quad age 0, \& -a,quad a lt 0. \end{align} right.]

Ещё есть модуль нуля, но он всегда равен нулю. Кроме того, ноль — единственное число, которое не имеет противоположного.

Таким образом, если рассмотреть функцию $y=left| x right|$ и попробовать нарисовать её график, то получится вот такая «галка»:

График функции-модуля и его пересечение с горизонтальной линией

График модуля и пример решения уравнения

Из этой картинки сразу видно, что $left| -m right|=left| m right|$, а график модуля никогда не опускается ниже оси абсцисс. Но это ещё не всё: красной линией отмечена прямая $y=a$, которая при положительных $a$ даёт нам сразу два корня: ${{x}_{1}}$ и ${{x}_{2}}$, но об этом мы поговорим позже.:)

Помимо чисто алгебраического определения, есть геометрическое. Допустим, есть две точки на числовой прямой: ${{x}_{1}}$ и ${{x}_{2}}$. В этом случае выражение $left| {{x}_{1}}-{{x}_{2}} right|$ — это просто расстояние между указанными точками. Или, если угодно, длина отрезка, соединяющего эти точки:

Определение модуля через расстояние

Модуль — это расстояние между точками на числовой прямой

Из этого определения также следует, что модуль всегда неотрицателен. Но хватит определений и теории — перейдём к настоящим уравнениям.:)

Основная формула

Ну хорошо, с определением разобрались. Но легче-то от этого не стало. Как решать уравнения, содержащие этот самый модуль?

Спокойствие, только спокойствие. Начнём с самых простых вещей. Рассмотрим что-нибудь типа такого:

[left| x right|=3]

Итак, модуль$x$ равен 3. Чему может быть равен $x$? Ну, судя по определению, нас вполне устроит $x=3$. Действительно:

[left| 3 right|=3]

А есть ли другие числа? Кэп как бы намекает, что есть. Например, $x=-3$ — для него тоже $left| -3 right|=3$, т.е. требуемое равенство выполняется.

Так может, если поискать, подумать, мы найдём ещё числа? А вот обломитесь: больше чисел нет. Уравнение $left| x right|=3$ имеет лишь два корня: $x=3$ и $x=-3$.

Теперь немного усложним задачу. Пусть вместо переменной $x$ под знаком модуля тусуется функция $fleft( x right)$, а справа вместо тройки поставим произвольное число $a$. Получим уравнение:

[left| fleft( x right) right|=a]

Ну и как такое решать? Напомню: $fleft( x right)$ — произвольная функция, $a$ — любое число. Т.е. вообще любое! Например:

[left| 2x+1 right|=5]

или:

[left| 10x-5 right|=-65]

Обратим внимание на второе уравнение. Про него сразу можно сказать: корней у него нет. Почему? Всё правильно: потому что в нём требуется, чтобы модуль был равен отрицательному числу, чего никогда не бывает, поскольку мы уже знаем, что модуль — число всегда положительное или в крайнем случае ноль.

А вот с первым уравнением всё веселее. Тут два варианта: либо под знаком модуля стоит положительное выражение, и тогда$left| 2x+1 right|=2x+1$, либо это выражение всё-таки отрицательное, и тогда $left| 2x+1 right|=-left( 2x+1 right)=-2x-1$. В первом случае наше уравнение перепишется так:

[left| 2x+1 right|=5Rightarrow 2x+1=5]

И внезапно получается, что подмодульное выражение $2x+1$ действительно положительно — оно равно числу 5. Т.е. мы можем спокойно решать это уравнение — полученный корень будет кусочком ответа:

[2x+1=5Rightarrow 2x=4Rightarrow x=2]

Особо недоверчивые могут попробовать подставить найденный корень в исходное уравнение и убедиться, что действительно под модулем будет положительное число.

Теперь разберём случай отрицательного подмодульного выражения:

[left{ begin{align}& left| 2x+1 right|=5 \& 2x+1 lt 0 \end{align} right.Rightarrow -2x-1=5Rightarrow 2x+1=-5]

Опа! Снова всё чётко: мы предположили, что $2x+1 lt 0$, и в результате получили, что $2x+1=-5$ — действительно, это выражение меньше нуля. Решаем полученное уравнение, при этом уже точно зная, что найденный корень нас устроит:

[2x+1=-5Rightarrow 2x=-6Rightarrow x=-3]

Итого мы вновь получили два ответа: $x=2$ и $x=3$. Да, объём вычислений оказался малость побольше, чем в совсем уж простом уравнении $left| x right|=3$, но принципиально ничего не изменилось. Так может, существует какой-то универсальный алгоритм?

Да, такой алгоритм существует. И сейчас мы его разберём.

Избавление от знака модуля

Пусть нам дано уравнение $left| fleft( x right) right|=a$, причём $age 0$ (иначе, как мы уже знаем, корней нет). Тогда можно избавиться от знака модуля по следующему правилу:

[left| fleft( x right) right|=aRightarrow fleft( x right)=pm a]

Таким образом, наше уравнение с модулем распадается на два, но уже без модуля. Вот и вся технология! Попробуем решить парочку уравнений. Начнём вот с такого

[left| 5x+4 right|=10Rightarrow 5x+4=pm 10]

Отдельно рассмотрим, когда справа стоит десятка с плюсом, и отдельно — когда с минусом. Имеем:

[begin{align}& 5x+4=10Rightarrow 5x=6Rightarrow x=frac{6}{5}=1,2; \& 5x+4=-10Rightarrow 5x=-14Rightarrow x=-frac{14}{5}=-2,8. \end{align}]

Вот и всё! Получили два корня: $x=1,2$ и $x=-2,8$. Всё решение заняло буквально две строчки.

Ок, не вопрос, давайте рассмотрим что-нибудь чуть посерьёзнее:

[left| 7-5x right|=13]

Опять раскрываем модуль с плюсом и минусом:

[begin{align}& 7-5x=13Rightarrow -5x=6Rightarrow x=-frac{6}{5}=-1,2; \& 7-5x=-13Rightarrow -5x=-20Rightarrow x=4. \end{align}]

Опять пара строчек — и ответ готов! Как я и говорил, в модулях нет ничего сложного. Нужно лишь запомнить несколько правил. Поэтому идём дальше и приступаем с действительно более сложным задачам.

Случай переменной правой части

А теперь рассмотрим вот такое уравнение:

[left| 3x-2 right|=2x]

Это уравнение принципиально отличается от всех предыдущих. Чем? А тем, что справа от знака равенства стоит выражение $2x$ — и мы не можем заранее знать, положительное оно или отрицательное.

Как быть в таком случае? Во-первых, надо раз и навсегда понять, что если правая часть уравнения окажется отрицательной, то уравнение не будет иметь корней — мы уже знаем, что модуль не может быть равен отрицательному числу.

А во-вторых, если права часть всё-таки положительна (или равна нулю), то можно действовать точно так же, как раньше: просто раскрыть модуль отдельно со знаком «плюс» и отдельно — со знаком «минус».

Таким образом, сформулируем правило для произвольных функций $fleft( x right)$ и $gleft( x right)$ :

[left| fleft( x right) right|=gleft( x right)Rightarrow left{ begin{align}& fleft( x right)=pm gleft( x right), \& gleft( x right)ge 0. \end{align} right.]

Применительно к нашему уравнению получим:

[left| 3x-2 right|=2xRightarrow left{ begin{align}& 3x-2=pm 2x, \& 2xge 0. \end{align} right.]

Ну, с требованием $2xge 0$ мы как-нибудь справимся. В конце концов, можно тупо подставить корни, которые мы получим из первого уравнения, и проверить: выполняется неравенство или нет.

Поэтому решим-ка само уравнение:

[begin{align}& 3x-2=2xRightarrow 3x-2x=2Rightarrow x=2; \& 3x-2=-2xRightarrow 5x=2Rightarrow x=frac{2}{5}. \end{align}]

Ну и какой их этих двух корней удовлетворяет требованию $2xge 0$? Да оба! Поэтому в ответ пойдут два числа: $x=2$ и $x={2}/{5};$. Вот и всё решение.:)

Подозреваю, что кто-то из учеников уже начал скучать? Что ж, рассмотрим ещё более сложное уравнение:

[left| {{x}^{3}}-3{{x}^{2}}+x right|=x-{{x}^{3}}]

Хоть оно и выглядит злобно, по факту это всё то же самое уравнение вида «модуль равен функции»:

[left| fleft( x right) right|=gleft( x right)]

И решается оно точно так же:

[left| {{x}^{3}}-3{{x}^{2}}+x right|=x-{{x}^{3}}Rightarrow left{ begin{align}& {{x}^{3}}-3{{x}^{2}}+x=pm left( x-{{x}^{3}} right), \& x-{{x}^{3}}ge 0. \end{align} right.]

С неравенством мы потом разберёмся — оно какое-то уж слишком злобное (на самом деле простое, но мы его решать не будем). Пока лучше займёмся полученными уравнениями. Рассмотрим первый случай — это когда модуль раскрывается со знаком «плюс»:

[{{x}^{3}}-3{{x}^{2}}+x=x-{{x}^{3}}]

Ну, тут и ежу понятно, что нужно всё собрать слева, привести подобные и посмотреть, что получится. А получится вот что:

[begin{align}& {{x}^{3}}-3{{x}^{2}}+x=x-{{x}^{3}}; \& 2{{x}^{3}}-3{{x}^{2}}=0; \end{align}]

Выносим общий множитель ${{x}^{2}}$ за скобку и получаем очень простое уравнение:

[{{x}^{2}}left( 2x-3 right)=0Rightarrow left[ begin{align}& {{x}^{2}}=0 \& 2x-3=0 \end{align} right.]

[{{x}_{1}}=0;quad {{x}_{2}}=frac{3}{2}=1,5.]

Тут мы воспользовались важным свойством произведения, ради которого мы и раскладывали исходный многочлен на множители: произведение равно нулю, когда хотя бы один из множителей равен нулю.

Теперь точно так же разберёмся со вторым уравнением, которое получается при раскрытии модуля со знаком «минус»:

[begin{align}& {{x}^{3}}-3{{x}^{2}}+x=-left( x-{{x}^{3}} right); \& {{x}^{3}}-3{{x}^{2}}+x=-x+{{x}^{3}}; \& -3{{x}^{2}}+2x=0; \& xleft( -3x+2 right)=0. \end{align}]

Опять то же самое: произведение равно нулю, когда равен нулю хотя бы один из множителей. Имеем:

[left[ begin{align}& x=0 \& -3x+2=0 \end{align} right.]

[{{x}_{1}}=0;quad {{x}_{2}}=frac{2}{3}.]

Ну вот мы получили три корня: $x=0$, $x=1,5$ и $x={2}/{3};$. Ну и что из этого набора пойдёт в окончательный ответ? Для этого вспомним, что у нас есть дополнительное ограничение в виде неравенства:

[x-{{x}^{3}}ge 0]

Как учесть это требование? Да просто подставим найденные корни и проверим: выполняется неравенство при этих $x$ или нет. Имеем:

[begin{align}& x=0Rightarrow x-{{x}^{3}}=0-0=0ge 0; \& x=1,5Rightarrow x-{{x}^{3}}=1,5-{{1,5}^{3}} lt 0; \& x=frac{2}{3}Rightarrow x-{{x}^{3}}=frac{2}{3}-frac{8}{27}=frac{10}{27}ge 0; \end{align}]

Таким образом, корень $x=1,5$ нас не устраивает. И в ответ пойдут лишь два корня:

[{{x}_{1}}=0;quad {{x}_{2}}=frac{2}{3}.]

Как видите, даже в этом случае ничего сложного не было — уравнения с модулями всегда решаются по алгоритму. Нужно лишь хорошо разбираться в многочленах и неравенствах. Поэтому переходим к более сложным задачам — там уже будет не один, а два модуля.

Уравнения с двумя модулями

До сих пор мы изучали лишь самые простые уравнения — там был один модуль и что-то ещё. Это «что-то ещё» мы отправляли в другую часть неравенства, подальше от модуля, чтобы в итоге всё свелось к уравнению вида $left| fleft( x right) right|=gleft( x right)$ или даже более простому $left| fleft( x right) right|=a$.

Но детский сад закончился — пора рассмотреть что-нибудь посерьёзнее. Начнём с уравнений вот такого типа:

[left| fleft( x right) right|=left| gleft( x right) right|]

Это уравнение вида «модуль равен модулю». Принципиально важным моментом является отсутствие других слагаемых и множителей: только один модуль слева, ещё один модуль справа — и ничего более.

Кто-нибудь сейчас подумает, что такие уравнения решаются сложнее, чем то, что мы изучали до сих пор. А вот и нет: эти уравнения решаются даже проще. Вот формула:

[left| fleft( x right) right|=left| gleft( x right) right|Rightarrow fleft( x right)=pm gleft( x right)]

Всё! Мы просто приравниваем подмодульные выражения, ставя перед одним из них знак «плюс-минус». А затем решаем полученные два уравнения — и корни готовы! Никаких дополнительных ограничений, никаких неравенств и т.д. Всё очень просто.

