Как найти равнодействующую всех сил примеры


Загрузить PDF


Загрузить PDF

Равнодействующая сила – это векторная сумма всех сил, которая действует на тело.[1]
Если равнодействующая сила равна нулю, то тело находится в покое. Неуравновешенная сила, или равнодействующая сила, значение которой больше или меньше нуля, приводит к ускорению тела.[2]
Суммировать все силы для поиска равнодействующей достаточно просто, но для этого сначала нужно рассчитать или измерить их величину. Как только вы изобразите простую схему действующих сил и убедитесь, что все силы имеют правильный вектор, вычисление равнодействующей силы покажется вам плевым делом.

  1. Изображение с названием Find Net Force Step 1

    1

    Начертите диаграмму свободного тела. Диаграмма свободного тела – это схематичный набросок тела с обозначением векторов всех сил, которые на него действуют. Прочитайте задачу и набросайте схему рассматриваемого тела, обозначив каждую силу, действующую на это тело, стрелками.[3]

    • Пример: Вычислить равнодействующую силу тела весом 20 Н, которое лежит на столе и которое толкают вправо под действием силы 5 Н, но при этом остается неподвижным из-за действующей на нее силы трения, равной 5 Н.
  2. Изображение с названием Find Net Force Step 2

    2

    Обозначьте положительные и отрицательные направления сил. Как правило, вверх и вправо направлены силы с положительным значением, а вниз и влево – с отрицательным. Имейте в виду, что в одном направлении могут действовать сразу несколько сил. Силы, действующие в противоположном направлении, должны иметь отрицательные значения (одна положительная, одна отрицательная).[4]

    • Если вам нужно представить несколько схем действующих сил, убедитесь, чтобы вектора сил были перенесены правильно.
    • Согласно направлению векторов на схеме, пометьте силы знаком «+» или «-».
    • Пример: Сила тяжести направлена вниз, делая ее отрицательной. Сила нормальной реакции направлена вверх, что делает ее положительной. Сила, с которой прижимают тело, направлена вправо, что делает ее положительной, тогда как сила трения действует в обратном направлении, то есть, влево (отрицательная).
  3. Изображение с названием Find Net Force Step 3

    3

    Обозначьте все силы. Обозначьте все силы, которые действуют на тело. Если тело лежит на горизонтальной поверхности, на него действует сила тяжести (Fтяж), направленная вниз, а также равная ей сила нормальной реакции, направленная в противоположную сторону (Fн). Помимо этих двух сил отметьте также и другие силы, указанные в задаче. Величину сил запишите в ньютонах рядом с их обозначением.[5]

    • Для обозначения силы обычно используется символ F и первые буквы силы в нижнем индексе. Сила трения, к примеру, обозначается так: Fтр.
    • Сила тяжести: Fтяж = -20 Н
    • Сила нормальной реакции: Fн = +20 Н
    • Сила трения: Fтр = -5 Н
    • Сила, с которой прижимают тело: Fт = +5 Н
  4. Изображение с названием Find Net Force Step 4

    4

    Сложите все значения. Теперь, когда мы определили вектора и величину всех действующих сил, осталось лишь сложить их вместе. Запишите уравнение для результирующей силы (Fрез), где Fрез будет равна сумме действующих на тело сил.[6]

    • Пример: Fрез = Fтяж + Fн + Fтр + Fт = -20 + 20 -5 + 5 = 0 Н. Так как равнодействующая сила равна 0, тело находится в состоянии покоя.

    Реклама

  1. Изображение с названием Find Net Force Step 5

    1

    Изобразите схему действующих сил. Когда действие силы на тело происходит под углом, для определения ее величины необходимо найти горизонтальную (Fx) и вертикальную (Fy) проекции этой силы. Для этого мы будем использовать тригонометрию и угол наклона (обозначается символом θ «тета»). Угол наклона θ измеряется против часовой стрелки, начиная от положительной оси х.[7]

    • Нарисуйте диаграмму действующих сил, включая угол наклона.
    • Укажите вектор направления действия сил, а также их величину.
    • Пример: Тело с силой нормальной реакции, равной 10 Н, движется вверх и вправо с силой 25 Н под углом в 45°. Также на тело действует сила трения, равная 10 Н.
    • Перечень всех сил: Fтяж = -10 Н, Fн = + 10 Н, Fт = 25 Н, Fтр = -10 Н.
  2. Изображение с названием Find Net Force Step 6

    2

    Вычислите Fx и Fy, используя основные тригонометрические соотношения. Представив наклонную силу (F) в качестве гипотенузы прямоугольного треугольника, а Fx и Fy – в качестве сторон этого треугольника, можно вычислить их по отдельности.[8]

