Как найти равные векторы параллелограмма

Векторное произведение векторов

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Определение векторного произведения

Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.

Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

Коллинеарность — отношение параллельности векторов. Два ненулевых вектора называются коллинеарными, если они лежат на параллельных прямых или на одной прямой.

Проще говоря это «параллельные» векторы. Коллинеарные векторы могут быть одинаково направлены или противоположно направлены. Основное обозначение — →a || →b. Сонаправленные коллинеарные векторы обозначаются так →a ↑↑ →b, противоположно направленные — →a ↑↓ →b.

Прежде чем дать определение векторного произведения, разберемся с ориентацией упорядоченной тройки векторов →a, →b, →c в трехмерном пространстве.

Отложим векторы →a, →b, →c от одной точки. В зависимости от направления вектора →c тройка →a, →b, →c может быть правой или левой.

Посмотрим с конца вектора →c на то, как происходит кратчайший поворот от вектора →a к →b. Если кратчайший поворот происходит против часовой стрелки, то тройка векторов →a, →b, →c называется правой, по часовой стрелке — левой.

Теперь возьмем два неколлинеарных вектора →a и →b. Отложим от точки А векторы →AB = →a и →AC = →b. Построим некоторый вектор →AD = →c, перпендикулярный одновременно и →AB и →AC.

Очевидно, что при построении вектора →AD = →c мы можем поступить по-разному, если зададим ему либо одно направление, либо противоположное.

В зависимости от направления вектора →AD = →c упорядоченная тройка векторов →a, →b, →c может быть правой или левой.

И сейчас мы подошли к определению векторного произведения. Оно дается для двух векторов, которые заданы в прямоугольной системе координат трехмерного пространства.

Еще не устали от теории? Онлайн-школа Skysmart предлагает обучение на курсах по математике — много практики и поддержка внимательных преподавателей!

Векторным произведением двух векторов →a и →b, которые заданы в прямоугольной системе координат трехмерного пространства, называется такой вектор →c, что:

  • он является нулевым, если векторы →a и →b коллинеарны;
  • он перпендикулярен и вектору →a и вектору →b;
  • длина векторного произведения равна произведению длин векторов →a и →b на синус угла между ними
  • тройка векторов →a, →b, →c ориентирована так же, как и заданная система координат.

Векторным произведением вектора →a на вектор →b называется вектор →c, длина которого численно равна площади параллелограмма построенного на векторах →a и →b, перпендикулярный к плоскости этих векторов и направленный так, чтобы наименьшее вращение от →a к →b вокруг вектора c осуществлялось против часовой стрелки, если смотреть с конца вектора →c.

Векторное произведение двух векторов a = и b = в декартовой системе координат — это вектор, значение которого можно вычислить, используя формулы вычисления векторного произведения векторов:

Векторное произведение векторов →a и →b обозначается как [→a • →b].

Другое определение связано с правой рукой человека, откуда и есть название. На рисунке тройка векторов →a, →b, [→a • →b] является правой.

Еще есть аналитический способ определения правой и левой тройки векторов — он требует задания в рассматриваемом пространстве правой или левой системы координат, причём не обязательно прямоугольной и ортонормированной.

Нужно составить матрицу, первой строкой которой будут координаты вектора →a, второй — вектора →b, третьей — вектора →c. Затем, в зависимости от знака определителя этой матрицы, можно сделать следующие выводы:

  • Если определитель положителен, то тройка векторов имеет ту же ориентацию, что и система координат.
  • Если определитель отрицателен, то тройка векторов имеет ориентацию, противоположную ориентации системы координат.
  • Если определитель равен нулю, то векторы компланарны (линейно зависимы).

Координаты векторного произведения

Рассмотрим векторное произведение векторов в координатах.

Сформулируем второе определение векторного произведения, которое позволяет находить его координаты по координатам заданных векторов.

В прямоугольной системе координат трехмерного пространства векторное произведение двух векторов →a = (ax, ay, az) и →b = (bx, by, bz) есть вектор

→i, →j, →k — координатные векторы.

Это определение показывает нам векторное произведение в координатной форме.

Векторное произведение удобно представлять в виде определителя квадратной матрицы третьего порядка, первая строка которой есть орты →i, →j, →k, во второй строке находятся координаты вектора →a, а в третьей — координаты вектора →b в заданной прямоугольной системе координат:

Если разложим этот определитель по элементам первой строки, то получим равенство из определения векторного произведения в координатах:

Важно отметить, что координатная форма векторного произведения согласуется с определением,которое мы дали в первом пункте этой статьи. Более того, эти два определения векторного произведения эквивалентны.

Свойства векторного произведения

Векторное произведение в координатах представляется в виде определителя матрицы:

На основании свойств определителя можно легко обосновать свойства векторного произведения векторов:

  1. Антикоммутативность
  2. Свойство дистрибутивности

Сочетательное свойство

, где λ произвольное действительное число.

Для большей ясности докажем свойство антикоммутативности векторного произведения.