Давайте попробуем решать вот такую задачу:

[left| 2x+3 right|=left| 2x-7 right|]

Элементарно, Ватсон! Раскрываем модули:

[left| 2x+3 right|=left| 2x-7 right|Rightarrow 2x+3=pm left( 2x-7 right)]

Рассмотрим отдельно каждый случай:

[begin{align}& 2x+3=2x-7Rightarrow 3=-7Rightarrow emptyset ; \& 2x+3=-left( 2x-7 right)Rightarrow 2x+3=-2x+7. \end{align}]

В первом уравнении корней нет. Потому что когда это $3=-7$? При каких значениях $x$? «Какой ещё нафиг $x$? Ты обкурился? Там вообще нет $x$» — скажете вы. И будете правы. Мы получили равенство, не зависящее от переменной $x$, и при этом само равенство — неверное. Потому и нет корней.:)

Со вторым уравнением всё чуть интереснее, но тоже очень и очень просто:

[2x+3=-2x+7Rightarrow 4x=4Rightarrow x=1]

Как видим, всё решилось буквально в пару строчек — другого от линейного уравнения мы и не ожидали.:)

В итоге окончательный ответ: $x=1$.

Ну как? Сложно? Конечно, нет. Попробуем что-нибудь ещё:

[left| x-1 right|=left| {{x}^{2}}-3x+2 right|]

Опять у нас уравнение вида $left| fleft( x right) right|=left| gleft( x right) right|$. Поэтому сразу переписываем его, раскрывая знак модуля:

[{{x}^{2}}-3x+2=pm left( x-1 right)]

Возможно, кто-то сейчас спросит: «Эй, что за бред? Почему «плюс-минус» стоит у правого выражения, а не у левого?» Спокойно, сейчас всё объясню. Действительно, по-хорошему мы должны были переписать наше уравнение следующим образом:

[x-1=pm left( {{x}^{2}}-3x+2 right)]

Затем нужно раскрыть скобки, перенести все слагаемые в одну сторону от знака равенства (поскольку уравнение, очевидно, в обоих случаях будет квадратным), ну и дальше отыскать корни. Но согласитесь: когда «плюс-минус» стоит перед тремя слагаемыми (особенно когда одно из этих слагаемых — квадратное выражение), это как-то более сложно выглядит, нежели ситуация, когда «плюс-минус» стоит лишь перед двумя слагаемыми.

Но ведь ничто не мешает нам переписать исходное уравнение следующим образом:

[left| x-1 right|=left| {{x}^{2}}-3x+2 right|Rightarrow left| {{x}^{2}}-3x+2 right|=left| x-1 right|]

Что произошло? Да ничего особенного: просто поменяли левую и правую часть местами. Мелочь, которая в итоге немного упростит нам жизнь.:)

В общем, решаем это уравнение, рассматривая варианты с плюсом и с минусом:

[begin{align}& {{x}^{2}}-3x+2=x-1Rightarrow {{x}^{2}}-4x+3=0; \& {{x}^{2}}-3x+2=-left( x-1 right)Rightarrow {{x}^{2}}-2x+1=0. \end{align}]

Первое уравнение имеет корни $x=3$ и $x=1$. Второе вообще является точным квадратом:

[{{x}^{2}}-2x+1={{left( x-1 right)}^{2}}]

Поэтому у него единственный корень: $x=1$. Но этот корень мы уже получали ранее. Таким образом, в итоговый ответ пойдут лишь два числа:

[{{x}_{1}}=3;quad {{x}_{2}}=1.]

Миссия выполнена! Можно взять с полки и скушать пирожок. Там их 2, ваш средний.:)

Важное замечание. Наличие одинаковых корней при разных вариантах раскрытия модуля означает, что исходные многочлены раскладываются на множители, и среди этих множителей обязательно будет общий. Действительно:

[begin{align}& left| x-1 right|=left| {{x}^{2}}-3x+2 right|; \& left| x-1 right|=left| left( x-1 right)left( x-2 right) right|. \end{align}]

Одно из свойств модуля: $left| acdot b right|=left| a right|cdot left| b right|$ (т.е. модуль произведения равен произведению модулей), поэтому исходное уравнение можно переписать так:

[left| x-1 right|=left| x-1 right|cdot left| x-2 right|]

Как видим, у нас действительно возник общий множитель. Теперь, если собрать все модули с одной стороны, то можно вынести этот множитель за скобку:

[begin{align}& left| x-1 right|=left| x-1 right|cdot left| x-2 right|; \& left| x-1 right|-left| x-1 right|cdot left| x-2 right|=0; \& left| x-1 right|cdot left( 1-left| x-2 right| right)=0. \end{align}]

Ну а теперь вспоминаем, что произведение равно нулю, когда хотя бы один из множителей равен нулю:

[left[ begin{align}& left| x-1 right|=0, \& left| x-2 right|=1. \end{align} right.]

Таким образом, исходное уравнение с двумя модулями свелось к двум простейшим уравнениям, о которых мы говорили в самом начале урока. Такие уравнения решаются буквально в пару строчек.:)

Данное замечание, возможно, покажется излишне сложным и неприменимым на практике. Однако в реальности вам могут встретиться куда более сложные задачи, нежели те, что мы сегодня разбираем. В них модули могут комбинироваться с многочленами, арифметическими корнями, логарифмами и т.д. И в таких ситуациях возможность понизить общую степень уравнения путём вынесения чего-либо за скобку может оказаться очень и очень кстати.:)

Теперь хотелось бы разобрать ещё одно уравнение, которое на первый взгляд может показаться бредовым. На нём «залипают» многие ученики — даже те, которые считают, что хорошо разобрались в модулях.

Тем не менее, это уравнение решается даже проще, чем то, что мы рассматривали ранее. И если вы поймёте почему, то получите ещё один приём для быстрого решения уравнений с модулями.

Итак, уравнение:

[left| x-{{x}^{3}} right|+left| {{x}^{2}}+x-2 right|=0]

Нет, это не опечатка: между модулями именно плюс. И нам нужно найти, при каких $x$ сумма двух модулей равна нулю.:)

В чём вообще проблема? А проблема в том, что каждый модуль — число положительное, либо в крайнем случае ноль. А что будет, если сложить два положительных числа? Очевидно, снова положительное число:

[begin{align}& 5+7=12 gt 0; \& 0,004+0,0001=0,0041 gt 0; \& 5+0=5 gt 0. \end{align}]

Последняя строчка может натолкнуть на мысль: единственный случай, когда сумма модулей равна нулю — это если каждый модуль будет равен нулю:

[left| x-{{x}^{3}} right|+left| {{x}^{2}}+x-2 right|=0Rightarrow left{ begin{align}& left| x-{{x}^{3}} right|=0, \& left| {{x}^{2}}+x-2 right|=0. \end{align} right.]

А когда модуль равен нулю? Только в одном случае — когда подмодульное выражение равно нулю:

[x-{{x}^{3}}=0Rightarrow xleft( 1-{{x}^{2}} right)=0Rightarrow left[ begin{align}& x=0 \& x=pm 1 \end{align} right.]

[{{x}^{2}}+x-2=0Rightarrow left( x+2 right)left( x-1 right)=0Rightarrow left[ begin{align}& x=-2 \& x=1 \end{align} right.]

Таким образом, у нас есть три точки, в которых обнуляется первый модуль: 0, 1 и −1; а также две точки, в которых обнуляется второй модуль: −2 и 1. Однако нам нужно, чтобы оба модуля обнулялись одновременно, поэтому среди найденных чисел нужно выбрать те, которые входят в оба набора. Очевидно, такое число лишь одно: $x=1$ — это и будет окончательным ответом.

Метод расщепления

Что ж, мы уже рассмотрели кучу задач и изучили множество приёмов. Думаете, на этом всё? А вот и нет! Сейчас мы рассмотрим заключительный приём — и одновременно самый важный. Речь пойдёт о расщеплении уравнений с модулем. О чём вообще пойдёт речь? Давайте вернёмся немного назад и рассмотрим какое-нибудь простое уравнение. Например, это:

[left| 3x-5 right|=5-3x]

В принципе, мы уже знаем, как решать такое уравнение, потому что это стандартная конструкция вида $left| fleft( x right) right|=gleft( x right)$. Но попробуем взглянуть на это уравнение немного под другим углом. Точнее, рассмотрим выражение, стоящее под знаком модуля. Напомню, что модуль любого числа может быть равен самому числу, а может быть противоположен этому числу:

[left| a right|=left{ begin{align}& a,quad age 0, \& -a,quad a lt 0. \end{align} right.]

Собственно, в этой неоднозначности и состоит вся проблема: поскольку число под модулем меняется (оно зависит от переменной), нам неясно — положительное оно или отрицательное.

Но что если изначально потребовать, чтобы это число было положительным? Например, потребуем, чтобы $3x-5 gt 0$ — в этом случае мы гарантированно получим положительное число под знаком модуля, и от этого самого модуля можно полностью избавиться:

[3x-5 gt 0Rightarrow left| 3x-5 right|=3x-5]

Таким образом, наше уравнение превратится в линейное, которое легко решается:

[3x-5=5-3xRightarrow 6x=10Rightarrow x=frac{5}{3}]

Правда, все эти размышления имеют смысл только при условии $3x-5 gt 0$ — мы сами ввели это требование, дабы однозначно раскрыть модуль. Поэтому давайте подставим найденный $x=frac{5}{3}$ в это условие и проверим:

[x=frac{5}{3}Rightarrow 3x-5=3cdot frac{5}{3}-5=5-5=0]

Получается, что при указанном значении $x$ наше требование не выполняется, т.к. выражение оказалось равно нулю, а нам нужно, чтобы оно было строго больше нуля. Печалька.:(

Но ничего страшного! Ведь есть ещё вариант $3x-5 lt 0$. Более того: есть ещё и случай $3x-5=0$ — это тоже нужно рассмотреть, иначе решение будет неполным. Итак, рассмотрим случай $3x-5 lt 0$:

[3x-5 lt 0Rightarrow left| 3x-5 right|=5-3x]

Очевидно, что в модуль раскроется со знаком «минус». Но тогда возникает странная ситуация: и слева, и справа в исходном уравнении будет торчать одно и то же выражение:

[5-3x=5-3x]

Интересно, при каких таких $x$ выражение $5-3x$ будет равно выражению $5-3x$? От таких уравнений даже Капитан очевидность подавился бы слюной, но мы-то знаем: это уравнение является тождеством, т.е. оно верно при любых значениях переменной!

А это значит, что нас устроят любые $x$. Вместе с тем у нас есть ограничение:

[3x-5 lt 0Rightarrow 3x lt 5Rightarrow x lt frac{5}{3}]

Другими словами, ответом будет не какое-то отдельное число, а целый интервал:

[xin left( -infty ;frac{5}{3} right)]

Наконец, осталось рассмотреть ещё один случай: $3x-5=0$. Тут всё просто: под модулем будет ноль, а модуль нуля тоже равен нулю (это прямо следует из определения):

[3x-5=0Rightarrow left| 3x-5 right|=0]

Но тогда исходное уравнение $left| 3x-5 right|=5-3x$ перепишется следующим образом:

[0=3x-5Rightarrow 3x=5Rightarrow x=frac{5}{3}]

Этот корень мы уже получали выше, когда рассматривали случай $3x-5 gt 0$. Более того, это корень является решением уравнения $3x-5=0$ — это ограничение, которое мы сами же и ввели, чтобы обнулить модуль.:)

Таким образом, помимо интервала нас устроит ещё и число, лежащее на самом конце этого интервала:

Объединение корней уравнения, полученных методом расщепления

Объединение корней в уравнениях с модулем

Итого окончательный ответ: $xin left( -infty ;frac{5}{3} right]$. Не очень-то привычно видеть такую хрень в ответе к довольно простому (по сути — линейному) уравнению с модулем, правда? Что ж, привыкайте: в том и состоит сложность модуля, что ответы в таких уравнениях могут оказаться совершенно непредсказуемыми.

Куда важнее другое: мы только что разобрали универсальный алгоритм решения уравнения с модуляем! И состоит этот алгоритм из следующих шагов:

  1. Приравнять каждый модуль, имеющийся в уравнении, к нулю. Получим несколько уравнений;
  2. Решить все эти уравнения и отметить корни на числовой прямой. В результате прямая разобьётся на несколько интервалов, на каждом из которых все модули однозначно раскрываются;
  3. Решить исходное уравнение для каждого интервала и объединить полученные ответы.

Вот и всё! Остаётся лишь один вопрос: куда девать сами корни, полученные на 1-м шаге? Допустим, у нас получилось два корня: $x=1$ и $x=5$. Они разобьют числовую прямую на 3 куска:

Разбиение числовой прямой на интервалы

Разбиение числовой оси на интервалы с помощью точек

Ну и какие тут интервалы? Понятно, что их три:

  1. Самый левый: $x lt 1$ — сама единица в интервал не входит;
  2. Центральный: $1le x lt 5$ — вот тут единица в интервал входит, однако не входит пятёрка;
  3. Самый правый: $xge 5$ — пятёрка входит только сюда!

Я думаю, вы уже поняли закономерность. Каждый интервал включает в себя левый конец и не включает правый.