    • Напоминаем, что косинус (θ) = прилежащая сторона/гипотенуза. Fx = соз θ * F = cos(45°) * 25 = 17,68 Н.
    • Напоминаем, что синус (θ) = противолежащая сторона/гипотенуза. Fy = sin θ * F = sin(45°) * 25 = 17,68 Н.
    • Обратите внимание, что под углом на объект одновременно может действовать несколько сил, поэтому вам придется найти проекции Fx и Fy для каждой такой силы. Суммируйте все значения Fx, чтобы получить результирующую силу в горизонтальном направлении, и все значения Fy, чтобы получить результирующую силу в вертикальном направлении.
  3. Изображение с названием Find Net Force Step 7

    3

    Перерисуйте схему действующих сил. Определив все горизонтальные и вертикальные проекции силы, действующие под углом, можете нарисовать новую схему действующих сил, указав также и эти силы. Сотрите неизвестную силу, а вместо нее укажите векторы всех горизонтальных и вертикальных величин.

    • К примеру, вместо одной силы, направленной под углом, на схеме теперь будут представлены одна вертикальная сила, направленная вверх, величиной 17,68 Н, и одна горизонтальная сила, вектор которой направлен вправо, а величина равна 17,68 Н.
  4. Изображение с названием Find Net Force Step 8

    4

    Сложите все силы, действующие по координатам х и у. После того как нарисуете новую схему действующих сил, вычислите результирующую силу (Fрез), сложив отдельно все горизонтальные силы и все вертикальные силы. Не забудьте следить за правильным направлением векторов.

    • Пример: Горизонтальные вектора всех сил вдоль оси х: Fрезx = 17,68 – 10 = 7,68 Н.
    • Вертикальные вектора всех сил вдоль оси у: Fрезy = 17,68 + 10 – 10 = 17,68 Н.
  5. Изображение с названием Find Net Force Step 9

    5

    Вычислите вектор равнодействующей силы. На данном этапе у вас есть две силы: одна действует вдоль оси х, другая – вдоль оси у. Величина вектора силы является гипотенузой треугольника, образованного этими двумя проекциями. Для вычисления гипотенузы достаточно лишь задействовать теорему Пифагора: Fрез = √ (Fрезx2 + Fрезy2).[9]

    • Пример: Fрезx = 7,68 Н, а Fрезy = 17,68 Н
    • Подставим значения в уравнение и получим: Fрез = √ (Fрезx2 + Fрезy2) = √ (7,682 + 17,682)
    • Решение: Fрез = √ (7,682 + 17,682) = √(58,98 + 35,36) = √94,34 = 9,71 Н.
    • Сила, действующая под углом и вправо равна 9,71 Н.

    Реклама

Об этой статье

Эту страницу просматривали 124 793 раза.

Была ли эта статья полезной?

Для рассмотрения термина «равнодействующая сила» придется воспользоваться некими абстрактными понятиями физики, теоретической механики. Упрощениями, условно отражающими реальный мир 

Итак, примем во внимание, что:

  1. Под объектом понимается не физическое тело с объемом, формой и внутренней структурой. Подразумевается «материальная точка», характеризующаяся только массой. То есть величиной, определяющей инерцию (стремление сохранять неподвижность) и гравитационные взаимодействия (притяжение предметов). Не стоит путать с весом. Последний является проявлением гравитации и меняется в зависимости от места измерения (географической широты).

  2. События и наблюдения происходят в инерциальной системе отсчета. Где пространство и время однородны (идентичны в любой точке). Поворот системы отсчета не влияет на измерения.

  3. Рассуждения корректны для скоростей существенно ниже скорости света и не распространяются на субатомный уровень.

Понятие силы

Возникло еще в трудах древнегреческих ученых. Носило скорее философский характер и было довольно запутанным и неоднозначным, что не мешало при этом античным инженерам-практикам производить весьма точные расчеты, поскольку понимание силы как причины движения было для них безусловным.

16798

Позже проблемой занимались такие титаны как Роджер Бэкон и Уильям Оккам (английские философы и естествоиспытатели). Опять-таки без строгого физического подхода, но с более глубоким пониманием темы (теория «дальнодействия»).

Бэкман, Декарт, Галилей аргументированно оспорили архаичные теории. Классическая механика пробивала дорогу.

Иоганн Кеплер также придавал сначала силе эзотерические свойства. Но наблюдения за закономерностями перемещения небесных тел убили плохого теолога и породили ученого. Логично появилась идея общей силы тяготения. До Ньютона, вопреки распространенному заблуждению.

Ньютон подытожил и объединил ранее накопленные знания. Установил формулу зависимости действующей на тело силы с его движением (II-ой закон).

200

Где:

  • F – вектор (также имеется направление приложения) силы. В принятой РФ системе СИ (ISQ) измеряется в Ньютонах (Н, N в международном написании);

  • m – масса материальной точки (кг);

  • a – вектор получаемого ускорения (м/с2).

При этом определение силы дано не было. Оно и понятно: явление не существует само по себе. Термин появился только для удобства расчетов и подразумевает меру воздействия стороннего тела или поля на наблюдаемый объект.