Нам известно, что значение определителя матрицы изменяется на противоположное, если переставить местами две строки, поэтому

что доказывает свойство антикоммутативности векторного произведения.

Чтобы найти модуль векторного произведения векторов u и v нужно найти площадь параллелограмма, который построен на данных векторах: S = | u × v | = | u | * | v | * sinθ, где θ — угол между векторами.

Векторное произведение векторов u и v равно нулевому вектору, если u и v параллельны (коллинеарны): u × v = 0, если u ∥ v (θ = 0).

Примеры решения задач

Пример 1

а) Найти длину векторного произведения векторов →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

б) Найти площадь параллелограмма, построенного на векторах →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

а) По условию требуется найти длину векторного произведения. Подставляем данные в формулу:

Так как в задаче речь идет о длине, то в ответе указываем размерность — единицы.

б) По условию требуется найти площадь параллелограмма, который построен на векторах →a и →b. Площадь такого параллелограмма численно равна длине векторного произведения:

Пример 2

Найти |[-3→a x 2→b]|, если |→a| = 1/2, |→b| = 1/6, ∠(→a, →b) = π/2.

По условию снова нужно найти длину векторного произведения. Используем нашу формулу:

Согласно ассоциативным законам, выносим константы за переделы векторного произведения.

Выносим константу за пределы модуля, при этом модуль позволяет убрать знак минус. Длина же не может быть отрицательной.

Пример 3

Даны вершины треугольника A (0, 2, 0), B (-2, 5,0), C (-2, 2, 6). Найти его площадь.

Сначала найдём векторы:

Затем векторное произведение:

Вычислим его длину:

Подставим данные в формулы площадей параллелограмма и треугольника:

Геометрический смысл векторного произведения

По определению длина векторного произведения векторов равна

А из курса геометрии средней школы мы знаем, что площадь треугольника равна половине произведения длин двух сторон треугольника на синус угла между ними.

Поэтому длина векторного произведения равна удвоенной площади треугольника, имеющего сторонами векторы →a и →b, если их отложить от одной точки. Проще говоря, длина векторного произведения векторов →a и →b равна площади параллелограмма со сторонами |→a| и |→b| и углом между ними, равным (→a, →b). В этом состоит геометрический смысл векторного произведения.

Физический смысл векторного произведения

В механике — одном из разделов физики — благодаря векторному произведению можно определить момент силы относительно точки пространства. Поэтому сформулируем еще одно важное определение.

Под моментом силы →F, приложенной к точке B, относительно точки A понимается следующее векторное произведение [→A B × →F].

Вектор линейной скорости →V точки M колеса равен векторному произведению вектора угловой скорости →W и радиус-вектора точки колеса, то есть →V = →W`→rM.

Геометрия

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Понятие вектора

Рассмотрим простейшую задачу. Корабль, двигатель которого развивает скорость 20 км/ч, плывет по течению реки, при этом скорость течения составляет 2 км/ч. Какова скорость корабля относительно берега? Очевидно, в данном случае надо сложить скорость течения и собственную скорость корабля:

20 км/ч + 2 км/ч = 22 км/ч

Теперь посмотрим на почти такую же задачу, которая отличается лишь тем, что корабль плывет уже против течения. Для ее решения скорости уже придется вычитать:

20 км/ч – 2 км/ч = 18 км/ч

Получается, что ответ задачи во многом зависит не только от величин скоростей, но и от их направления. Возможны и более сложные случаи, когда корабль двигается на воде перпендикулярно течению или, например, под углом в 60°. Величины, при операции с которыми необходимо учитывать их направление, называют векторными величинами, или просто векторами.

Помимо скорости к ним относят ускорение, силу, импульс, напряженность магнитного и электрического поля и многие другие величины. Те же величины, для которых нельзя указать направление, называют скалярными величинами. Это масса, температура, плотность и т. п. Для выполнения действий с векторами необходимо разработать общие правила их сложения, вычитания, умножения, которые будут справедливы независимо от физической природы векторных величин. И разработать эти правила помогает как раз геометрия.

Для начала введем понятие вектора. Любой отрезок имеет два конца, которые обычно не отличают друг от друга. Однако если одну из этих точек считать началом отрезка, а другую – собственно концом, то у отрезка появится направление. В таком случае его можно считать вектором.

Часто вектора называют направленными отрезками. Обозначают их с помощью стрелок.

На этом рисунке показан вектор, начало которого находится в точке А, а конец – в точке В. При записи в формулах сначала пишут букву, означающую начало вектора, потом обозначение его конца, а над этими двумя буквами ставят стрелочку:

С практической точки зрения приходится вводить в рассмотрение особый нулевой вектор. У него начало и конец совпадают, то есть он представляет собой всего лишь одну точку:

Нулевой вектор необходим, так как нам необходимо научиться выполнять действия над векторами. Мы знаем, что в обычной алгебре используется число ноль. В векторной же алгебре аналогом нуля является как раз нулевой вектор.