На первый взгляд, такая запись может показаться неудобной, нелогичной и вообще какой-то бредовой. Но поверьте: после небольшой тренировки вы обнаружите, что именно такой подход наиболее надёжен и при этом не мешает однозначно раскрывать модули. Лучше уж использовать такую схему, чем каждый раз думать: отдавать левый/правый конец в текущий интервал или «перекидывать» его в следующий.

На этом урок заканчивается. Скачивайте задачи для самостоятельного решения, тренируйтесь, сравнивайте с ответами — и увидимся в следующем уроке, который будет посвящён неравенствам с модулями.:)

Смотрите также:

  1. Простейшие уравнения с модулем
  2. Уравнение с двумя модулями
  3. Сложные выражения с дробями. Порядок действий
  4. Сводный тест по задачам B15 (2 вариант)
  5. Как решать биквадратное уравнение
  6. B4: счетчики на электричество

Модуль числа знак, свойства, действия, как найти, примеры графиков

Модуль числа легко найти, и теория, которая лежит в его основе, важна при решении задач.

Свойства и правила раскрытия, используемые при решении упражнений и на экзаменах, будут полезны школьникам и студентам.

Что такое модуль в математике

Модуль числа описывает расстояние на числовой линии от нуля до точки без учета того, в каком направлении от нуля лежит точка. Математическое обозначение: |x|.

Модуль числа знак, свойства, действия, как найти, примеры графиков

Иными словами, это абсолютная величина числа. Определение доказывает, что значение никогда не бывает отрицательным.

Свойства модуля

Важно помнить о следующих свойствах:

  1. Правило раскрытия: абсолютная величина любого числа больше или равна нулю:Модуль числа знак, свойства, действия, как найти, примеры графиков
  2. Если абсолютные значения содержат выражения противоположных значений, они равны:Модуль числа знак, свойства, действия, как найти, примеры графиков
  3. Значение числа не превышает величину его модуля:Модуль числа знак, свойства, действия, как найти, примеры графиков
  4. Правило раскрытия при произведении:Модуль числа знак, свойства, действия, как найти, примеры графиков
  5. Правило, применимое при делении:Модуль числа знак, свойства, действия, как найти, примеры графиков
  6. При возведении в степень:Модуль числа знак, свойства, действия, как найти, примеры графиков
  7. Сумма величин:Модуль числа знак, свойства, действия, как найти, примеры графиков
  8. Двойной модуль:Модуль числа знак, свойства, действия, как найти, примеры графиков

Модуль комплексного числа

Абсолютной величиной комплексного числа называют длину направленного отрезка, проведенного от начала комплексной плоскости до точки (a, b).

Модуль числа знак, свойства, действия, как найти, примеры графиков

Этот направленный отрезок также является вектором, представляющим комплексное число a + bi, поэтому абсолютная величина комплексного числа – это то же самое, что и величина (или длина) вектора, представляющего a+ bi.

Как решать уравнения с модулем

Уравнение с модулем – это равенство, которое содержит выражение абсолютного значения. Если для действительного числа оно представляет его расстояние от начала координат на числовой линии, то неравенства с модулем являются типом неравенств, которые состоят из абсолютных значений.

Уравнения типа |x| = a

Уравнение |x| = a имеет два ответа x = a и x = –a, потому что оба варианта находятся на координатной прямой на расстоянии a от 0.

Равенство с абсолютной величиной не имеет решения, если величина отрицательная.

Если |x| &lt, a представляет собой расстояние чисел от начала координат, это значит, что нужно искать все числа, чье расстояние от начала координат меньше a.

Уравнения типа |x| = |y|

Когда есть абсолютные значения по обе стороны уравнений, нужно рассмотреть обе возможности для приемлемых определений – положительные и отрицательные выражения.

Например, для равенства |x − a| = |x + b| есть два варианта: (x − a) = − (x + b) или (x − a) = (x + b).

Далее простая арифметика − нужно решить два равенства относительно x.

Уравнения типа |x| = y

Уравнения такого вида содержат абсолютную величину выражения с переменной слева от нуля, а справа – еще одну неизвестную. Переменная y может быть как больше, так и меньше нуля.

Для получения ответа в таком равенстве нужно решить систему из нескольких уравнений, в которой нужно убедиться, что y – неотрицательная величина:

Модуль числа знак, свойства, действия, как найти, примеры графиков

Решение неравенств с модулем

Чтобы лучше понять, как раскрыть модуль в разных типах равенств и неравенств, нужно проанализировать примеры.

Уравнения вида |x| = a

Пример 1 (алгебра 6 класс). Решить: |x| + 2 = 4.

Решение.

Такие уравнения решаются так же, как и равенства без абсолютных значений. Это означает, что, перемещая неизвестные влево, а константы – вправо, выражение не меняется.

После перемещения константы вправо получено: |x| = 2.

Поскольку неизвестные связаны с абсолютным значением, это равенство имеет два ответа: 2 и −2.

Ответ: 2 и −2.

Пример 2 (алгебра 7 класс). Решить неравенство |x + 2| ≥ 1.

Решение.

Первое, что нужно сделать, это найти точки, где абсолютное значение изменится. Для этого выражение приравнивается к 0. Получено: x = –2.

Это означает, что –2 – поворотная точка.

Далее определяется знак на интервалах: на промежутке  величина будет отрицательной, а на интервале  будет положительной.

Разделим интервал на 2 части:

  1. для x + 2 ≥ 0

Модуль числа знак, свойства, действия, как найти, примеры графиков

Общим ответом для этих двух неравенств является интервал [−1, + ∞).

  1. для х + 2 &lt, 0

Модуль числа знак, свойства, действия, как найти, примеры графиков

Общим ответом для этих двух неравенств является интервал (−∞, –3].

Окончательное решение – объединение ответов отдельных частей:

x ∈ (–∞, –3] ∪ [–1, + ∞).

Ответ: x ∈ (–∞, –3] ∪ [–1, + ∞).

Уравнения вида |x| = |y|

Пример 1 (алгебра 8 класс). Решить уравнение с двумя модулями: 2 * |x – 1| + 3 = 9 – |x – 1|.

Решение:

Модуль числа знак, свойства, действия, как найти, примеры графиков

Ответ: x1 = 3, x2 = − 1.

Пример 2 (алгебра 8 класс). Решить неравенство:

Модуль числа знак, свойства, действия, как найти, примеры графиков

Решение:

Модуль числа знак, свойства, действия, как найти, примеры графиков

Уравнения вида |x| = y

Пример 1 (алгебра 10 класс). Найти x:

Модуль числа знак, свойства, действия, как найти, примеры графиков

Решение:

Модуль числа знак, свойства, действия, как найти, примеры графиков

Очень важно провести проверку правой части, иначе можно написать в ответ ошибочные корни. Из системы видно, что  не лежит в промежутке .

Ответ: x = 0.

Модуль суммы

Модуль числа знак, свойства, действия, как найти, примеры графиков

Модуль разности

Абсолютная величина разности двух чисел x и y равна расстоянию между точками с координатами X и Y на координатной прямой.

Пример 1.

Модуль числа знак, свойства, действия, как найти, примеры графиков

Пример 2.

Модуль числа знак, свойства, действия, как найти, примеры графиков

Модуль отрицательного числа

Для нахождения абсолютного значения числа, которое меньше нуля, нужно узнать, как далеко оно расположено от нуля. Поскольку расстояние всегда является положительным (невозможно пройти «отрицательные» шаги, это просто шаги в другом направлении), результат всегда положительный. То есть,

Модуль числа знак, свойства, действия, как найти, примеры графиков

Проще говоря, абсолютная величина отрицательного числа имеет противоположное значение.

Модуль нуля

Известно свойство:

Модуль числа знак, свойства, действия, как найти, примеры графиков

Вот почему нельзя сказать, что абсолютная величина – положительное число: ноль не является ни отрицательным, ни положительным.

Модуль в квадрате

Модуль в квадрате всегда равен выражению в квадрате:

Модуль числа знак, свойства, действия, как найти, примеры графиков

Примеры графиков с модулем

Часто в тестах и на экзаменах встречаются задания, которые возможно решить, лишь проанализировав графики. Рассмотрим такие задания.

Пример 1.

Дана функция f(x) = |x|. Необходимо построить график от – 3 до 3 с шагом 1.

Решение:

Модуль числа знак, свойства, действия, как найти, примеры графиков

Объяснение: из рисунка видно, что график симметричен относительно оси Y.

Пример 2. Необходимо нарисовать и сравнить графики функций f(x) = |x–2| и g(x) = |x|–2.

Решение:

Модуль числа знак, свойства, действия, как найти, примеры графиков

Объяснение: константа внутри абсолютной величины перемещает весь график вправо, если ее значение отрицательное, и влево, если положительное. Но постоянная снаружи будет передвигать график вверх, если значение положительное, и вниз, если оно отрицательное (как –2 в функции g (x)).

Координата вершины x (точка, в которой соединяются две линии, вершина графа) – это число, на которое график сдвигается влево или вправо. А координата y – это значение, на которое график сдвигается вверх или вниз.

Строить такие графики можно с помощью онлайн приложений для построения. С их помощью можно наглядно посмотреть, как константы влияют на функции.

Метод интервалов в задачах с модулем

Метод интервалов – один из лучших способов найти ответ в задачах с модулем, особенно если в выражении их несколько.

Для использования метода нужно совершить следующие действия:

  1. Приравнять каждое выражение к нулю.
  2. Найти значения переменных.
  3. Нанести на числовую прямую точки, полученные в пункте 2.
  4. Определить на промежутках знак выражений (отрицательное или положительное значение) и нарисовать символ – или + соответственно. Проще всего определить знак с помощью метода подстановки (подставив любое значение из промежутка).
  5. Решить неравенства с полученными знаками.

Пример 1. Решить методом интервалов.

Модуль числа знак, свойства, действия, как найти, примеры графиков

Решение:

Модуль числа знак, свойства, действия, как найти, примеры графиков

Модуль числа знак, свойства, действия, как найти, примеры графиков

Результатом будет сумма всех подходящих интервалов.

Модуль числа знак, свойства, действия, как найти, примеры графиков

Модуль в модуле

Среди примеров часто встречаются уравнения, где нужно найти корни равенств такого вида: ||ax – b| – c| = kx + m.

Лучше всего понять принцип на примере.

Пример 1. Решить

Модуль числа знак, свойства, действия, как найти, примеры графиков

Решение:

Первым делом нужно раскрыть внутренний модуль. Для этого рассматривается два варианта:

Модуль числа знак, свойства, действия, как найти, примеры графиков

В первом случае выражение положительное, а во втором отрицательное. Исходя из этого, получаем:

Модуль числа знак, свойства, действия, как найти, примеры графиков

Нужно упростить два уравнения:

Модуль числа знак, свойства, действия, как найти, примеры графиков

Далее каждое из равенств разделяется еще на два:

Модуль числа знак, свойства, действия, как найти, примеры графиков

Получено четыре результата:

Модуль числа знак, свойства, действия, как найти, примеры графиков

Модуль числа знак, свойства, действия, как найти, примеры графиков

Заключение

Самое важное, что нужно знать: модуль не может быть отрицательным.

Поэтому, если представлено выражение, похожее на |2 – 4x| = –7 стоит помнить, что равенство неверно даже без поисков ответов.

В качестве итогов, напомним все свойства, которые помогут в решении задач:

  • когда положительное число находится внутри модуля, достаточно просто избавиться от него,
  • если есть выражение, нужно его упростить, прежде чем найти абсолютное значение,
  • если равенство содержит две переменные, нужно решать его с помощью системы уравнений и за основу брать методы решения выражений с абсолютными величинами.

Решать равенства и неравенства можно разными способами, но лучше всего использовать графический способ или метод интервалов.

Уравнения с модулем

Эта статья посвящена приёмам решения различных уравнений и неравенств, содержащих
переменную под знаком модуля.

Если на экзамене вам попадётся уравнение или неравенство с модулем, его можно решить,
вообще не зная никаких специальных методов и пользуясь только определением модуля. Правда,
занять это может часа полтора драгоценного экзаменационного времени.

Поэтому мы и хотим рассказать вам о приёмах, упрощающих решение таких задач.

Прежде всего вспомним, что

Рассмотрим различные типы уравнений с модулем. (К неравенствам перейдём позже.)

Слева модуль, справа число

Это самый простой случай. Решим уравнение

Есть только два числа, модули которых равны четырём. Это 4 и −4. Следовательно, уравнение
равносильно совокупности двух простых:

Второе уравнение не имеет решений. Решения первого: x = 0 и x = 5.

Переменная как под модулем, так и вне модуля

Здесь приходится раскрывать модуль по определению. . . или соображать!

Уравнение распадается на два случая, в зависимости от знака выражения под модулем.
Другими словами, оно равносильно совокупности двух систем:

Решение первой системы: . У второй системы решений нет.
Ответ: 1.

Первый случай: x ≥ 3. Снимаем модуль:

Число , будучи отрицательным, не удовлетворяет условию x ≥ 3 и потому не является корнем исходного уравнения.

Выясним, удовлетворяет ли данному условию число . Для этого составим разность и определим её знак:

Значит, больше трёх и потому является корнем исходного уравнения

Стало быть, годятся лишь и .