Возможно, что гравитация является действием поля. Закон всемирного тяготения был введен также Ньютоном.

201

Где:

·         G – гравитационная постоянная;

·         m1, m2 – массы материальных точек (кг);

·         R – дистанция между объектами (м).

Тяготение Земли рассчитывается по традиционной формуле II-го закона Ньютона. Только «a» меняется на ускорение свободного падения «g».

Для примерных выкладок g берут равным 9,81 м/с2, что соответствует средней широте 45,5°. Для точных пользуются соответствующими таблицами.

Как измерить силу

Равнодействующая сила

В соответствии с I-м законом Ньютона, в инерциальных системах отсчета тело движется равномерно и прямолинейно либо покоится при отсутствии приложенных к нему сил. Или эти силы чем-то скомпенсированы.

Уравновесить усилие можно калиброванной пружиной, динамометром. Это статический способ. Типичный пример – замер силы тяжести при помощи весов.

Рассчитать силу можно, зная массу предмета и его ускорение. II-ой закон в помощь. В этом состоит динамический метод.

Равнодействующая сила

Если действуют несколько факторов одновременно, то результирующую силу можно найти по геометрическим правилам сложения. 

Результат будет называться «вектор равнодействующей всех сил».

202

203

Или так:

204

Лежащий неподвижно на горизонтальной поверхности объект подвергается действию двух сил – тяжести и реакции опоры. Они равны по модулю и противоположно направлены: ведь объект покоится и равнодействующая сила равна нулю.

Примеры решения задач

Машина массой 1 тонна движется по ровной горизонтальной поверхности с ускорением 1 м/с2. Тяга силового агрегата составляет 1500 Н. Укажите действующие на транспортное средство силы.

Решение.

205

Сила тяжести направлена вертикально вниз. Модуль определяется следующим образом:

Fт = mg = 1000 (кг) х 9,81 (м/с2) = 9810 (Н).

Упругая реакция дороги направлена противоположно и равна тяготению, поскольку движение в данной плоскости отсутствует и равнодействующая равна нулю.

Горизонтальная равнодействующая:

F = ma = 1000 (кг) х 1 (м/с2) = 1000 (Н).

Сопротивление:

Fcопр = Fтяги – F = 1500 (Н) – 1000 (Н) = 500 (Н).

Заключение

Несколько выводов напоследок:

  1. Состояние покоя и прямолинейное равномерное движение механически аналогичны.

  2. Сила придает телу ускорение, зависящее от массы объекта.

  3. Равнодействующая образуется геометрическим суммированием приложенных к материальной точке векторов сил.

Три закона Ньютона

Динамика — раздел механики, изучающий причины движения тел и способы определения их ускорения. В нем движение тел описывается с учетом их взаимодействия.

Большой вклад в развитие динамики внес английский ученый Исаак Ньютон. Он первым смог выделить законы движения, которым подчиняются все макроскопические тела. Эти законы называют законами Ньютона, законами механики, законами динамики или законами движения тел.

Внимание! Законы Ньютона нельзя применять к произвольным телам. Они применимы только к точке, обладающей массой — к материальной точке.

Основное утверждение механики

Для описания движения тела можно взять любую систему отсчета. Обычно для этого используется система отсчета, связанная с Землей. Если какое-то тело меняет свою скорость, рядом с ним всегда можно обнаружить другое тело, которое на него действует. Так, если поднять камень и отпустить, он не останется висеть в воздухе, а упадет вниз. Следовательно, на него что-то подействовало. В данном случае сама Земля притянула камень к себе. Отсюда следует основное утверждение механики:

Основное утверждение механики

Изменение скорости (ускорение) тела всегда вызывается воздействием на него других тел.

Согласно утверждению, если на тело не действуют никакие силы, его ускорение будет нулевым, и оно будет либо покоиться, либо двигаться равномерно и прямолинейно (с постоянной скоростью).

Но в нашем мире мы не всегда это наблюдаем. И этому есть объяснение. Если тело покоится, оно действительно не меняет свою скорость. Так, мяч лежит на траве до тех пор, пока его не пнут. После того, как его пнут, он начинает катиться, но затем останавливается. Пока мяч катится, к нему больше не прикасаются. Казалось бы, согласно основному утверждению механики, мяч должен катиться вечно. Но этого не происходит, потому что на мяч действует сила трения, возникающая между его поверхностью и травой.

Основное утверждение механики можно проиллюстрировать в открытом космосе в месте, где сила притяжения космических тел пренебрежимо мала. Если в космосе придать телу скорость и отпустить, оно будет двигаться с такой скоростью по прямой линии до тех пор, пока на него не подействуют другие силы. Ярким примером служат межгалактические звезды, или звезды-изгои. Гравитационно они не связаны ни с одной из галактик, а потому движутся с постоянной скоростью. Так, звезда HE 0437-5439 удаляется от нашей галактики с постоянной скоростью 723 км/с.