Каждый вектор имеет свою длину, которая равна расстоянию между его началом и концом. То есть, если его начало находится в точке А, а конец в точке В, то длина вектора будет совпадать с длиной отрезка АВ. Обозначают длину с помощью вертикальных скобок:

Естественно, что длина нулевого вектора равна нулю.

Задание. Найдите модуль вектора, изображенного на рисунке:

Решение. Легко выполнить построение, при котором вектор окажется гипотенузой в прямоугольном треугольнике

Тогда длину вектора можно найти по теореме Пифагора:

Равенство векторов

Через начало и конец векторов можно провести прямую. В связи с этим можно ввести понятие коллинеарных векторов.

На рисунке коллинеарны вектора а и b, так как они лежат на одной прямой. Также коллинеарны с и d, так как они лежат на параллельных прямых. А вот вектора a и c неколлинеарны, так как они лежат на пересекающихся прямых.

Для пары коллинеарных векторов можно определить, являются ли они сонаправленными или противоположно направленными.

Для обозначения сонаправленных векторов используется символ «⇈», а для противоположно направленных «⇅». Можно сформулировать две очевидных теоремы о коллинеарных векторах.

Проиллюстрируем эти правила с помощью рисунка:

Особняком стоит нулевой вектор. Он представляет собой точку, а потому не имеет определенного направления. Поэтому условно его считают сонаправленным с любым другим вектором.

Теперь мы можем дать определение равенству векторов.

Задание. Найдите на картинке равные вектора.

Решение. Здесь равны вектора а, b и e. Они сонаправлены и имеют длину 6. Вектор с сонаправлен с ними, но его длина составляет только 5 клеток. Длина вектора d составляет 6 клеток, но он не сонаправлен с другими векторами. Наконец, вектор m также не сонаправлен с другими векторами и даже не коллинеарен им.

Ответ: a, b и e.

Если началом вектора является некоторая точка А, то можно сказать, что вектор отложен от точки А. Докажем важное утверждение:

Доказать его можно построением. Пусть есть вектор а и точка М. Проведем через М прямую p, параллельную вектору а. Такая прямая будет единственной. Если точка М и вектор лежат на одной прямой, то в качестве прямой p возьмем именно эту прямую. Далее от точки М можно отложить отрезки МN и МN’, длина которых будет совпадать с длиной вектора а. В результате получится два вектора,MN и MN’, один из которых будет сонаправлен с а, а другой – противоположно направленный.

Часто равные вектора, отложенные от разных точек, обозначают одной буквой. Можно считать, что это один и тот же вектор, просто приложенный к разным точкам.

Задание. АВСD – параллелограмм, диагонали которого пересекаются в точке О. Определите, равны ли вектора:

а) Отрезки АВ и DC равны, ведь это противоположные стороны параллелограмма, по той же причине эти отрезки параллельны. Видно, что они сонаправлены, значит, вектора равны.

б) Отрезки ВС и DA параллельны и равны, но эти вектора противоположно направлены, поэтому вектора НЕ равны друг другу.

в) Точка пересечения диагоналей параллелограмма делит их пополам, поэтому длины отрезков АО и ОС одинаковы. Вектора АО и ОС лежат на одной прямой, то есть они коллинеарны. При этом они ещё и сонаправлены, поэтому АО и ОС – равные векторы.

г) Вектора АС и BD лежат на пересекающихся прямых, то есть они не коллинеарны. Этого уже достаточно, чтобы считать их НЕ равными друг другу.

Ответ: а) д; б) нет; в) да; г) нет.

Сложение векторов

Пусть некоторый объект сначала находился в точке А, а потом переместился в точку В. Тогда его перемещение удобно обозначить с помощью вектора АВ. Далее пусть этот объект из точки В переместился в другую точку С.

С одной точки зрения, объект совершил сразу два перемещения, из А в В и из В в С, которые можно представить векторами:

Этот пример подсказывает нам универсальное правило, с помощью которого можно складывать вектора. Его называют правилом треугольника.

С помощью правила треугольника удобно складывать вектора, если конец одного из них совпадает с началом другого. Но что делать, если это не так? В этом случае достаточно от конца одного вектора отложить вектор, равный второму:

Задание. На рисунке показаны два вектора. Постройте в тетради их сумму и найдите длину получившегося вектора.

Решение. Перенесем вектор b к концу вектора а. Далее по правилу треугольника на удастся найти их сумму (обозначим этот вектор буквой с):

Теперь найдем длину получившегося вектора. Он является гипотенузой в прямоугольном треугольнике, причем длины катетов в этом треугольнике можно определить по рисунку, они составляют 4 и 6. Тогда длину гипотенузы можно найти по теореме Пифагора:

Отдельно рассмотрим случаи, когда складываются коллинеарные вектора. В этом случае получающаяся сумма окажется коллинеарной каждому слагаемому. Если вектора сонаправлены, то их длина итогового вектора окажется равной сумме длин складываемых векторов:

Если складываются противоположно направленные вектора, то длина их суммы окажется разностью длин складываемых векторов.