Ответ:

Квадратные уравнения с заменой |x| = t

Поскольку , удобно сделать замену |x| = t. Получаем:

Модуль равен модулю

Речь идёт об уравнениях вида |A| = |B|. Это — подарок судьбы. Никаких раскрытий модуля по определению! Всё просто:

Например, рассмотрим уравнение: . Оно равносильно следующей совокупности:

Остаётся решить каждое из уравнений совокупности и записать ответ.

Два или несколько модулей

Не будем возиться с каждым модулем по отдельности и раскрывать его по определению — слишком много получится вариантов. Существует более рациональный способ — метод интервалов.

Выражения под модулями обращаются в нуль в точках x = 1, x = 2 и x = 3. Эти точки делят числовую прямую на четыре промежутка (интервала). Отметим на числовой прямой эти точки и расставим знаки для каждого из выражений под модулями на полученных интервалах. (Порядок следования знаков совпадает с порядком следования соответствующих модулей в уравнении.)

Таким образом, нам нужно рассмотреть четыре случая — когда x находится в каждом из интервалов.

Случай 1: x ≥ 3. Все модули снимаются «с плюсом»:

Полученное значение x = 5 удовлетворяет условию x ≥ 3 и потому является корнем исходного уравнения.

Случай 2: 2 ≤ x ≤ 3. Последний модуль теперь снимается «с минусом»:

Полученное значение x также годится — оно принадлежит рассматриваемому промежутку.

Случай 3: 1 ≤ x ≤ 2. Второй и третий модули снимаются «с минусом»:

Мы получили верное числовое равенство при любом x из рассматриваемого промежутка [1; 2] служат решениями данного уравнения.

Случай 4: x ≤ 1 ≤ 1. Второй и третий модули снимаются «с минусом»:

Ничего нового. Мы и так знаем, что x = 1 является решением.

Модуль в модуле

Начинаем с раскрытия внутреннего модуля.

1) x ≤ 3. Получаем:

Выражение под модулем обращается в нуль при . Данная точка принадлежит рассматриваемому
промежутку. Поэтому приходится разбирать два подслучая.

1.1) Получаем в этом случае:

Это значение x не годится, так как не принадлежит рассматриваемому промежутку.

1.2) . Тогда:

Это значение x также не годится.

Итак, при x ≤ 3 решений нет. Переходим ко второму случаю.

Здесь нам повезло: выражение x + 2 положительно в рассматриваемом промежутке! Поэтому никаких подслучаев уже не будет: модуль снимается «с плюсом»:

Это значение x находится в рассматриваемом промежутке и потому является корнем исходного уравнения.

Так решаются все задачи данного типа — раскрываем вложенные модули по очереди, начиная с внутреннего.

Читайте также о том, как решать неравенства с модулем.

Модуль числа знак, свойства, действия, как найти, примеры графиков

Модуль числа легко найти, и теория, которая лежит в его основе, важна при решении задач.

Свойства и правила раскрытия, используемые при решении упражнений и на экзаменах, будут полезны школьникам и студентам.

Что такое модуль в математике

Модуль числа описывает расстояние на числовой линии от нуля до точки без учета того, в каком направлении от нуля лежит точка. Математическое обозначение: |x|.

Иными словами, это абсолютная величина числа. Определение доказывает, что значение никогда не бывает отрицательным.

Свойства модуля

Важно помнить о следующих свойствах:

  1. Правило раскрытия: абсолютная величина любого числа больше или равна нулю:
  2. Если абсолютные значения содержат выражения противоположных значений, они равны:
  3. Значение числа не превышает величину его модуля:
  4. Правило раскрытия при произведении:
  5. Правило, применимое при делении:
  6. При возведении в степень:
  7. Сумма величин:
  8. Двойной модуль:

Модуль комплексного числа

Абсолютной величиной комплексного числа называют длину направленного отрезка, проведенного от начала комплексной плоскости до точки (a, b).

Этот направленный отрезок также является вектором, представляющим комплексное число a + bi, поэтому абсолютная величина комплексного числа – это то же самое, что и величина (или длина) вектора, представляющего a+ bi.

Как решать уравнения с модулем

Уравнение с модулем – это равенство, которое содержит выражение абсолютного значения. Если для действительного числа оно представляет его расстояние от начала координат на числовой линии, то неравенства с модулем являются типом неравенств, которые состоят из абсолютных значений.

Уравнения типа |x| = a

Уравнение |x| = a имеет два ответа x = a и x = –a, потому что оба варианта находятся на координатной прямой на расстоянии a от 0.

Равенство с абсолютной величиной не имеет решения, если величина отрицательная.

Если |x| <, a представляет собой расстояние чисел от начала координат, это значит, что нужно искать все числа, чье расстояние от начала координат меньше a.

Уравнения типа |x| = |y|

Когда есть абсолютные значения по обе стороны уравнений, нужно рассмотреть обе возможности для приемлемых определений – положительные и отрицательные выражения.

Например, для равенства |x − a| = |x + b| есть два варианта: (x − a) = − (x + b) или (x − a) = (x + b).

Далее простая арифметика − нужно решить два равенства относительно x.

Уравнения типа |x| = y

Уравнения такого вида содержат абсолютную величину выражения с переменной слева от нуля, а справа – еще одну неизвестную. Переменная y может быть как больше, так и меньше нуля.

Для получения ответа в таком равенстве нужно решить систему из нескольких уравнений, в которой нужно убедиться, что y – неотрицательная величина:

Решение неравенств с модулем

Чтобы лучше понять, как раскрыть модуль в разных типах равенств и неравенств, нужно проанализировать примеры.

Уравнения вида |x| = a

Пример 1 (алгебра 6 класс). Решить: |x| + 2 = 4.

Решение.

Такие уравнения решаются так же, как и равенства без абсолютных значений. Это означает, что, перемещая неизвестные влево, а константы – вправо, выражение не меняется.

После перемещения константы вправо получено: |x| = 2.

Поскольку неизвестные связаны с абсолютным значением, это равенство имеет два ответа: 2 и −2.

Ответ: 2 и −2.

Пример 2 (алгебра 7 класс). Решить неравенство |x + 2| ≥ 1.

Решение.

Первое, что нужно сделать, это найти точки, где абсолютное значение изменится. Для этого выражение приравнивается к 0. Получено: x = –2.

Это означает, что –2 – поворотная точка.

Далее определяется знак на интервалах: на промежутке величина будет отрицательной, а на интервале будет положительной.

Разделим интервал на 2 части:

Общим ответом для этих двух неравенств является интервал [−1, + ∞).

Общим ответом для этих двух неравенств является интервал (−∞, –3].

Окончательное решение – объединение ответов отдельных частей:

Ответ: x ∈ (–∞, –3] ∪ [–1, + ∞).

Уравнения вида |x| = |y|

Пример 1 (алгебра 8 класс). Решить уравнение с двумя модулями: 2 * |x – 1| + 3 = 9 – |x – 1|.

Решение:

Ответ: x1 = 3, x2 = − 1.

Пример 2 (алгебра 8 класс). Решить неравенство:

Решение:

Уравнения вида |x| = y

Пример 1 (алгебра 10 класс). Найти x:

Решение:

Очень важно провести проверку правой части, иначе можно написать в ответ ошибочные корни. Из системы видно, что не лежит в промежутке .

Ответ: x = 0.

Модуль суммы

Модуль разности

Абсолютная величина разности двух чисел x и y равна расстоянию между точками с координатами X и Y на координатной прямой.

Пример 1.

Пример 2.

Модуль отрицательного числа

Для нахождения абсолютного значения числа, которое меньше нуля, нужно узнать, как далеко оно расположено от нуля. Поскольку расстояние всегда является положительным (невозможно пройти «отрицательные» шаги, это просто шаги в другом направлении), результат всегда положительный. То есть,

Проще говоря, абсолютная величина отрицательного числа имеет противоположное значение.

Модуль нуля

Вот почему нельзя сказать, что абсолютная величина – положительное число: ноль не является ни отрицательным, ни положительным.

Модуль в квадрате

Модуль в квадрате всегда равен выражению в квадрате:

Примеры графиков с модулем

Часто в тестах и на экзаменах встречаются задания, которые возможно решить, лишь проанализировав графики. Рассмотрим такие задания.

Пример 1.

Дана функция f(x) = |x|. Необходимо построить график от – 3 до 3 с шагом 1.

Решение:

Объяснение: из рисунка видно, что график симметричен относительно оси Y.

Пример 2. Необходимо нарисовать и сравнить графики функций f(x) = |x–2| и g(x) = |x|–2.

Решение:

Объяснение: константа внутри абсолютной величины перемещает весь график вправо, если ее значение отрицательное, и влево, если положительное. Но постоянная снаружи будет передвигать график вверх, если значение положительное, и вниз, если оно отрицательное (как –2 в функции g (x)).

Координата вершины x (точка, в которой соединяются две линии, вершина графа) – это число, на которое график сдвигается влево или вправо. А координата y – это значение, на которое график сдвигается вверх или вниз.

Строить такие графики можно с помощью онлайн приложений для построения. С их помощью можно наглядно посмотреть, как константы влияют на функции.

Метод интервалов в задачах с модулем

Метод интервалов – один из лучших способов найти ответ в задачах с модулем, особенно если в выражении их несколько.

Для использования метода нужно совершить следующие действия:

  1. Приравнять каждое выражение к нулю.
  2. Найти значения переменных.
  3. Нанести на числовую прямую точки, полученные в пункте 2.
  4. Определить на промежутках знак выражений (отрицательное или положительное значение) и нарисовать символ – или + соответственно. Проще всего определить знак с помощью метода подстановки (подставив любое значение из промежутка).
  5. Решить неравенства с полученными знаками.

Пример 1. Решить методом интервалов.

Решение:

Результатом будет сумма всех подходящих интервалов.

Модуль в модуле

Среди примеров часто встречаются уравнения, где нужно найти корни равенств такого вида: ||ax – b| – c| = kx + m.

Лучше всего понять принцип на примере.

Пример 1. Решить

Решение:

Первым делом нужно раскрыть внутренний модуль. Для этого рассматривается два варианта:

В первом случае выражение положительное, а во втором отрицательное. Исходя из этого, получаем:

Нужно упростить два уравнения:

Далее каждое из равенств разделяется еще на два:

Получено четыре результата:

Заключение

Самое важное, что нужно знать: модуль не может быть отрицательным.

Поэтому, если представлено выражение, похожее на |2 – 4x| = –7 стоит помнить, что равенство неверно даже без поисков ответов.

В качестве итогов, напомним все свойства, которые помогут в решении задач:

  • когда положительное число находится внутри модуля, достаточно просто избавиться от него,
  • если есть выражение, нужно его упростить, прежде чем найти абсолютное значение,
  • если равенство содержит две переменные, нужно решать его с помощью системы уравнений и за основу брать методы решения выражений с абсолютными величинами.

Решать равенства и неравенства можно разными способами, но лучше всего использовать графический способ или метод интервалов.

Модуль числа

О чем эта статья:

Определение модуля числа

Алгебра дает четкое определение модуля числа. Модуль числа в математике — это расстояние от начала отсчёта до точки координатной прямой, соответствующей этому числу.

Если мы возьмем некоторое число «a» и изобразим его на координатной прямой точкой A — расстояние от точки A до начала отсчёта (то есть до нуля) длина отрезка OA будет называться модулем числа «a».

Знак модуля: |a| = OA.

Разберем на примере:

Точка В, которая соответствует числу −3, находится на расстоянии 3 единичных отрезков от точки O (то есть от начала отсчёта). Значит, длина отрезка OB равна 3 единицам.

Число 3 (длину отрезка OB) называют модулем числа −3.

Обозначение модуля: |−3| = 3 (читают: «модуль числа минус три равен трём»).

Точка С, которая соответствует числу +4, находится на расстоянии четырех единичных отрезков от начала отсчёта, то есть длина отрезка OС равна четырем единицам.

Число 4 называют модулем числа +4 и обозначают так: |+4| = 4.

Также можно опустить плюс и записать значение, как |4| = 4.

Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Свойства модуля числа

Давайте рассмотрим семь основных свойств модуля. Независимо от того, в какой класс перешел ребенок — эти правила пригодятся всегда.

1. Модуль числа — это расстояние, а расстояние не может быть отрицательным. Поэтому и модуль числа не бывает отрицательным:

2. Модуль положительного числа равен самому числу.

3. Модуль отрицательного числа равен противоположному числу.

4. Модуль нуля равен нулю.

5. Противоположные числа имеют равные модули.

6. Модуль произведения равен произведению модулей этих чисел.

−(a · b), когда a · b

Геометрическая интерпретация модуля

Как мы уже знаем, модуль числа — это расстояние от нуля до данного числа. То есть расстояние от точки −5 до нуля равно 5.

Нарисуем числовую прямую и отобразим это на ней.

Эта геометрическая интерпретация используется для решения уравнений и неравенств с модулем. Давайте рассмотрим на примерах.

Решим уравнение: |х| = 5.

Мы видим, что на числовой прямой есть две точки, расстояние от которых до нуля равно 5. Это точки 5 и −5. Значит, уравнение имеет два решения: x = 5 и x = −5.

Когда у нас есть два числа a и b, то их разность |a – b| равна расстоянию между ними на числовой прямой или длине отрезка АВ.

Расстояние от точки a до точки b равно расстоянию от точки b до точки a, тогда |a – b| = |b – a|.