Свободное тело — тело, на которое не действуют другие тела. Свободное тело либо покоится, либо движется прямолинейно и равномерно.

Первый закон Ньютона

Исаак Ньютон, изучая движение тел, заметил, что относительно одних систем отсчета свободные тела сохраняют свою скорость, а относительно других — нет. Он разделил их на две большие группы: инерциальные системы отсчета и неинерциальные. В этом кроется первый закон динамики.

Первый закон Ньютона

Существуют такие системы отсчета, называемые инерциальными, относительно которых тела движутся равномерно и прямолинейно или находятся в состоянии покоя, если на них не действуют другие тела или их действие компенсировано.

Примером инерциальной системы отсчета служит система отсчета, связанная с Землей (геоцентрическая). Другой пример — гелиоцентрическая система отсчета (связанная с Солнцем).

Неинерциальная система отсчета — система отсчета, в которой тела могут менять свою скорость при отсутствии на них действия других тел.

Примером неинерциальной системы отсчета служит автобус. Когда он движется равномерно и прямолинейно, стоящие внутри пассажиры находятся относительно него в состоянии покоя. Но когда автобус останавливается, пассажиры падают вперед, т. е. меняют свою скорость, хотя на них не действуют другие тела.

Второй закон Ньютона

В примере с автобусом видно, что пассажиры стараются сохранить свою скорость относительно Земли — инерциальной системы отсчета. Такое явление называется инерцией.

Инерция — явление, при котором тело сохраняет состояние покоя или равномерного прямолинейного движения.

Инертность — физическое свойство, заключающееся в том, что любое тело оказывает сопротивление изменению его скорости (как по модулю, так и по направлению).

Не все тела одинаково инертны. Вы можете взять мячик и придать ему большое ускорение. Но вы не можете придать такое же ускорение гире, хотя она обладает похожим размером. Но мячик и гиря различаются между собой массой.

Масса — скалярная физическая величина, являющаяся мерой инертности тела. Чем больше масса, тем больше инертность тела.

Масса обозначается буквой m. Единица измерения массы — кг. Прибор для измерения массы — весы.

Чтобы придать одинаковую скорость двум телам с разной инертностью, к телу с большей инертностью придется приложить больше силы. Попробуйте сдвинуть с места стол, а затем — шкаф. Сдвинуть с места стол будет проще.

Если же приложить две одинаковые силы к телам с разной инертностью, будет видно, что тело с меньшей инертностью получает большее ускорение. Если приставить к пружине теннисный шарик, а затем сжать ее и резко отпустить, шарик улетит далеко. Если вместо теннисного шарика взять железный, он лишь откатится на некоторое расстояние.

Описанные выше примеры показывают, что между силой, прикладываемой к телу, и ускорением, которое оно получает в результате прикладывания этой силы, и массой этого тела есть взаимосвязь. Она раскрывается во втором законе Ньютона.

Второй закон Ньютона

Сила, действующая на тело, равна произведению массы этого тела на ускорение, которое сообщает эта сила.

F = ma

где F — сила, которую прикладывают к телу, a — ускорение, которое сообщает эта сила, m — масса тела

Сила — количественная мера действия тел друг на друга, в результате которого тела получают ускорения.

Сила — векторная физическая величина. Обозначается F. Единица измерения — Н (Ньютон). Прибор для измерения силы — динамометр.

Пример №1. Определить, с какой силой действует Земля на яблоко, если, упав с ветки, оно получило ускорение 9,8 м/с2. Масса яблока равна 200 г.

Сначала переведем массу яблока в кг. 200 г = 0,2 кг. Теперь найдем силу, действующую на яблоко со стороны Земли, по второму закону Ньютона:

F = ma = 0,2 ∙ 9,8 = 1,96 (Н)

Равнодействующая сила

Иногда на тело действуют несколько сил. Тогда при описании его движения вводится понятие равнодействующей силы.

Определение

Равнодействующая сила — векторная сумма всех сил, действующих на тело одновременно.

R = F1 + F2 + F3 + …

В этом случае второй закон Ньютона формулируется так:

Второй закон Ньютона через равнодействующие силы

Если на тело действует несколько сил, то их равнодействующая R будет равна произведению массы на ускорение этого тела.

ma = R = F1 + F2 + F3 + …

Правила сложения сил и их проекций

Сложение двух сил, направленных вдоль одной прямой в одну сторону

Если F1↑↑F2, то:

R = F1 + F2

Равнодействующая сила сонаправлена с обеими силами.

Сложение двух сил, направленных вдоль одной прямой во взаимно противоположных направлениях

Если F1↑↓F2, то:

R = |F1 F2|

Равнодействующая сила направлена в сторону направления большей по модулю силы.