Именно по этой причине при решении простейших задач на движение корабля по реке скорость корабля и скорость течения либо складывают, либо вычитают. Дело в том, что в этих задачах складываются вектора скоростей корабля и течения. Когда судно плывет по течению, эти векторы сонаправлены, а когда плавание идет против течения, векторы оказываются противоположно направленными.

Задание. Корабль развивает в неподвижной воде скорость 12 км/ч. Он плывет по реке, скорость воды в которой составляет 5 км/ч. Найдите скорость корабля относительно берега, если:

а) судно плывет по течению;

б) судно плывет против течения;

в) судно плывет перпендикулярно течению.

Решение. Во всех случаях итоговая скорость судна является векторной суммой собственной скорости судна и течения реки:

Однако направления этих векторов различны. Найдем решение графически, с помощью построений. В первом случае вектора по условию сонаправлены:

Приложив другу к другу отрезки длиной 12 и 5, получим отрезок длиной 17. Это значит, что в первом случае скорость корабля относительно берега составит 17 км/ч.

Во втором случае вектора уже окажутся противоположно направленными:

Отрезок, соответствующий итоговой скорости, здесь уже равен 7 клеткам, значит, итоговая скорость составляет 7 км/ч.

В третьем случае вектора скоростей перпендикулярны:

При построении получился прямоугольный треугольник, вектор итоговой скорости в нем оказался в роли гипотенузы. Найти его длину можно по теореме Пифагора, ведь катеты нам известны:

Свойства сложения

Действия с векторами во многом подобны действиям с обычными числами. Напомним, что в алгебре при прибавлении к числу нуля оно не менялось:

Аналогично и при прибавлении к вектору нулевого вектора он не изменится:

Работает ли это правило с векторами? Оказывается, что да. Убедиться в этом можно, построив параллелограмм, сторонами которого являются складываемые векторы:

Видно, что диагональ параллелограмма является суммой векторов, которые соответствуют нижней и крайней правой его стороне. Они обозначены как векторы a и b, причем в данном случае к а прибавляется b. Но одновременно эта же диагональ – это сумма векторов, которые соответствуют крайней левой и его верхней стороне. Напомним, что противоположные стороны параллелограмма равны и параллельны, поэтому они и обозначены одним вектором. В этом случае уже к b прибавляется a. Результат при этом получается одинаковый, поэтому можно записать, что

На этом примере мы увидели, как работает ещё одно правило сложения векторов, который называется правилом параллелограмма. Если есть два вектора, которые необходимо сложить, то можно отложить их от одной точки, а потом достроить получившуюся фигуру до параллелограмма.

Задание. Сложите с помощью правила параллелограмма вектора, изображенные на рисунке:

Решение. Надо всего лишь построить параллелограмм, как показано на рисунке. Его диагональ и окажется искомым вектором:

Ещё один закон, использующийся в алгебре, называется сочетательным законом, записывается он так:

Оказывается, что и при действиях с векторами он также работает, то есть справедливо соотношение:

Здесь оранжевый вектор – это сумма красного (а) и синего (b) вектора. Если к оранжевому вектору добавить зеленый (с), то получится фиолетовый вектор, который, таким образом, является суммой

Желтый вектор – это сумма синего и зеленого вектора. Видно, что фиолетовый вектор представляет собой сумму красного и желтого, то есть он представляет сумму

Складывать можно любое количество векторов. В этом случае надо последовательно прикладывать эти вектора друг к другу, выстраивая «цепочку» векторов. Например, сложение 4 векторов, показанных на рисунке, будет осуществляться следующим образом:

Этот способ сложения векторов именуют правилом многоугольника. Естественно, в силу переместительного закона вектора можно прикладывать друг к другу в разной последовательности, при этом результат будет получаться один и тот же.

Задание. Сложите, используя правило многоугольника, вектора, изображенные на рисунке. Выполните сложение двумя разными способами:

В первом случае последовательно сложим вектора a, b, c и d. Во втором случае изменим последовательность сложения. Например, сложим их в порядке d, b, c, a:

Видно, что каждый из двух способов дал один и тот же результат, что ещё раз подтверждает справедливость переместительного закона сложения векторов.

Вычитание векторов

Напомним, что в алгебре операция вычитания вводится как операция обратная сложению. То есть если для трех чисел верно соотношение

то разностью чисел с и a как раз окажется b:

Аналогично вычитание понимается и в векторной алгебре. Пусть построены вектора а, b и c так, что

Этот пример показывает, как строить разность двух векторов. На рисунке вектора с и a отложены от одной точки, а вектор b, являющийся их разницей, проведен от конца вычитаемого вектора к концу уменьшаемого вектора.

В данном случае под уменьшаемым вектором понимается тот, который в разнице стоит перед знаком минус, а вычитаемый вектор – тот, который находится уже после этого знака. Например, в записи

Вектор а – уменьшаемый, а вектор b – вычитаемый.