Решим уравнение: |a – 3| = 4 . Запись читаем так: расстояние от точки а до точки 3 равно 4. Отметим на числовой прямой точки, удовлетворяющие этому условию.

Уравнение имеет два решения: −1 и 7. Мы из 3 вычли 4 – и это один ответ, а также к 3 мы прибавили 4 – и это второй ответ.

Решим неравенство: |a + 7|

График функции

График функции равен y = |х|.

Для x > 0 имеем y = x.

Этот график можно использовать при решении уравнений и неравенств.

Корень из квадрата

В контрольной работе или на ЕГЭ может встретиться задачка, в которой нужно вычислить √ a 2 , где a – некоторое число или выражение.

При этом, √ a 2 = |a|.

По определению арифметического квадратного корня √ a 2 — это такое неотрицательное число, квадрат которого равен a 2 .

Оно равно a при а > 0 и −а, при а

Модуль рационального числа

Как найти модуль рационального числа — это расстояние от начала отсчёта до точки координатной прямой, которая соответствует этому числу.

[spoiler title=”источники:”]

http://tvercult.ru/nauka/modul-chisla-znak-svoystva-deystviya-kak-nayti-primeryi-grafikov

http://skysmart.ru/articles/mathematic/modul-chisla

[/spoiler]

Особые свойства модулей

В прошлых статьях мы поговорили про метод интервалов, а также про равносильные преобразования (схемы). Эти два метода являются ключевыми при решении подавляющего большинства задач с модулями.

Однако помимо разобранных ранее методов есть и другие. Они также основаны на свойствах модулей, но на стандартных экзаменах встречаются реже. Обычно их можно встретить на конкурсных олимпиадах и экзаменах уровня выше среднего.

Давайте разберём дополнительные свойства модулей и соответствующие им методы решения задач. Все эти соотношения в целом не очень сложные, однако часто являются критическими для эффективного решения задач.

Свойство 1

Особые свойства модулей

Это очевидное равенство легко проверить, подставив в него положительное, отрицательное число и ноль. Именно оно даёт нам возможность делать замену переменной для модулей.

Рассмотрим уравнение:

Особые свойства модулей

Его можно решать методом интервалов, аккуратно раскрывая модуль на разных промежутках, но всё же эффективнее будет сделать замену, применив указанное выше свойство.

Особые свойства модулей

И дальше получаем в ответе четыре различных корня.

Свойство 2

Особые свойства модулей

Символ “∨” посередине означает любой из знаков неравенства: <, >, ≤, ≥

Иначе это свойство можно переформулировать так: знак выражения |a|-|b| совпадает со знаком выражения (ab)(a+b)

Доказывается это утверждение следующим образом. Для определенности будем рассматривать привычный знак неравенства “>”. Для остальных знаков рассуждения будут полностью аналогичными.

То есть нам нужно доказать утверждение:

Особые свойства модулей

Рассмотрим левое неравенство. Сначала перенесём -|b| вправо со сменой знака.

Особые свойства модулей

Далее возведём обе части получившего неравенства в квадрат. Мы имеем право это сделать, так как каждая часть неравенства неотрицательна. То есть в итоге получается равносильное преобразование.

Особые свойства модулей

Квадрат числа равен квадрату модуля числа (то есть |x|²=x², см. выше).

Особые свойства модулей

Переносим b² влево со сменой знака.

Особые свойства модулей

Раскладываем разность квадратов на множители.

Особые свойства модулей

Мы доказали исходное неравенство.

Теперь коротко о том, как применять этот факт.

Он нам нужен для решения неравенств методом замены множителей. То есть если мы решаем неравенство, в котором есть разность модулей и эта разность умножается или делится на что-то и в результате получается неравенство относительно нуля, то эту разность модулей мы можем заменить.

На словах это трудно понять, давайте разберём пример. Он может показаться громоздким, но в целом он довольно простой.

Особые свойства модулей

Нам интересен знак выражения в первой скобке в числителе и знак выражения в знаменателе. В обоих случаях мы видим разность модулей. Заменяем их по следующим правилам:

Особые свойства модулей

И далее раскрываем внутренние скобки, приводим подобные слагаемые и решаем по стандартному методу интервалов.

Особые свойства модулей

У этого метода есть ещё различные особенности применения. При них лучше посмотреть в нашем отдельном видео с разбором задач.

Свойство 3

Если в задаче с модулями у вас какие-то очень громоздкие подмодульные выражения, имеет смысл разглядеть в них одну интересную закономерность и воспользоваться вот таким свойством:

Особые свойства модулей

Чтобы понять эту равносильность, давайте сначала отдельно рассмотрим равенство |a|+|b|=|a+b|.

Что можно сказать про числа a и b, когда они связаны таким соотношением?

Во-первых, если хотя бы оно из них равно 0, то равенство верное.

Во-вторых, если они оба положительные, то модули можно просто убрать и получится верное равенство.

В-третьих, если они оба отрицательные, то это равенство тоже верное (подумайте почему!)

То есть про a и b можно сказать, что или они одного знака, или одно из них равно 0. А это можно записать в виде ёмкого соотношения ab≥0 (проверьте, что это так!)

Аналогично доказывается утверждение:

Особые свойства модулей

То есть если |a|+|b|=|a-b|, то или одно из чисел равно нулю, или знаки этих чисел противоположны. То есть это те же самые числа, которые удовлетворяют неравенству ab≥0.

Теперь посмотрим, как наши отвлечённые рассуждения позволяют решать некоторые задачи.

Решим уравнение из прошлой статьи:

Особые свойства модулей

Оно кажется страшным. Однако в нём можно обнаружить интересную закономерность:

Особые свойства модулей

То есть если мы заменим первое подмодульное выражение на а, а второе на b, то мы получим уже знакомое нам соотношение:

Особые свойства модулей

А это равенство можно заменить на удобное неравенство:

Особые свойства модулей

Возвращаясь к переменной х при обратной замене, получаем, что исходное уравнение равносильно следующему неравенству:

Особые свойства модулей

И дальше раскладываем на множители и решаем методом интервалов.

На самом деле таких равенств с подобными свойствами чуть больше. Мы рассмотрели только пару самых популярных из них. Вы же можете самостоятельно исследовать и найти удобные соотношения для следующих выражений: |a|+|b|>|a-b|, |a|-|b|≤|a-b|, |a|+|b|≥|a+b| и |a|+|b|+|с| = |a+b+с|

А ключ для всех подобных задач один и тот же: рассмотреть сумму или разность двух подмодульных выражений и сравнить её с третьим подмодульным выражением.

Свойство 4

Следующее соотношение использует неотрицательность модуля:

Особые свойства модулей

Понятно, что сумма двух неотрицательных чисел равна нулю, тогда и только тогда когда они оба равны 0.

Решать задачи с применением этого свойства тоже понятно как. Рассмотрим уравнение.

Особые свойства модулей

Чтобы выполнялось это равенство, каждое подмодульное выражение должно быть равно 0. Первое подмодульное выражение обращается в ноль при -4 и 4, второе — при 1 и 4. В итоге подходит только корень равный 4.

Свойство 5

Наконец, ещё одно простое свойство:

Особые свойства модулей

Чтобы убедиться в его правильности достаточно рассмотреть все знаки для чисел а и b.

Теперь посмотрим, где его можно применить. Рассмотрим задачу с вступительных экзаменов на мехмат МГУ в 2008 году.

Особые свойства модулей

Видим здесь нагромождение модулей. Раскрывать их через метод интервалов или действовать через равносильные преобразования довольно трудозатратно.

Поступим иначе.

Для начала воспользуемся очевидным свойством для модуля |x|=|-x|, точнее его следствием |ab|=|ba|. По правилам хорошего тона квадратные трёхчлены желательно начинать с x² и делать коэффициент при нём положительным:

Особые свойства модулей

Теперь разглядим кое-что интересное. В каждом подмодульном выражении есть множитель (х-1):

Особые свойства модулей

Используем наше свойство дважды:

Особые свойства модулей

Ну а дальше решаем уже по алгоритму: переносим всё влево, выносим общий множитель и применяем метод замены множителей.

Уравнение с модулем достаточно сложная тема для начинающих. Учитывая это обстоятельство, в данный урок войдут только элементарные уравнения.

Что такое уравнение с модулем и как его решить?

В уравнениях с модулем неизвестное значение содержится под знáком модуля. Например:

|x − 2| = 5

Уравнения с модулем бывают разными и решаются они различными методами. Нельзя сказать что какой-то метод наиболее рационален. Всё зависит от исходного уравнения.

Например, в каких-то уравнениях можно просто угадать корень, в то время как в других нужно логически мыслить, раскрывать модули, выполнять тождественные преобразования. Человек волен выбирать каким методом решения пользоваться.

К примеру, решим вышеприведённое уравнение |x − 2| = 5. Допустим, что мы не знаем ни одного метода решения. Как бы мы его решили?

Прежде всего заметим, что правая часть данного уравнения равна числу 5. Слева же располагается модуль из выражения |x − 2|. Это означает что подмодульное выражение x − 2 должно равняться числу 5 или −5

модуль числа рисунок 30

Значит нужно выяснить при каких значениях переменной x подмодульное выражение x − 2 будет обращаться в число 5 или −5.

Искомые значения x найдутся если приравнять подмодульное выражение к числу 5 и −5, а затем поочерёдно решить каждое из уравнений:

уравнение с модулем рисунок 11

Значит корнями уравнения |x − 2| = 5 являются числа 7 и −3.

Большинство элементарных уравнений с модулем можно решить используя правило раскрытия модуля. Для этого раскрывают модуль содержащийся в уравнении, затем получившееся выражение подставляют в исходное уравнение вместо выражения с модулем.

Раскрывать модуль нужно для каждого из случаев: когда подмодульное выражение больше или равно нулю, и когда подмодульное выражение меньше нуля.

Решим наше уравнение |x − 2| = 5 с помощью правила раскрытия модуля. Выпишем отдельно его модуль и раскроем его:

модуль числа рисунок 29

В этой конструкции говорится, что если подмодульное выражение − 2 больше или равно нулю, то модуль раскроется как − 2, и тогда исходное уравнение примет вид − 2 = 5, откуда = 7

модуль числа рисунок 31

А если же подмодульное выражение − 2 меньше нуля, то модуль раскроется как −(− 2). Тогда исходное уравнение примет вид −(− 2) = 5, откуда = −3

модуль числа рисунок 32

Итак, уравнение |x − 2|= 5 имеет корни 7 и −3. Для проверки подстáвим числа 7 и −3 в исходное уравнение вместо x. Тогда получим верное равенство:

модуль числа рисунок 22

Подмодульное выражение как правило содержит такое x, которое может обращать всё подмодульное выражение как в положительное число, так и в отрицательное, либо вообще в ноль.

Поэтому модуль и раскрывается для каждого из случаев: когда подмодульное выражение больше или равно нулю, и когда подмодульное выражение меньше нуля. Каждый из случаев будет давать независимое уравнение со своим корнем.

Вернёмся теперь к моменту, где мы раскрывали модуль:

модуль числа рисунок 29

Условия − 2 ≥ 0 и − 2 < 0 являются неравенствами, которые можно решить, тем самым приведя их к простому виду:

уравнение с модулем рисунок 46

Символ означает равносильность. В данном случае указывается, что условие  2  0 равносильно условию  2, а условие  2 < 0 равносильно условию < 2.

Такой вид записи условий позволяет однозначно сказать при каких x модуль будет раскрываться с плюсом, а при каких с минусом.

В первом случае получилось условие ≥ 2. Это значит что при всех x бóльших либо равных 2, модуль |− 2| будет раскрываться с плюсом. Так, при = 7, подмодульное выражение станет равно 5

|7 − 2| = |5|

А значит дальнейшее раскрытие будет с плюсом

|7 − 2| = |5| = 5

Таким же образом модуль |− 2| будет вести себя и с другими значениями x на промежутке ≥ 2. То есть, будет раскрываться с плюсом. Примеры:

При x = 3, |3 − 2|=|1| = 1
При = 4, |4 − 2|=|2| = 2
При = 2, |2 − 2|=|0| = 0
При = 13, |13 − 2|=|11| = 11

А во втором случае получилось условие < 2. Это значит что при всех x мéньших 2, модуль будет раскрываться с минусом. Так, при = −3, подмодульное выражение опять же станет равно 5. Но в промежуточных вычислениях можно увидеть, что модуль раскрывается с минусом:

|−3 − 2| = |−5| = −(−5) = 5

Модуль |− 2| будет вести себя так же и с другими значениями x на промежутке x < 2. Примеры:

При = 1, |1 − 2|=|−1| = −(−1) = 1
При = 0, |0 − 2|=|−2| = −(−2) = 2
При = −1, |−1 − 2|=|−3| = −(−3) = 3
При = −9,|−9 − 2|=|−11| = −(−11) = 11

Число 2 является своего рода точкой перехода, в которой модуль |− 2| меняет свой порядок раскрытия.

Можно представить как модуль |− 2| двигался по маршруту от минус бесконечности до числа 2, раскрываясь в каждой точке с минусом. Попав в точку 2, модуль поменял свой порядок раскрытия — а именно раскрывшись в точке 2 с плюсом, он далее стал раскрываться с плюсом, двигаясь в правую часть к плюс бесконечности.