Сложение двух сил, перпендикулярных друг к другу

Если F1 перпендикулярна F2, то равнодействующая сила вычисляется по теореме Пифагора:

Сложение двух сил, расположенных под углом α друг к другу

Если F1 и F2 расположены под углом α друг к другу, равнодействующая сила вычисляется по теореме косинусов:

Сложение трех сил

Способ сложения определяется правилами сложения векторов. В данном случае:

Сложение проекций сил

Проекция на ось ОХ:

F1x + F2x – F3x = 0

Проекция на ось OY:

F1y – F2y = 0

Третий закон Ньютона

Когда одно тело действует на другое, начинается взаимодействие этих тел. Это значит, если тело А действует на тело В и сообщает ему ускорение, то и тело В действует на тело А, тоже придавая ему ускорение. К примеру, если сжать пружину руками, то руки будут чувствовать сопротивление, оказываемое силой упругости пружины. Если же, находясь в лодке, начать тянуть за веревку вторую лодку, то обе лодки будут двигаться навстречу друг другу. То есть, вы, находясь в своей лодке, тоже будете двигаться навстречу второй лодке.

Иногда на тело действует сразу несколько сил, но тело продолжает покоиться. В этом случае говорят, что силы друг друга компенсируют, то есть их равнодействующая равна нулю.

Две силы независимо от их природы считаются равными по модулю и противоположно направленными, если их одновременное действие на тело не меняет его скорости.

Примером такого явления служит ситуация, когда при перетягивании каната его никто не может перетянуть в свою сторону. Если взять два каната и присоединить между ними два динамометра, а затем начать игру в перетягивание, выяснится, что показания динамометра всегда будут одинаковыми. Это значит, что независимо от масс и придаваемых ускорений два взаимодействующих тела оказывают друг на друга равные по модулю силы. В этом заключается смысл третьего закона Ньютона.

Третий закон Ньютона

Силы, с которыми тела действуют друг на друга, равны по модулям и направлены по одной прямой в противоположные стороны.

FA = –FB

Используя второй закон Ньютона, третий закон механики можно переписать иначе:

m1a1 = –m2a2

Отсюда следует:

Отношение модулей ускорений a1 и a2 взаимодействующих друг с другом тел определяется обратным отношением их масс и совершенно не зависит от характера действующих между ними сил.

Пример №2. Определить ускорение, с которым движется Земля к падающему на нее яблоку. Масса яблока равна 0,2 кг. Ускорение свободного падения принять равной за 10 м/с2. Массу Земли принять равно 6∙1024 кг.

Согласно третьему закону Ньютона модули сил, с которыми взаимодействуют Земли и яблоко, равны. Поэтому:

F1 = F2

Отсюда:

m1a1 = m2a2

Пусть тело 1 будет яблоко, а тело 2 — Земля. Тогда a1 будет равно g. Отсюда ускорение, с которым движется Земля к падающему на нее яблоку, равна:

Задание EF17993

Скорость тела массой 5 кг, движущегося вдоль оси Ох в инерциальной системе отсчёта, изменяется со временем в соответствии с графиком (см. рисунок). Равнодействующая приложенных к телу сил в момент времени t=2,5 с равна…

а) 2Н

б) 8 Н

в) 10 Н

г) 20 Н


Алгоритм решения

1.Записать исходные данные.

2.Проанализировать задачу.

3.Записать второй закон Ньютона.

4.Определить ускорение по графику проекции скорости от времени.

5.Подставить найденное ускорение в формулу второго закона Ньютона и произвести вычисления.

Решение

Запишем исходные данные:

Так как графиком скорости является прямая, непараллельная ось времени, тело движется с постоянным ускорением. Если ускорение постоянно, равнодействующая сил тоже будет постоянной в любой момент времени. Поэтому нам достаточно использовать координаты любой, более удобной для их определения точки. К примеру, в точке, соответствующей моменту времени 10 с.

Запишем второй закон Ньютона:

F = ma

Ускорение тела определяется как отношение изменения скорости ко времени, в течение которого эта скорость менялась. Согласно графику, за 10 секунд скорость изменилась на 20 м/с. Следовательно, ускорение равно:

a = 20/10 = 2 (м/с2)

Теперь можем вычислить равнодействующую сил:

F = ma = 5∙2 = 10 (Н)

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18915

Необходимо собрать экспериментальную установку, с помощью которой можно определить коэффициент трения скольжения стали по дереву. Для этого школьник взял стальной брусок с крючком. Какие два предмета из приведённого ниже перечня оборудования необходимо дополнительно использовать для проведения этого эксперимента?

а) деревянная рейка

б) динамометр

в) мензурка

г) пластмассовая рейка

д) линейка


Алгоритм решения

1.Проанализировать задачу. Выяснить, какие предметы необходимы для проведения опыта.

2.Вывести формулу для коэффициента трения.

3.Определить, какую величину нужно измерить, чтобы рассчитать коэффициент трения, и какой прибор для этого нужен.