Задание. Постройте в тетради разность векторов, изображенных на рисунке:

Решение. Заметим, что в условии не сказано, какой вектор из какого надо вычитать. Поэтому можно построить сразу два ответа:

Несложно заметить, две получившиеся разности представляют собой противоположно направленные векторы одной длины. Такие векторы называются противоположными.

Очевидно, что если сложить друг с другом два противоположных вектора, то получится нулевой вектор:

Противоположные вектора играют в векторной алгебре такую же роль, как и противоположные числа. С их помощью удобно выполнять вычитание векторов. Напомним, что для обычных чисел справедливо соотношение:

Поэтому операцию вычитания можно заменить операцией сложения, если вместо вычитаемого вектора взять вектор, противоположный ему. Рассмотрим этот способ на примере. Пусть из a надо вычесть b:

На первом шаге надо построить вектор, противоположный b:

Теперь надо просто сложить a и (– b):

В итоге нам удалось построить разность векторов а и b.

Умножение вектора на число

Предположим, что нам надо сложить два равных вектора. В результате мы получим новый вектор, который будет сонаправлен с исходным, но его длина будет вдвое больше. Логично считать, что получившийся вектор вдвое больше исходного, то есть он получился при умножении вектора на число 2:

Аналогично можно построить вектора, которые больше исходного не в 2, а в 3,4 и т. д. раз:

Итак, чтобы умножить вектор на положительное число k, надо построить сонаправленный с ним вектор, длина которого в k раз больше.А как умножать вектор на отрицательное число? Здесь нужно использовать противоположный вектор. Логично считать, что он получается при умножении (– 1) на вектор. Зная это, легко умножать вектор и на другие отрицательные числа:

Естественно, что если вектор умножается на ноль, то в результате получается нулевой вектор.

Задание. На рисунке показаны вектора а и b. Найдите вектора

Решение. Для построения снам надо сначала умножить исходные вектора на 4 и 2, а далее полученные результаты сложить:

Для нахождения вектора d надо построить вектор, противоположный вектору 2b, и уже его складывать с 4a:

Наконец, для нахождения вектора е необходимо построить противоположный вектор уже для :

Некоторые правила обычной алгебры, касающиеся операции умножения, справедливы и для векторов. Первый такое правило – это сочетательный закон:

Видно, что мы можем либо сразу умножить вектор а на число 12, либо сначала его умножить на 4, а потом на 3. Результат операции при этом не изменится.

Также в отношении операции умножения векторов на число справедлив распределительный закона, которые позволяют раскрывать скобки:

Например, пусть нам надо сложить вектора и . Распределительный закон говорит, что мы можем поступить двумя способами. В первом случае мы просто строим вектора 2а и 3а и складываем их. Во втором случае мы складываем только числа 2 и 3 (получаем 5), и далее уже умножаем вектор а на число 5:

Есть ещё один распределительный закон, в котором в скобках находится уже сумма векторов, а не чисел:

Этот закон можно применить в случае, когда нам необходимо, например, сложить вектора и 4b. Конечно, можно просто построить их и сложить, однако закон говорит, что мы можем сначала сложить aи b, и уже потом эту сумму умножить на 4:

Сформулированные нами законы сложения и умножения векторов позволяют выполнять действия с векторами так же, как с числами. В том числе можно упрощать выражения, содержащие векторные величины. Например, пусть известны вектора а, b и с, и надо найти вектор

Видно, что выражение значительно упростилось.

Решение задач с помощью векторов

Вектора активно используются в физике при решении многих задач, однако они также помогают доказывать геометрические теоремы. Рассмотрим несколько примеров, и начнем со вспомогательной задачи.

Задание. Известно, что С – это середина отрезка АВ. Докажите, что для любой точки О выполняется равенство:

Используя правило треугольника, вектор ОС можно представить в виде двух различных сумм:

Проанализируем выражение в скобках. Вектора АС и ВС коллинеарны, ведь они лежат на одной прямой АВ. При этом они противоположно направлены. Длина у них одинакова, ведь С – середина АВ. Тогда по определению АС и ВС – противоположные вектора, и их сумма равна нулю:

Задание. Докажите, что если в трапеции провести прямую, проходящую через середины ее оснований, то она также пройдет через точку, в которой пересекаются продолжения боковых сторон трапеции.

Решение. Построим трапецию, обозначим ее вершины и середины оснований:

Здесь ABCD – трапеция, основаниями которой являются отрезки ВС и AD. M и N – их середины. Прямые АВ и CD пересекаются в точке O. Необходимо доказать, что прямая MN также проходит через О.

Заметим, что ∆ОВС и ∆ОАD подобны. Действительно, у них есть общий ∠ВОС, а ∠ОВС и ∠ОАD одинаковы как односторонние углы при секущей АВ, поэтому треугольники подобны по 1-ому признаку. Обозначим коэффициент подобия буквой k, тогда можно записать, что

Так как отрезки ОА и АВ лежат на одной прямой, то вектора ОА и АВ коллинеарны и притом сонаправлены, поэтому в (1) отрезки можно заменить векторами:

(это соотношение мы доказали в предыдущей, вспомогательной задаче).