С помощью координатной прямой это можно представить так:

уравнение с модулем рисунок 48

Красные знаки минуса и плюса указывают, как будет раскрываться модуль |− 2| на промежутках < 2 и ≥ 2.

Точку перехода можно найти для любого модуля. Для этого нужно узнать при каких x подмодульное выражение равно нулю. Ноль это то значение, до и после которого модуль всегда сохраняет свой знак. Это следует из правила раскрытия модуля:

модуль числа свойство

В этом примере в момент когда x станет равным нулю, модуль |x| раскроется с плюсом и далее при всех x, бóльших нуля, будет раскрываться с плюсом. Напротив, при всех x, мéньших нуля модуль будет раскрываться с минусом:

модуль рисунок 1

А например для модуля |2+ 6| точкой перехода будет число −3, потому что при его подстановке в подмодульное выражение 2+ 6 вместо x, данное подмодульное выражение станет равно нулю. Изобразим это на рисунке:

уравнение с модулем рисунок 50

При всех x, бóльших либо равных −3, модуль будет раскрываться с плюсом. Примеры:

При = −3, |2 × (−3) + 6| = |0| = 0
При = 4, |2 × 4 + 6| = |14| = 14
При = 5, |2 × 5 + 6| = |16| = 16

А при всех x, мéньших 3, модуль будет раскрываться с минусом. Примеры:

При = −4, |2 × (−4) + 6| = |−2| = −(−2) = 2
При = −5, |2 × (−5) + 6| = |−4| = −(−4) = 4
При = −6, |2 × (−6) + 6| = |−6| = −(−6) = 6


Пример 2. Решить уравнение |x| + 3= −2

Решение

Раскроем модуль, который содержится в левой части уравнения:

модуль числа свойство

Если x ≥ 0, то модуль раскроется со знаком плюс и тогда исходное уравнение примет вид x + 3x = −2. Сразу решим это уравнение:

уравнение с модулем рисунок 40

Теперь рассмотрим второй случай — когда x < 0. В этом случае модуль в исходном уравнении раскроется со знаком минус, и тогда получится уравнение x + 3x = −2. Решим и это уравнение:

уравнение с модулем рисунок 41

Получили корни минус одна вторая и −1.

Выполним проверку, подставив найденные корни в исходное уравнение. Проверим корень минус одна вторая

уравнение с модулем рисунок 42

Видим, что при подстановке корня минус одна вторая исходное уравнение не обращается в верное равенство. Значит минус одна вторая не является корнем исходного уравнения.

Проверим теперь корень −1

уравнение с модулем рисунок 43

Получили верное равенство. Значит из двух найденных решений только −1 является корнем уравнения.

Ответ: −1.

Здесь можно сделать важный вывод. В уравнениях с модулем найденные корни не всегда удовлетворяют исходному уравнению. Чтобы убедиться в правильности своего решения, нужно выполнять проверку, подставляя найденные корни в исходное уравнение.

Кроме того, проверить является ли найденное значение корнем уравнения можно с помощью условия, согласно которому был раскрыт модуль.

Так, в данном примере мы раскрывали модуль |x| для случаев когда подмодульное выражение больше или равно нулю, и когда подмодульное выражение меньше нуля:

уравнение с модулем рисунок 93

Условия x≥0 и x<0 являются неравенствами. В эти неравенства можно подставлять найденные корни. Если неравенства окажутся верными, значит корни удовлетворяют исходному уравнению.

Так, при раскрытии модуля со знаком плюс, получилось уравнение + 3= −2. Корнем этого уравнения стало число минус одна вторая. Это число не удовлетворяет условию ≥ 0, согласно которому был раскрыт модуль |x| и согласно которому было получено уравнение x + 3x = −2. Действительно, при подстановке числа минус одна вторая в неравенство ≥ 0 получается неверное неравенство.

А при раскрытии модуля со знаком минус, получилось уравнение x + 3x = −2. Корнем этого уравнения стало число −1. Это число удовлетворяет условию x<0, согласно которому был раскрыт модуль |x| и согласно которому было получено уравнение x + 3x = −2. Действительно, при подстановке числа −1 в неравенство x < 0 получается верное неравенство.


Пример 3. Решить уравнение |1 − 2x| − 4= −6

Решение

Раскроем модуль:

уравнение с модулем рисунок 80

При раскрытии модуля |1 − 2x| со знаком плюс, получим уравнение 1 − 2x − 4= −6. Решим его:

уравнение с модулем рисунок 81

При раскрытии модуля |1 − 2x| со знаком минус, получим уравнение −1 + 2− 4= −6. Решим его:

уравнение с модулем рисунок 83

Получили корни семь шестых и пять вторых.

Корень семь шестых не удовлетворяет условию уравнение с модулем рисунок 82, значит не является корнем исходного уравнения.

Корень пять вторых удовлетворяет условию уравнение с модулем рисунок 84, значит является корнем исходного уравнения. Проверка также покажет это:

уравнение с модулем рисунок 85

Ответ: пять вторых.


Пример 4. Решить уравнение |x− 3x| = 0

Решение

Если модуль числа равен нулю, то подмодульное выражение тоже равно нулю:

уравнение с модулем рисунок 86

То есть можно не раскрывать модуль. Достаточно узнать при каких значениях x подмодульное выражение равно нулю. В данном случае для этого нужно решить неполное квадратное уравнение:

уравнение с модулем рисунок 87

Получили корни 0 и 3. Оба корня удовлетворяют исходному уравнению. Проверка показывает это:

уравнение с модулем рисунок 88


Пример 5. Решить уравнение x− 5|x| + 6 = 0

Выпишем отдельно модуль |x| и раскроем его:

модуль числа свойство

При раскрытии модуля |x| со знаком плюс, исходное уравнение примет вид x− 5+ 6 = 0. Это квадратное уравнение. Решим его с помощью дискриминанта:

уравнение с модулем рисунок 94

Оба корня удовлетворяют условию ≥ 0, значит являются корнями исходного уравнения.

При раскрытии модуля |x| со знаком минус, исходное уравнение примет вид x2 + 5+ 6 = 0. Это тоже квадратное уравнение. Решим его как и предыдущее:

уравнение с модулем рисунок 95

При условии ≥ 0, модуль из уравнения раскрылся с плюсом, получились корни 3 и 2. Оба корня удовлетворяют условию ≥ 0, значит удовлетворяют и исходному уравнению.

При условии < 0, модуль из уравнения раскрылся с минусом, получились корни −2 и −3. Оба корня удовлетворяют условию < 0, значит удовлетворяют и исходному уравнению.

Ответ: 3, 2, −2 и −3.


Сведéние уравнения с модулем в совокупность

Большинство элементарных уравнений с модулем можно решить сведéнием их к так называемой совокупности уравнений.

Элементарными мы будем называть те уравнения с модулем, в которых левая часть является модулем из какого-то выражения, а правая часть — числом. Например, |x| = 3  или |2− 1| = 3.

Решим наше самое первое уравнение |− 2| = 5 сведéнием его к совокупности уравнений. Корнями этого уравнения были числа 7 и −3. Это уравнение тоже считается элементарным.

Если раскрыть модуль |− 2| со знаком плюс, то уравнение |− 2| = 5 примет вид − 2 = 5.

Если раскрыть модуль |− 2| со знаком минус, то уравнение |− 2| = 5 примет вид −(− 2) = 5, то есть+ 2 = 5.

Видим, что из уравнения |− 2| = 5 получилось два уравнения: − 2 = 5 и + 2 = 5. Причём каждое из уравнений имеет свой собственный корень. Уравнение − 2 = 5 имеет корень 7, а уравнение + 2 = 5 — корень −3

Выпишем уравнения x − 2 = 5 и x + 2 = 5 и объединим их квадратной скобкой:

модуль числа рисунок 39

Такой вид записи называют совокупностью уравнений.

Совокупность уравнений — это несколько уравнений, объединённых квадратной скобкой, и имеющих множество решений, которые удовлетворяют хотя бы одному из уравнений, входящих в данную совокупность.

Так, число 7 является решением совокупности модуль числа рисунок 39 потому что это число удовлетворяет первому уравнению х − 2 = 5.

Число −3 тоже является решением данной совокупности, поскольку удовлетворяет второму уравнению −х + 2 = 5.

Вместе же числа 7 и −3 образуют множество решений данной совокупности.

В отличие от системы уравнений, совокупность состоит из уравнений, которые не зависят друг от друга. Для каждого уравнения, входящего в совокупность, значение переменной x будет разным. А в системе уравнений значение переменной x удовлетворяет как первому уравнению, так и второму.

Решить совокупность уравнений означает найти множество решений, которые удовлетворяют хотя бы одному из уравнений, входящих в данную совокупность.

Решим каждое уравнение совокупности модуль числа рисунок 39 по-отдельности. Это обычные линейные уравнения, которые легко решаются:

уравнение с модулем рисунок 3

Символ ⇔ как было ранее сказано означает равносильность. В данном случае он указывает на то, что все получающиеся совокупности равносильны друг другу.

Итак, мы получили корни 7 и −3. Поскольку эти два числа являются решениями совокупности модуль числа рисунок 39, то значит являются и решениями уравнения |x − 2| = 5.

В исходную совокупность можно включать условия, согласно которым был раскрыт модуль. В этом случае каждое уравнение вместе со своим условием обрамляется знаком системы.

Дополним предыдущую совокупность условиями, согласно которым был раскрыт модуль. К первому уравнению x − 2 = 5 добавим условие x − 2 ≥ 0, а ко второму уравнению −x + 2 = 5 добавим условие x − 2 < 0

модуль числа рисунок 44

Решение каждого уравнения должно удовлетворять своему условию. Поэтому условия и уравнения обрамлены знáком системы.

Решим получившуюся совокупность с условиями. Условия являются неравенствами, которые тоже можно решать:

уравнение с модулем рисунок 4

В первом случае получили корень 7, который удовлетворяет своему условию x ≥ 2. Во втором случае получили корень −3, который удовлетворяет своему условию x < 2.

Не следует бояться таких записей. Это лишь подробное решение, показывающее что откуда взялось. Чаще всего решение можно записать покороче.

Существует схема для сведéния в совокупность уравнения вида |x| = a. Выглядит эта схема так:

уравнение с модулем рисунок 22

Данная схема легко позволяет свести уравнение с модулем в совокупность. Эту схему можно прочитать так: «Если выражение |x| равно a, то подмодульное выражение равно a или −a»

Квадратная скобка в совокупностях заменяет собой слово «или».

Например, уравнение |x| = 5 можно свести в совокупность, рассуждая так: если выражение |x| равно 5, то подмодульное выражение равно 5 или −5.

уравнение с модулем рисунок 25

А применительно к нашему предыдущему примеру можно рассуждать так: если |− 2| равно 5, то подмодульное выражение равно 5 или −5

уравнение с модулем рисунок 26

Это та же самая совокупность, что и в прошлый раз. Убедитесь в этом, умножив обе части второго уравнения на −1.

В уравнениях где слева модуль, а справа число, мы будем чаще использовать именно такой способ записи совокупности. Он позволяет не прибегать к правилу раскрытия модуля, а сразу получить совокупность.

Но надо помнить, что эта схема будет работать только для уравнений вида |x| = a. То есть для уравнений, у которого слева модуль, а справа число.


Пример 2. Решить уравнение |2− 1| = 3

Решение

У этого уравнения слева модуль, а справа число. Значит его можно свести в совокупность, воспользовавшись схемой уравнение с модулем рисунок 89

Если выражение |2− 1| равно 3, то подмодульное выражение 2− 1 равно 3 или −3

уравнение с модулем рисунок 23

Теперь решим каждое уравнение совокупности по отдельности:

уравнение с модулем рисунок 24

Ответ: 2 и −1.


Пример 3. Решить уравнение |+ 2| − 3 = 8

Решение

В некоторых случаях прежде чем свести исходное уравнение в совокупность, его следует упростить.

Так, в данном случае −3 следует перенести в правую часть, изменив знак:

уравнение с модулем рисунок 8

Получили уравнение |+ 2| = 11. Если выражение |+ 2| равно 11, то подмодульное выражение + 2 равно 11 или −11

уравнение с модулем рисунок 39

Решим данную совокупность:

уравнение с модулем рисунок 27

Ответ: 9 и −13.


Пример 4. Решить уравнение  4|x| + 4 = 2|x| + 10

Решение

Перенесём 2|x| из правой части в левую часть, а 4 перенесём из левой части в правую часть:

4|x| − 2|x| = 10 − 4
2|x| = 6

Разделим обе части получившегося уравнения на 2. Тогда получится простое уравнение с модулем:

уравнение с модулем рис 39

Ответ: 3 и −3.


Пример 5. Решить уравнение уравнение с модулем рисунок 76

Решение

Если выражение |2 − 5x2| равно 3, то подмодульное выражение 2 − 5x2 равно 3 или −3

уравнение с модулем рисунок 77

В обоих уравнениях перенесём 2 в правую часть, изменив знак:

уравнение с модулем рисунок 78

В первом уравнении разделим обе части на −5. Во втором уравнении так же разделим обе части на −5. Тогда получим два квадратных уравнения

Первое уравнение не имеет корней, потому что квадрат любого числа положителен, а в данном случае он равен отрицательному числу. Корнями второго уравнения являются числа 1 и −1, поскольку вторая степень этих чисел равна единице.