Решение

Для определения коэффициента трения стали по дереву, нужен не только стальной груз, но и деревянная поверхность. То есть, понадобится деревянная рейка.

Сила трения определяется формулой:

Отсюда коэффициент трения равен:

Ускорение свободного падения известно. Массу можно измерить на весах, но весов в вариантах ответа нет. Силу трения можно измерить динамометром. Следовательно, для опыта нужны только динамометр и деревянная рейка. Рейка из пластика не понадобится, так как цели расчета коэффициента трения стали по пластику нет. Мензурка используется для определения объема жидкости. В данном опыте она тоже не нужна.

Ответ: аб

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17589

Система отсчёта, связанная с Землёй, считается инерциальной. В этом случае систему отсчёта, связанную с самолётом, можно считать инерциальной, если самолёт движется:

а) равномерно и прямолинейно, набирая высоту

б) с постоянным ускорением по горизонтали

в) равномерно, выполняя поворот

г) по взлетной полосе при взлете


Алгоритм решения

  1. Сформулировать первый закон Ньютона об инерциальных системах отсчета.
  2. На основании закона сделать вывод, при каких условиях система отсчета, связанная с самолетом, может считаться инерциальной.
  3. Проанализировать все 4 ситуации, приведенные в вариантах ответа.
  4. Выбрать тот вариант, который описывает ситуацию, не противоречащую условию, выведенному в шаге 2.

Решение

Первый закон Ньютона формулируется так:

«Существуют такие системы отсчета, называемые инерциальными, относительно которых тела движутся равномерно и прямолинейно или находятся в состоянии покоя, если на них не действуют другие тела или их действие компенсировано».

Чтобы система отсчета, связанная с самолетом, была инерциальной, она должна быть неподвижной или двигаться относительно Земли — инерциальной системы отсчета — равномерно и прямолинейно.

Когда самолет движется равномерно и прямолинейно, набирая высоту, самолет движется с собственным ускорением, которое компенсируется ускорением свободного падения. И это единственный верный ответ, так как:

  • Самолет, двигаясь с постоянным ускорением по горизонтали, движется неравномерно, что противоречит условию.
  • Самолет, двигаясь равномерно во время поворота, движется непрямолинейно (с центростремительным ускорением).
  • Самолет, двигаясь по взлетной полосе при взлете, движется прямолинейно, но неравномерно, так как он разгоняется из состояния покоя.

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22791

Погрешность прямого измерения силы динамометром, на котором висит груз, равна цене деления. Каков вес груза?

Ответ: (                  ±                  ) Н.

Внимание! Записывать ответ следует последовательностью цифр без запятых.


Алгоритм решения

1.Записать исходные данные.

2.Определить цену деления шкалы.

3.Записать значение измерения с учетом погрешности.

Решение

Из условий задачи известно, что погрешность равна цене деления шкалы. Цена деления шкалы определяется отношением разности двух ближайших числовых обозначений на шкале и количеству делений между ними. Возьмем ближайшие значения 1,0 и 1,5. Между ними 5 делений. Следовательно, цена деления шкалы динамометра равна:

Так как погрешность равна цене деления, она также равна 0,1 Н.

Стрелка динамометра показывает 1,1 Н. Следовательно, вес груза равен: 1,1±0,1. Но по условию задачи ответ нужно записать без запятых и прочих знаков. Следовательно, верный ответ: 1101.

Ответ: 1101

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17484

Тело массой m скользит по шероховатой наклонной опоре с углом α к горизонту (см. рисунок). На него действуют 3 силы: сила тяжести mg, сила упругости опоры N и сила трения Fтр. Если скорость тела не меняется, то модуль равнодействующей сил Fтр и mg равен:

а) N cosα

б) N

в) N sinα

г) mg + Fтр


Алгоритм решения

  1. Запись второго закона Ньютона в векторном виде.
  2. Вывод формулы равнодействующей силы трения и силы тяжести.
  3. Нахождение модуля равнодействующей силы трения и силы тяжести.

Решение

Записываем второй закон Ньютона в векторном виде с учетом того, сто скорость тела не меняется (ускорение равно 0):

N + mg + Fтр = 0

Отсюда равнодействующая силы трения и силы тяжести равна:

mg + Fтр = –N

Следовательно, равнодействующая силы трения и силы тяжести направлена противоположно силе реакции опоры, но равна ей по модулю. Отсюда:

|mg + Fтр| = N

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18548

На тело действуют две силы: F1 и F2. По силе F1 и равнодействующей двух сил F = F1 + F2 найдите модуль второй силы (см. рисунок).


Алгоритм решения

  1. Изобразить на рисунке второй вектор с учетом правил сложения векторов.
  2. Записать геометрическую формулу для расчета модуля вектора по его проекциям.
  3. Выбрать систему координат и построить проекции второй силы на оси ОХ и ОУ.
  4. По рисунку определить проекции второй силы на оси.
  5. Используя полученные данные, применить формулу для расчета вектора по его проекциям.