Аналогичную формулу можно составить и для второго основания и его середины N:

Полученное нами равенство означает, что вектора ON и ОМ коллинеарны, а значит, лежат на одной прямой (эти вектора не могут лежать на параллельных прямых, так как имеют общую точку О). Тогда получается, что О, M и N лежат на одной прямой, ч. т. д.

Равные векторы

В различных школьных учебниках определение равных векторов даётся по-разному.

В классическом учебнике Погорелова А. В. понятие равных векторов вводится с помощью параллельного переноса.

Два вектора называются равными, если они совмещаются параллельным переносом.

(то есть существует параллельный перенос, который переводит начало и конец одного вектора соответственно в начало и конец другого).

Например, изображенные на рисунке

Равенство векторов обозначают так:

(Свойства равных векторов)

1) Равные векторы сонаправлены и имеют равные длины.

2) Равные векторы имеют равные координаты.

3) От любой точки можно отложить вектор, равный данному, и притом только один.

1) 1-е свойство вытекает непосредственно из определения равных векторов и свойств параллельного переноса.

2) Пусть дан вектор

с началом в точке A(x1; y1) и концом в точке B(x2; y2).

По определению равных векторов, вектор

равный данному, получен из

Если этот параллельный перенос задан формулами

Найдём координаты каждого из векторов:

То есть координаты равных векторов

Что и требовалось доказать.

Таким образом, координаты задают длину и направление вектора, но не фиксируют его.

3) Пусть даны вектор

и точка C.
Существует и притом единственный параллельный перенос, при котором точка A переходит в точку C — параллельный перенос на вектор

При таком параллельном переносе вектор

переходит в вектор

По определению равных векторов,

Что и требовалось доказать.

На практике, если требуется отложить от некоторой точки вектор, равный данному, удобно это делать с помощью параллелограмма (если точка, от которой откладывается вектор, не лежит на прямой, содержащей этот вектор).

Например,

отложенный от точки C, равен вектору

(Признаки равенства векторов)

1) Если векторы сонаправлены и имеют одинаковые длины, то они равны.

2) Если у векторов соответствующие координаты равны, то векторы равны.

1) Пусть векторы

сонаправлены и имеют одинаковые длины.

Параллельный перенос, который переводит точку A в точку C, совмещает луч CD с лучом AB (поскольку векторы одинаково направлены). А так как длины отрезков CD и AB равны, то точка D при этом совместится с точкой B. Таким образом, этот параллельный перенос вектор

переводит в вектор

По определению равных векторов,

Что и требовалось доказать.

2) Пусть векторы

Параллельный перенос, заданный формулами

переводит точку A в точку A′, точку B — в точку B′, то есть совмещает векторы

А это означает, что

Что и требовалось доказать.

В учебнике Атанасяна Л. С. и др. дано другое определение равных векторов.

Два вектора называются равными, если они сонаправлены и имеют одинаковую длину.

[spoiler title=”источники:”]

http://100urokov.ru/predmety/urok-12-vektory

[/spoiler]

  1. Главная
  2. Справочники
  3. Справочник по геометрии 7-9 класс
  4. Векторы
  5. Законы сложения векторов. Правило параллелограмма

Теорема

Доказательство

Дано: , и .

Доказать: 10. + = + ; 20. ( + ) + = + ( + ).

Доказательство:

10. Пусть векторы и коллинеарны.

От произвольной точки А отложим векторы = и = , т.е. векторы и будут лежать на одной прямой и на той же прямой от точки А отложим векторы = и = .

+ = , + = , тогда , , при этом , так как модуль вектора – это длина отрезка, следовательно, . Поэтому точки С и С1 совпадают, значит, = (по определению равных векторов), значит, + = + .

Пусть теперь векторы и не коллинеарны.

От произвольной точки А отложим векторы = и = и на этих векторах построим параллелограмм АВСD. Противоположные стороны ВС и АD параллелограмма равны, при этом векторы и сонаправлены, следовательно, = = (по определению равных векторов), также DC = АВ (противоположные стороны параллелограмма) и векторы и сонаправлены, следовательно, = = .

По правилу треугольника = + = + . Аналогично = + = + , поэтому + = + .

20. От произвольной точки А отложим вектор = , от точки В – вектор = , а от точки С – вектор = .

Применяя правило треугольника, получим:

( + ) + = ( + ) + = + = ,

+ ( + ) = + ( + ) = + = .

Следовательно, ( + ) + = + ( + ).

Теорема доказана.