Ответ: 1 и −1.


Пример 6. Решить уравнение |+ 6| + 4= 5

Решение

Данное уравнение не является уравнением вида |x| = a, значит не получится воспользоваться схемой уравнение с модулем рисунок 89.

Чтобы свести данное уравнение в совокупность, нужно сначала раскрыть его модуль, затем записать совокупность из получившихся уравнения.

Раскроем модуль |+ 6|

уравнение с модулем рисунок 92

Если + 6 ≥ 0 , то модуль раскроется со знаком плюс и тогда исходное уравнение примет вид + 6 + 4= 5

Если + 6 < 0, то модуль раскроется со знаком минус и тогда исходное уравнение примет вид −x − 6 + 4= 5. Получим следующую совокупность:

уравнение с модулем рисунок 90

Дальнейшее решение элементарно:

уравнение с модулем рисунок 91

Из найденных корней только -1 na 5 является корнем исходного уравнения, поскольку удовлетворяет условию ≥ −6. А корень 11 na 3 не является корнем уравнения, поскольку не удовлетворяет условию x < −6.

Ответ: -1 na 5


Наиболее простой вид

Наиболее простой вид уравнения с модулем выглядит так:

| x | = a

где x — корень уравнения, a — произвольное число, бóльшее или рáвное нулю. То есть a ≥ 0

Если условие a ≥ 0 не выполнено, то уравнение |x|= a корней не имеет. Это следует из определения модуля. Действительно, модуль всегда неотрицателен.

Приведем несколько примеров уравнений вида |x| = a

Пример 1. Решить уравнение |x| = 2

Решение

В данном случае сразу видно, что корнями являются числа 2 и −2. Ведь если вместо x подставить эти числа, то получим верное равенство: |−2| = 2 и |2| = 2. Решение для этого уравнения можно записать, сведя его в совокупность:

«Если выражение |x| равно 2, то подмодульное выражение x равно 2 или −2«

уравнение с модулем рисунок 5

Ответ: 2 и −2


Пример 2. Решить уравнение |−x| = 4

Решение

Если выражение |−x| равно 4, то подмодульное выражение равно 4 или −4

уравнение с модулем рисунок 28

Умножим оба уравнения на −1

уравнение с модулем рисунок 29

Ответ: −4 и 4.


Пример 3. Решить уравнение |x| = −7

В данном случае корней нет, поскольку модуль всегда неотрицателен. А в данном случае модуль равен отрицательному числу.

Если уравнение с модулем не имеет корней, обычно пишут что x принадлежит пустому множеству:

x ∈ ø

Напомним, что пустым называют множество, не имеющее элементов.


Модуль внутри модуля

Рассмотрим уравнение:

уравнение с модулем рисунок 30

В этом уравнении слева располагается модуль, который в свою очередь содержит внутри себя другой модуль, а справа уравнения располагается число. Такой вид уравнения с модулем можно решить, сведя его в совокупность с помощью схемы, которую мы рассмотрели ранее:

уравнение с модулем рисунок 22

В нашем случае если выражение уравнение с модулем рисунок 31 равно 9, то подмодульное выражение |2 + x| + 3 равно 9 или −9

уравнение с модулем рисунок 12

В получившейся совокупности имеется два уравнения с модулем. Эти уравнения тоже в свою очередь следует свести в совокупность. Но сначала немного упростим эти уравнения. В первом и во втором уравнении перенесем 3 в правую часть, изменив знак. Тогда получим:

уравнение с модулем рисунок 13

Теперь сведём эти уравнения в совокупности. Первое уравнение распадётся на следующую совокупность:

уравнение с модулем рисунок 14

Сразу решим совокупность уравнение с модулем рисунок 15. Первый корень равен 4, второй −8.

уравнение с модулем рисунок 16

Теперь решим второе уравнение |2 + x| = −12. Но замечаем, что его правая часть равна отрицательному числу. Это уравнение не имеет корней, потому что модуль не может равняться отрицательному числу.

Значит уравнение уравнение с модулем рисунок 30 имеет корни 4 и −8. Проверим эти корни, подставив их в исходное уравнение уравнение с модулем рисунок 30

уравнение с модулем рисунок 29

В данном случае оба корня удовлетворяют исходному уравнению.

Ответ: 4 и −8.

Вообще, уравнение с модулем внутри которого содержится другой модуль, тоже решается различными способами. Какой способ использовать зависит от самогó уравнения. Решим например следующее уравнение:

уравнение с модулем рисунок 34

Здесь уже нельзя использовать схему уравнение с модулем рисунок 89 потому что слева располагается не только модуль, но и переменная x. Конечно, переменную x можно перенести в правую часть, и тогда можно будет свести данное уравнение в совокупность:

уравнение с модулем рисунок 99

Но тогда справа появляется переменная x, на которую нужно будет вводить дополнительное ограничение, чтобы правая часть уравнения не стала отрицательной. Такой способ решения мы рассмотрим позже. А пока решим исходное уравнение с помощью правила раскрытия модуля.

Чтобы раскрыть модули данного уравнения нужно сначала определиться где внешний и где внутренний модуль.

В уравнении уравнение с модулем рисунок 99 внешним модулем является полностью левая часть уравнение с модулем рисунок 100, а внутренним модулем — выражение уравнение с модулем рисунок 101

уравнение с модулем рисунок 102

Значение внешнего модуля зависит от внутреннего модуля, и раскрываться внешний модуль будет исходя от результата который получился в результате вычисления его подмодульного содержимого.

Например, если = 3, то внутренний модуль |3  x| примет значение 0, и в результате всё подмодульное выражение внешнего модуля станет равно −2. А это значит что внешний модуль будет раскрываться с минусом.

||3 − x| − x + 1| = ||3 − 3| − 3 + 1| = ||0| − 3 + 1| = |−2| = −(−2) = 2

А если например x = −2, то внутренний модуль |3 − x| примет значение 5, и в результате всё подмодульное выражение внешнего модуля станет равно 8. А это значит что внешний модуль будет раскрываться с плюсом:

||3 − x| − x + 1| = ||3 − (−2)| − (−2) + 1| = ||5| − (−2) + 1| = | 8 |=8

Поэтому решение будем начинать с раскрытия внутреннего модуля.

Если внутренний модуль раскроется с плюсом, то есть если 3 − ≥ 0 (что равносильно неравенству ≤ 3), то исходное уравнение примет вид:

уравнение с модулем рисунок 115

Теперь уравнение имеет только внешний модуль. Решим его раскрыв модуль:

уравнение с модулем рисунок 100

Если −2+ 4  0, то:

уравнение с модулем рисунок 104

Сейчас нас интересуют только те значения x при которых внутренний модуль раскрывается с плюсом, а это произойдет при условии  3. Поэтому для наглядности рядом с найденным корнем указано, что он удовлетворяет условию  3

Решаем далее. Если −2+ 4 < 0, то:

уравнение с модулем рисунок 105

Несмотря на то, что оба найденных корня удовлетворяют уравнению |−2x+4|=6−x, мы исключаем корень 10 na 3 из решений, потому что нас сейчас интересуют только те значения x, при которых внутренний модуль изначального уравнения раскрывается с плюсом. Поэтому рядом с корнем 10 na 3 указано, что он не удовлетворяет условию  3.

Итак, если внутренний модуль раскрывается с плюсом, исходное уравнение принимает вид |−2+ 4| = 6  x и корнем этого уравнения является число −2.

Теперь решим исходное уравнение для случая, когда внутренний модуль раскрывается с минусом, то есть когда 3  < 0 (что равносильно неравенству > 3). Внутренний модуль будет раскрываться с минусом при всех значениях x больших 3.

Если внутренний модуль раскроется с минусом, то исходное уравнение примет вид:

уравнение с модулем рисунок 106

Модуль −2 равен 2. Тогда получаем простейшее линейное уравнение, корень которого равен 4

уравнение с модулем рисунок 107

Получили корень 4, который удовлетворяет условию > 3.

В итоге корнями уравнения являются числа −2 и 4.

Ответ: 2 и 4.


Пример 3. Решить уравнение || 1|  7| = 10

Решение

Слева располагается модуль, а справа число, значит можно применить схему:уравнение с модулем рисунок 22

В данном случае если выражение ||x − 1| − 7| равно 10, то подмодульное выражение |− 1| − 7 равно 10 или 10. Получится совокупность из двух уравнений:

уравнение с модулем рисунок 108

Упростим получившиеся уравнения. Перенесём число −7 в обоих уравнениях в правую часть, изменив знак:

уравнение с модулем рисунок 109

Второе уравнение корней не имеет. Первое уравнение распадется на совокупность уравнение с модулем рисунок 110, корни которой 18 и −16.

уравнение с модулем рисунок 111

Ответ: 18 и −16.

Решим это же уравнение с помощью раскрытия модулей. Начнем с внутреннего модуля.

Если  1  0 (что равносильно  1), то исходное уравнение примет вид:

уравнение с модулем рисунок 114

Решим получившееся уравнение раскрыв модуль:

уравнение с модулем рисунок 112

Далее решаем уравнение для случаев когда  8  0 и  8 < 0

уравнение с модулем рисунок 113

Сейчас нас интересуют те значения, при которых внутренний модуль исходного уравнения раскрывается с плюсом. А это будет при условии, что  1. Этому условию удовлетворяет только значение 18, поэтому мы пометили его зеленой галочкой для наглядности.

Теперь решим исходное уравнение для случая, когда внутренний модуль раскрывается с минусом, то есть когда  1 < 0 (или что равносильно неравенству < 1).

Если  1 < 0, то исходное уравнение примет вид:

уравнение с модулем рисунок 116

Решим получившееся уравнение раскрыв модуль:

уравнение с модулем рисунок 117

Далее решаем уравнение для случаев когда − 6 ≥ 0 и  6 < 0

уравнение с модулем рисунок 118

Из найденных корней только −16 удовлетворяет условию < 1.

В итоге корнями уравнения || 1|  7| = 10 являются числа 18 и −16.

Видно, что с помощью схемы уравнение с модулем рисунок 89  данное уравнение решилось легче и быстрее, чем способом раскрытия модулей.


Слева модуль, а справа выражение с переменной

Решим следующее уравнение с модулем:

|4− 3| = 3x

Здесь так же применима схема:

уравнение с модулем рисунок 22

То есть, если выражение |4− 3| равно 3x, то подмодульное выражение 4− 3 должно равняться 3x или −3x.

уравнение с модулем рисунок 96

Но в исходном уравнении переменная x содержится не только под знáком модуля, но и в правой части. Нам пока неизвестно какое значение примет переменная x. Если x примет отрицательное значение, то правая часть станет полностью отрицательной. В этом случае корней не будет, потому что модуль не может равняться отрицательному числу.

Поэтому, если мы хотим решить данное уравнение, то при сведéнии его в совокупность, дополнительно следует ввести ограничение в виде условия 3≥ 0. Это будет означать, что правая часть уравнения |4 3| = 3x должна быть больше либо равна нулю:

уравнение с модулем рисунок 16

Совокупность и условие обрамлены знаком системы, потому что решения совокупности должны удовлетворять условию 3x ≥ 0.

Итак, решим совокупность. Условие 3x ≥ 0 является неравенством, которое тоже можно решить:

уравнение с модулем рисунок 30

Получившиеся корни можно подставить в условие ≥ 0 и посмотреть выполняется ли оно. Если выполняется, то найденные корни удовлетворяют уравнению. В данном случае при подстановке обеих корней в неравенство, оно выполняется. Проверка также показывает, что корни удовлетворяют уравнению:

уравнение с модулем рисунок 36


Пример 2. Решить уравнение |2− 1| = 5− 10

Решение

Решим это уравнение таким же образом, как и предыдущее. Введём условие, требующее чтобы правая часть была больше либо равна нулю:

уравнение с модулем рисунок 18

В данном случае только значение 3 удовлетворяет условию ≥ 2. Оно же является единственным корнем исходного уравнения. Проверка показывает это:

уравнение с модулем рисунок 19

А число 11 na 7 не удовлетворяет условию ≥ 2 и не является корнем исходного уравнения. Проверка также показывает это:

уравнение с модулем рисунок 20

Видим, что модуль стал равен отрицательному числу, а это противоречит определению модуля и нашему условию ≥ 2.


Пример 3. Решить уравнение уравнение с модулем рисунок 34

Решение

Это уравнение мы решили, когда учились решать уравнения с модулем внутри которых другой модуль. Теперь данное уравнение можно решить, сведя его в совокупность.

Для начала перенесём x в правую часть, изменив знак:

уравнение с модулем рисунок 30

Теперь сведём данное уравнение в совокупность. Дополнительно введём условие в виде неравенства 6 − ≥ 0

уравнение с модулем рисунок 31

В левой части первого уравнения оставим модуль, остальные члены перенесём в правую часть. Тоже самое сделаем и со вторым уравнением. Также будем решать неравенство 6 − ≥ 0, оно позволит в конце проверять найденные корни на соответствие:

уравнение с модулем рисунок 32

Решим первое уравнение. Оно распадётся на следующую совокупность:

уравнение с модулем рисунок 33

Получились корни −2 и 8. Из них только −2 удовлетворяет условию ≤ 6.