Решение

Построим вектор второй силы. Его начало должно совпадать с концом вектора первой силы, а его конец — с концов равнодействующей этих сил. Этот вывод следует из сложения векторов правилом треугольника.

Модуль вектора равен корню из суммы квадратов его проекций на оси ОХ и ОУ:

Выберем систему координат и построим проекции второй силы на оси ОХ и ОУ:

Согласно рисунку, проекция второй силы на ось ОХ равна: x = 4 (Н). Ее проекция на ось ОУ равна: y = 3 (Н).

Подставим известные данные в формулу и вычислим модуль вектора второй силы:

Ответ: 5

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 16.3k

Ранее мы уже познакомились с понятием силы и знаем, что она имеет две характеристики: направление и численное значение. В жизни обычно на тело действуют сразу несколько сил.

Например, если рассмотреть ситуацию, когда спускается парашютист, то можно заметить, что на него действуют сразу две силы: и сила тяжести, и сила сопротивления воздуха.

На груз, подвешенный на пружине, тоже действуют две силы — сила тяжести и сила упругости пружины.

В каждом таком случае мы можем заменить несколько сил, действующих на тело, одной. И она будет равноценна по своему действию всем этим силам.

На данном уроке мы узнаем, как называется такая сила и как ее найти.

Равнодействующая сил

Дадим определение. Какую силу называют равнодействующей нескольких сил?

Равнодействующая сил — это сила, которая производит на тело такое же действие, как несколько одновременно действующих сил.

Так же, как и любая сила, равнодействующая является векторной величиной. Она обозначается буквой $vec R$, а ее числовое значение — буквой $R$. Равнодействующая сила измеряется в ньютонах ($Н$).

Сложение сил, действующих на тело по одной прямой

Если силы направлены в одну сторону

Проведем эксперимент: возьмем два груза (рисунок 1, а), масса которых равна $102 space г$ и $204 space г$, и подвесим их к пружине. Наши грузы имеют вес $1 space Н$ и $2 space Н$ и воздействуют на пружину, из-за чего она растягивается на определенную длину. Сделаем отметку, на какое расстояние вытянулась пружина.

А теперь снимем два груза и подберем один груз, который растянет пружину на такую же длину. Вес этого груза окажется равен $3 space Н$ (рисунок 1, б).

Рисунок 1. Опыт для определения равнодействующей сил, если слагаемые силы направлены по прямой в одну сторону

Из опыта можно сделать вывод, что:

  1. Равнодействующая сил, направленных по одной прямой в одну сторону, направлена в ту же сторону, что и действующие на тело силы;
  2. Модуль равнодействующей сил равен сумме модулей составляющих сил.

Изобразим графически эти силы на рисунке 2. 

Рисунок 2. Изображение сложения двух сил, направленных по одной прямой в одну сторону

Чему равна равнодействующая двух сил, направленных по одной прямой в одну сторону?
Силы, которые мы будем складывать, обозначены буквами $F_1$ и $F_2$. Тогда для всех действующих сил будет иметь место равенство:

$R = F_1 + F_2$.

Если силы направлены в противоположные стороны

Рассмотрим еще один опыт, представленный на рисунке 3.

Рисунок 3. Опыт для определения равнодействующей сил, если действующие на тело силы направлены по прямой в противоположные стороны

Поставим гирю на динамометр со столиком (рисунок 3, а). Рассматриваемым телом в данном случае будет сам столик. Гиря весит $5 space Н$, т.е. действует на столик с силой в $5 space Н$, причем эта сила направлена вертикально вниз. 

Теперь привяжем к столику нить и потянем вертикально вверх с силой, равной $2 space Н$ (рисунок 3, б). Динамометр покажет силу $3 space Н$. Эта сила и будет равнодействующей двух сил: $5 space Н$ и $3 space Н$.

  1. Если две силы направлены по одной прямой в противоположные стороны, то их равнодействующая будет направлена в сторону той силы, которая больше по модулю.
  2. Модуль равнодействующий сил в таком случае равен разности модулей составляющих сил

Изобразить силы можно следующим образом (рисунок 4):

Рисунок 4. Разность двух сил, направленных по одной прямой в противоположные стороны

Чему равна равнодействующая двух сил, направленных по одной прямой в противоположные стороны?
Равнодействующая сил равна:

$R = F_2 space − space F_1$.

Как будет двигаться тело под действием двух равных противоположно направленных сил?
Если силы, действующие на тело, будут равны, то мы получим, что равнодействующая сил равна нулю, то есть $R = 0$. Другими словами, в этом случае тело будет покоиться или двигаться прямолинейно и равномерно.

Как мы уже говорили, когда тело растянет пружину и остановится, это значит, что сила тяжести и сила упругости уравновесили друг друга. В этом случае тело будет находиться в состоянии покоя, например, как на рисунке 1.