Правило параллелограмма

Советуем посмотреть:

Понятие вектора

Равенство векторов

Откладывание вектора от данной точки

Сумма двух векторов

Сумма нескольких векторов

Вычитание векторов

Произведение вектора на число

Применение векторов к решению задач

Средняя линия трапеции

Векторы


Правило встречается в следующих упражнениях:

7 класс

Задание 762,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 763,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 764,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 9,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 10,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 808,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 906,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 908,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 909,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1067,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник


План урока:

Понятие вектора

Равенство векторов

Сложение векторов

Свойства сложения

Вычитание векторов

Умножение вектора на число

Решение задач с помощью векторов

Понятие вектора

Рассмотрим простейшую задачу. Корабль, двигатель которого развивает скорость 20 км/ч, плывет по течению реки, при этом скорость течения составляет 2 км/ч. Какова скорость корабля относительно берега? Очевидно, в данном случае надо сложить скорость течения и собственную скорость корабля:

20 км/ч + 2 км/ч = 22 км/ч

Теперь посмотрим на почти такую же задачу, которая отличается лишь тем, что корабль плывет уже против течения. Для ее решения скорости уже придется вычитать:

20 км/ч – 2 км/ч = 18 км/ч

Получается, что ответ задачи во многом зависит не только от величин скоростей, но и от их направления. Возможны и более сложные случаи, когда корабль двигается на воде перпендикулярно течению или, например, под углом в 60°. Величины, при операции с которыми необходимо учитывать их направление, называют векторными величинами, или просто векторами.

Помимо скорости к ним относят ускорение, силу, импульс, напряженность магнитного и электрического поля и многие другие величины. Те же величины, для которых нельзя указать направление, называют скалярными величинами. Это масса, температура, плотность и т. п. Для выполнения действий с векторами необходимо разработать общие правила их сложения, вычитания, умножения, которые будут справедливы независимо от физической природы векторных величин. И разработать эти правила помогает как раз геометрия.

Для начала введем понятие вектора. Любой отрезок имеет два конца, которые обычно не отличают друг от друга. Однако если одну из этих точек считать началом отрезка, а другую – собственно концом, то у отрезка появится направление. В таком случае его можно считать вектором.

1 vectory

Часто вектора называют направленными отрезками. Обозначают их с помощью стрелок.

2 vectory

На этом рисунке показан вектор, начало которого находится в точке А, а конец – в точке В. При записи в формулах сначала пишут букву, означающую начало вектора, потом обозначение его конца, а над этими двумя буквами ставят стрелочку:

3 vectory

С практической точки зрения приходится вводить в рассмотрение особый нулевой вектор. У него начало и конец совпадают, то есть он представляет собой всего лишь одну точку:

4 vectory

Нулевой вектор необходим, так как нам необходимо научиться выполнять действия над векторами. Мы знаем, что в обычной алгебре используется число ноль. В векторной же алгебре аналогом нуля является как раз нулевой вектор.

Каждый вектор имеет свою длину, которая равна расстоянию между его началом и концом. То есть, если его начало находится в точке А, а конец в точке В, то длина вектора будет совпадать с длиной отрезка АВ. Обозначают длину с помощью вертикальных скобок:

5 vectory

Естественно, что длина нулевого вектора равна нулю.

Задание. Найдите модуль вектора, изображенного на рисунке:

6 vectory

Решение. Легко выполнить построение, при котором вектор окажется гипотенузой в прямоугольном треугольнике

7 vectory

Тогда длину вектора можно найти по теореме Пифагора:

8 vectory

Равенство векторов

Через начало и конец векторов можно провести прямую. В связи с этим можно ввести понятие коллинеарных векторов.

9 vectory

На рисунке коллинеарны вектора а и b, так как они лежат на одной прямой. Также коллинеарны с и d, так как они лежат на параллельных прямых. А вот вектора и неколлинеарны, так как они лежат на пересекающихся прямых.

Для пары коллинеарных векторов можно определить, являются ли они сонаправленными или противоположно направленными.

10 vectory

Для обозначения сонаправленных векторов используется символ «⇈», а для противоположно направленных «⇅». Можно сформулировать две очевидных теоремы о коллинеарных векторах.

11 vectory

Проиллюстрируем эти правила с помощью рисунка:

12 vectory

Особняком стоит нулевой вектор. Он представляет собой точку, а потому не имеет определенного направления. Поэтому условно его считают сонаправленным с любым другим вектором.

Теперь мы можем дать определение равенству векторов.

13 vectory

Задание. Найдите на картинке равные вектора.

14 vectory

Решение. Здесь равны вектора а, и e. Они сонаправлены и имеют длину 6. Вектор с сонаправлен с ними, но его длина составляет только 5 клеток. Длина вектора d составляет 6 клеток, но он не сонаправлен с другими векторами. Наконец, вектор m также не сонаправлен с другими векторами и даже не коллинеарен им.

Ответ: a, и e.

Если началом вектора является некоторая точка А, то можно сказать, что вектор отложен от точки А. Докажем важное утверждение:

15 vectory

Доказать его можно построением. Пусть есть вектор а и точка М. Проведем через М прямую p, параллельную вектору а. Такая прямая будет единственной. Если точка М и вектор лежат на одной прямой, то в качестве прямой p возьмем именно эту прямую. Далее от точки М можно отложить отрезки МN и МN’, длина которых будет совпадать с длиной вектора а. В результате получится два вектора,MN и MN’, один из которых будет сонаправлен с а, а другой – противоположно направленный.