Теперь решим второе уравнение. Оно является уравнением, содержащим переменную в правой части. При сведении его в совокупность дополним его условием −7 + 2≥ 0

уравнение с модулем рисунок 34

Дальнейшее элементарно:

уравнение с модулем рисунок 35

При решении второго уравнения получились корни 10 na 3 и 4. Прежде чем сверять их с условием  6 следует сверить их с условием уравнение с модулем рисунок 97 под которое решалось уравнение |3 − x| = −7 + 2x. Условию уравнение с модулем рисунок 97 удовлетворяет только корень 4.

В итоге корнями исходного уравнения уравнение с модулем рисунок 34 являются числа −2 и 4.


Пример 4. Решить уравнение |4x + 20| = −6x

Решение

На первый взгляд покажется, что данное уравнение не имеет решений, потому что правая часть отрицательна. Но это не совсем так. Правая часть содержит переменную x, которая может принять отрицательное значение или ноль, и это приведёт к тому что правая часть станет положительной либо равной нулю. А такое уравнение имеет право на существование.

В данном случае мы решим это уравнение, сведя его в совокупность. Но при этом укажем, что правая часть должна быть больше или равна нулю:

уравнение с модулем рисунок 39

Из найденных корней только корень −2 удовлетворяет исходному уравнению. Также он удовлетворяет нашему условию  0.

Ответ: −2.


Когда обе части — модули

Решим следующее уравнение:

|+ 7| = |1 + 3x|

Обе части этого уравнения являются модулями. Раскроем эти модули. Будем учитывать все возможные случаи при их раскрытии.

Случай 1. Если + 7 ≥ 0 и 1 + 3≥ 0, то модули в обеих частях раскроются со знаком плюс и тогда исходное уравнение примет вид:

x + 7 = 1 + 3x

Это простейшее линейное уравнение. Решим его:

уравнение с модулем рис 1

Случай 2. Если + 7 < 0 и 1 + 3< 0, то модули в обеих частях раскроются со знаком минус и тогда исходное уравнение примет вид:

−(x + 7) = −(1 + 3x)

Раскроем скобки, получим:

x − 7 = −1 − 3x

Замечаем, что если умножить обе части этого уравнения на −1, то получается уравнение x + 7 = 1 + 3x. А это уравнение мы получали в результате раскрытия модулей со знаком плюс.

То есть уравнения x + 7 = 1 + 3x и x − 7 = −1 − 3x являются равносильными, а значит имеют одни и те же корни. Убедимся в этом, решив уравнение  7 = −1  3x

уравнение с модулем рис 2

Поэтому, раскрыв модули со знаком плюс, нет необходимости раскрывать их со знаком минус, потому что в обоих случаях получаются уравнения, имеющие одни и те же корни.

Следующий случай это когда + 7 ≥ 0 и 1 + 3< 0. Тогда исходное уравнение примет вид + 7 = −1 − 3x. Найдём корень этого уравнения:

уравнение с модулем рис 4

И последний случай это когда + 7 < 0 и 1 + 3x ≥ 0. Тогда уравнение примет вид x − 7 = 1 + 3x. Если умножить это уравнение на −1, то получим уравнение + 7 = −1 − 3x. А это уравнение мы получали, когда рассматривали предыдущий случай (случай + 7 ≥ 0 и 1 + 3< 0).

Следовательно, уравнениеx − 7 = 1 + 3x равносильно предыдущему уравнению + 7 = −1 − 3x. Убедимся в этом решив уравнение −x − 7 = 1 + 3x

уравнение с модулем рис 5

Значит раскрыв левую часть со знаком плюс, а правую часть со знаком минус, нет необходимости раскрывать левую часть со знаком минус, а правую часть со знаком плюс, потому что в обоих случаях получаются уравнения, имеющие одни и те же корни.

Вообще, если в уравнении обе части являются модулями как в данном примере, то это уравнение можно свести в следующую совокупность:

уравнение с модулем рисунок 38

В этой конструкции уравнение вида |a| = |b| сведено в совокупность из двух уравнений = b и = b. Видно что первое уравнение получается путем раскрытия обоих модулей со знаком плюс, а второе уравнение — путем раскрытия модуля |a| со знаком плюс, а модуля|b|— со знаком минус.

Важно. Данная схема работает только тогда, когда обе части являются модулями без посторонних членов. Проще говоря, если будет дано уравнение, например |a| = |b| + c, то приведенную схему использовать нельзя.


Пример 2. Решить уравнение |2 − 3x| = |+ 5|

Решение

Обе части данного уравнения являются модулями. Воспользуемся схемой:

уравнение с модулем рисунок 38

У нас получится совокупность из двух уравнений. В первом уравнении оба модуля будут раскрыты со знаком плюс, во втором уравнении — модуль |2  3x| будет раскрыт со знаком плюс, а модуль |+ 5| со знаком минус:

уравнение с модулем рисунок 13

Выполним проверку:

уравнение с модулем рисунок 37

Ответ: Минус три четвертых  и  Семь вторых


Пример 3. Решить уравнение |x− 13+ 35|=|35 − x2

Решение

Обе части данного уравнения являются модулями. Воспользуемся схемой:

уравнение с модулем рисунок 38

У нас получится совокупность из двух уравнений. В первом уравнении оба модуля будут раскрыты со знаком плюс. Во втором уравнении — модуль |x− 13+ 35| будет раскрыт со знаком плюс, а модуль |35 − x2| со знаком минус:

уравнение с модулем рисунок 73

Приведём подобные члены в обоих уравнениях:

уравнение с модулем рисунок 74

Первое уравнение является неполным квадратным. Решим его, вынеся x за скобки. Второе уравнение решается элементарно:

уравнение с модулем рисунок 75

Ответ:   70 na 13,  , 0.


Когда решение — числовой промежуток

Нередко приходиться решать уравнения с модулем, где корнями являются не один или два числа, а числовой промежуток. Таковым, например, является уравнение:

|5+ 3| = −5− 3

Раскроем модуль этого уравнения:

уравнение с модулем рисунок 47

Если раскрыть модуль со знаком плюс, то получается уравнение 5+ 3 = −5 3. Решим его:

уравнение с модулем рисунок 48

А если раскрыть модуль со знаком минус, то получится уравнение −5 3 = −5 3. В этом уравнении обе части являются одинаковыми, а значит данное равенство является тождеством. Оно будет верно при любом значении x. Значит корнями уравнения −5 3 = −5 3 являются все числа от минус бесконечности до плюс бесконечности:

x ∈ (−∞; +∞)

Но надо помнить про условия, согласно которым были раскрыты модули. В первом случае мы получили корень Минус три пятых. Он будет верен только при условии что уравнение с модулем рисунок 62. Это условие соблюдено. Проверка также показывает что корень подходит:

уравнение с модулем рисунок 61

Значит один из корней уравнений равен Минус три пятых

Во втором случае мы получили множество корней от минус бесконечности до плюс бесконечности. Но это будет верно только при условии что уравнение с модулем рисунок 63

Например, если взять любое число из промежутка (−∞; +∞), но которое не будет удовлетворять условию уравнение с модулем рисунок 63, то это число не будет обращать наше уравнение в верное равенство.

Например, число 2 принадлежит промежутку (−∞; +∞), но не удовлетворяет условию уравнение с модулем рисунок 63, а значит число 2 не является корнем исходного уравнения. Проверка также покажет это:

уравнение с модулем рисунок 64

А если взять к примеру число −5, то оно будет принадлежать промежутку (−∞; +∞) и удовлетворять условию уравнение с модулем рисунок 63, а значит будет обращать исходное уравнение в верное равенство:

уравнение с модулем рисунок 65

Поэтому ответ надо записать так, чтобы были выполнены оба условия уравнение с модулем рисунок 62  и уравнение с модулем рисунок 63. Для наглядности нарисуем координатную прямую и обозначим её как x

уравнение с модулем рисунок 49Отметим на ней наш первый корень Минус три пятых

уравнение с модулем рисунок 66

Раскрыв модуль со знаком минус и решив получившееся уравнение, мы получили в ответе множество всех чисел от минус бесконечности до плюс бесконечности, но при этом было дано условие уравнение с модулем рисунок 63. Значит более точным ответ в этом случае будет таким:

Корнями уравнения −5x − 3 = −5x − 3 при условии уравнение с модулем рисунок 63 являются все числа от минус бесконечности до Минус три пятых

Значит на координатной прямой нужно заштриховать область слева от числа Минус три пятых. Они будут иллюстрировать числа, меньшие Минус три пятых

уравнение с модулем рисунок 67

Число Минус три пятых тоже является верным корнем исходного уравнения. Он был получен при раскрытии модуля со знаком плюс. Поэтому на координатной прямой пустой кружок нужно закрасить. Так мы включим число Минус три пятых во множество решений:

Тогда окончательный ответ будет выглядеть так:

уравнение с модулем рисунок 69

Ответ: уравнение с модулем рисунок 69

Также, можно решить это уравнение сведя его в совокупность, дополнительно указав, что правая часть должна быть больше либо равна нулю:

уравнение с модулем рисунок 119


Пример 2. Решить уравнение |2 3| = 3  2x

Решение

уравнение с модулем рисунок 120

Решим исходное уравнение для случаев когда 2 3 ≥ 0 и 2 3 < 0

уравнение с модулем рисунок 121

уравнение с модулем рисунок 122

Ответ: уравнение с модулем рисунок 123


Использование координатной прямой

Рассмотрим ещё один способ решения элементарных уравнений с модулем — с помощью координатной прямой. Этот способ используется редко, но знать о нём не помешает.

Решим наше самое первое уравнение |− 2| = 5 с помощью координатной прямой. Напомним, что корнями этого уравнения были числа 7 и −3.

Модуль есть расстояние от начала координат до точки A. Либо расстояние между двумя числами на координатной прямой.

Расстояние между двумя числами выражается в виде разности |x1x2|, где x1 — первое число, x2 — второе число.

Если внимательно посмотреть на уравнение |x − 2|= 5, то можно увидеть что его левая часть это расстояние от x до 2 (или от 2 до x) и это расстояние равно 5. Отмéтим на координатной прямой число x и число 2

модуль числа рисунок 25

Правая часть уравнения |x − 2|= 5 говорит о том, что расстояние от x до 2 составляет пять единиц:

модуль числа рисунок 26

Если расстояние от x до 2 равно 5, то и расстояние от 2 до x тоже равно 5. Это позволяет отсчитать пять целых шагов от числа 2 к числу x и таким образом узнать значение x

модуль числа рисунок 34

Видно, что отсчитав пять шагов влево мы попали в точку с координатой −3. А это один из корней, который мы находили для уравнения |x − 2|= 5.

Но пять целых шагов от числа 2 можно отсчитать не только влево, но и вправо:

модуль числа рисунок 35

Если отсчитать пять целых шагов вправо, то попадём в точку с координатой 7. Это тоже был корень уравнения |− 2|= 5

модуль числа рисунок 23


Несколько модулей в одной части

Решим следующее уравнение:

| 5|  |x| = 1

Это уравнение содержит два модуля в левой части. Чтобы решить данное уравнение нужно раскрыть его модули. Рассмотреть нужно каждый из случаев:

  • когда оба модуля больше либо равны нулю;
  • когда оба модуля меньше нуля;
  • когда первый модуль больше либо равен нулю, а второй модуль меньше нуля;
  • когда первый модуль меньше нуля, а второй модуль больше либо равен нулю.

Не будем комментировать каждый случай, а сразу приведём решение:

uravnenie-s-modulem-risunok-52

Первые два случая корней не дали. В третьем случае нашелся корень 3, но он не удовлетворяет условиям  5  0 и < 0, поэтому не является корнем исходного уравнения.

В четвёртом случае нашёлся корень 2, который удовлетворяет условиям  5 < 0 и ≥ 0. Также он удовлетворяет исходному уравнению.

Заметно, что такой способ решения уравнения неудобен. Если модулей в уравнении будет три, четыре или более, то придётся рассматривать намного больше случаев. Человек запутавшись, может забыть рассмотреть какой-то из случаев, и получится что уравнение решено не полностью.

Поэтому такой вид уравнения как в данном примере удобнее решать методом интервалов. Об этом мы поговорим в следующем уроке.

Задания для самостоятельного решения

Задание 1. Решить уравнение:

Решение:

Задание 2. Решить уравнение:

Решение:

Задание 3. Решить уравнение:

Решение:

Задание 4. Решить уравнение:

Решение:

Ответ: .

Задание 5. Решить уравнение:

Решение:

Ответ: .

Задание 6. Решить уравнение:

Решение:

Ответ: .

Задание 7. Решить уравнение:

Решение:

Ответ: .

Задание 8. Решить уравнение:

Решение:

Ответ: .

Задание 9. Решить уравнение:

Решение:

Ответ: .

Задание 10. Решить уравнение:

Решение:

Ответ: .

Задание 11. Решить уравнение:

Решение:

Ответ: .

Задание 12. Решить уравнение:

Решение:

Ответ: 0, 5.


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже


Добавить комментарий