Упражнения

Упражнение №1

Человек, масса которого $70 space кг$, держит на плечах ящик массой $20 space кг$. С какой силой человек давит на землю?

Дано:
$m_1 = 70 space кг$
$m_2 = 20 space кг$
$g = 9.8 frac{Н}{кг}$

$P$ — ?

Показать решение и ответ

Скрыть

Решение:

Без ящика на плечах человек давит на землю с весом $P_1$, а ящик (если его поставить на землю) — с весом $P_2$.

Вес направлен вертикально вниз. В данной задаче мы применим понятие равнодействующей сил к их общему весу $P$:
$R = P = P_1 + P_2$

Человек с ящиком на плечах стоит на месте. Значит его вес будет равен силе тяжести, действующей на него:
$P_1 = F_{тяж1} = gm_1$.

Вес ящика тоже будет равен силе тяжести, действующей на него:
$P_2 = F_{тяж2} = gm_2$.

Тогда общий вес, с которым человек давит на землю с ящиком на плечах, будет равен: 
$P = gm_1 + gm_2 = g cdot (m_1 + m_2)$,
$P = 9.8 frac {Н}{кг} cdot (70 space кг + 20 space кг) = 9.8 frac {Н}{кг} cdot 90 space кг = 882 space Н$.

Ответ: $P = 882 space Н$.

Упражнение №2

Отец посадил сына себе на плечи. Масса отца составляет $90 space кг$, сына — $35 space кг$. С какой силой отец теперь будет давить на землю?

Дано:
$m_о = 90 space кг$
$m_с = 35 space кг$
$g = 9.8 frac{Н}{кг}$

$P$ — ?

Показать решение и ответ

Скрыть

Решение:

В одиночку отец давит на землю с весом $P_о$, сын — с весом $P_с$.

Вес направлен вертикально вниз. В данной задаче мы применим понятие равнодействующей сил к их общему весу $P$:
$R = P = P_о + P_c$

Отец с сыном не двигаются, значит:
$P_о = gm_о$ и $P_с = gm_с$.

Тогда общий вес, с которым отец давит на землю держа сына на плечах, будет равен: 
$P = gm_о + gm_с = g cdot (m_о + m_с)$,
$P = 9.8 frac {Н}{кг} cdot (90 space кг + 35 space кг) = 9.8 frac {Н}{кг} cdot 125 space кг = 1 225 space Н$.

Ответ: $P = 1 225 space Н$.

Упражнение №3

В игре по перетягиванию каната участвуют четыре человека. Два из них тянут канат в одну сторону с силами $330 space Н$ и $380 space Н$, два — в противоположную сторону с силами $300 space Н$ и $400 space Н$. В каком направлении будет двигаться канат и чему равна равнодействующая этих сил? Сделайте чертеж.

Дано:
$F_1 = 330 space Н$
$F_2 = 380 space Н$
$F_3 = 300 space Н$
$F_4 = 400 space Н$

$R — ?$

Показать решение и ответ

Пусть первые два участника тянут канат вправо с силами $F_1$ и $F_2$, другие два — влево с силами $F_3$ и $F_4$.

Скрыть

Решение:

Сначала найдем чему равна равнодействующая сил первых двух участников. Они тянут канат в одну сторону, значит:
$R_1 = F_1 + F_2 = 330 space Н + 380 space Н = 710 space Н$.

Теперь найдем равнодействующую сил для левой стороны участников:
$R_2 = F_3 + F_4 = 300 space Н + 400 space Н = 700 space Н$.

Теперь мы можем найти равнодействующую сил для всех участников:
$R = R_1 space − space R_2 = 710 space Н space − space 700 space Н = 10 space Н$.

Графически силы изображены на рисунке 5. Так как силы участников направлены в противоположные стороны, равнодействующая сил будет направлена в ту сторону, где у участников большая сила, то есть вправо.

Рисунок 5. Графическое изображение сил для задачи

Ответ: канат будет двигаться в сторону первых двух участников, $R = 10 space Н$.

Упражнение №4

Человек спускается на парашюте, двигаясь равномерно. Сила тяжести парашютиста вместе с парашютом $700 space Н$. Чему равна сила сопротивления воздуха?

Дано:
$F_{тяж} = 700 space Н$
$upsilon = const$

$F_с — ?$

Показать решение и ответ

Скрыть

Решение:

Сила тяжести, действующая на парашютиста и парашют, направлена вертикально вниз, а сила сопротивления воздуха — противоположно его движению, то есть вертикально вверх.

В задаче сказано, что парашютист двигается равномерно ($upsilon = const$). Значит равнодействующая сил, действующая на него и парашют, равна нулю:
$R = 0$.

Тогда мы можем сказать, что силы, действующие на парашютиста и парашют, по модулю равны друг другу:
$F_с = F_{тяж} = 700 space Н$.

Ответ: $F_с = 700 space Н$.

Добавить комментарий