16 vectory

Часто равные вектора, отложенные от разных точек, обозначают одной буквой. Можно считать, что это один и тот же вектор, просто приложенный к разным точкам.

17 vectory

Задание. АВСD – параллелограмм, диагонали которого пересекаются в точке О. Определите, равны ли вектора:

18 vectory

Решение.

а) Отрезки АВ и DC равны, ведь это противоположные стороны параллелограмма, по той же причине эти отрезки параллельны. Видно, что они сонаправлены, значит, вектора равны.

б) Отрезки ВС и DA параллельны и равны, но эти вектора противоположно направлены, поэтому вектора НЕ равны друг другу.

в) Точка пересечения диагоналей параллелограмма делит их пополам, поэтому длины отрезков АО и ОС одинаковы. Вектора АО и ОС лежат на одной прямой, то есть они коллинеарны. При этом они ещё и сонаправлены, поэтому АО и ОС – равные векторы.

г) Вектора АС и BD лежат на пересекающихся прямых, то есть они не коллинеарны. Этого уже достаточно, чтобы считать их НЕ равными друг другу.

Ответ: а) д; б) нет; в) да; г) нет.

Сложение векторов

Пусть некоторый объект сначала находился в точке А, а потом переместился в точку В. Тогда его перемещение удобно обозначить с помощью вектора АВ. Далее пусть этот объект из точки В переместился в другую точку С.

19 vectory

С одной точки зрения, объект совершил сразу два перемещения, из А в В и из В в С, которые можно представить векторами:

20 vectory

Этот пример подсказывает нам универсальное правило, с помощью которого можно складывать вектора. Его называют правилом треугольника.

21 vectory

С помощью правила треугольника удобно складывать вектора, если конец одного из них совпадает с началом другого. Но что делать, если это не так? В этом случае достаточно от конца одного вектора отложить вектор, равный второму:

22 vectory

Задание. На рисунке показаны два вектора. Постройте в тетради их сумму и найдите длину получившегося вектора.

23 vectory

Решение. Перенесем вектор b к концу вектора а. Далее по правилу треугольника на удастся найти их сумму (обозначим этот вектор буквой с):

24 vectory

Теперь найдем длину получившегося вектора. Он является гипотенузой в прямоугольном треугольнике, причем длины катетов в этом треугольнике можно определить по рисунку, они составляют 4 и 6. Тогда длину гипотенузы можно найти по теореме Пифагора:

25 vectory

Отдельно рассмотрим случаи, когда складываются коллинеарные вектора. В этом случае получающаяся сумма окажется коллинеарной каждому слагаемому. Если вектора сонаправлены, то их длина итогового вектора окажется равной сумме длин складываемых векторов:

26 vectory

Если складываются противоположно направленные вектора, то длина их суммы окажется разностью длин складываемых векторов.

27 vectory

Именно по этой причине при решении простейших задач на движение корабля по реке скорость корабля и скорость течения либо складывают, либо вычитают. Дело в том, что в этих задачах складываются вектора скоростей корабля и течения. Когда судно плывет по течению, эти векторы сонаправлены, а когда плавание идет против течения, векторы оказываются противоположно направленными.

Задание. Корабль развивает в неподвижной воде скорость 12 км/ч. Он плывет по реке, скорость воды в которой составляет 5 км/ч. Найдите скорость корабля относительно берега, если:

а) судно плывет по течению;

б) судно плывет против течения;

в) судно плывет перпендикулярно течению.

Решение. Во всех случаях итоговая скорость судна является векторной суммой собственной скорости судна и течения реки:

28 vectory

Однако направления этих векторов различны. Найдем решение графически, с помощью построений. В первом случае вектора по условию сонаправлены:

29 vectory

Приложив другу к другу отрезки длиной 12 и 5, получим отрезок длиной 17. Это значит, что в первом случае скорость корабля относительно берега составит 17 км/ч.

Во втором случае вектора уже окажутся противоположно направленными:

30 vectory

Отрезок, соответствующий итоговой скорости, здесь уже равен 7 клеткам, значит, итоговая скорость составляет 7 км/ч.

В третьем случае вектора скоростей перпендикулярны:

31 vectory

При построении получился прямоугольный треугольник, вектор итоговой скорости в нем оказался в роли гипотенузы. Найти его длину можно по теореме Пифагора, ведь катеты нам известны:

32 vectory

Свойства сложения

Действия с векторами во многом подобны действиям с обычными числами. Напомним, что в алгебре при прибавлении к числу нуля оно не менялось:

a + 0 = a

Аналогично и при прибавлении к вектору нулевого вектора он не изменится:

33 vectory

Работает ли это правило с векторами? Оказывается, что да. Убедиться в этом можно, построив параллелограмм, сторонами которого являются складываемые векторы:

34 vectory

Видно, что диагональ параллелограмма является суммой векторов, которые соответствуют нижней и крайней правой его стороне. Они обозначены как векторы и b, причем в данном случае к а прибавляется b. Но одновременно эта же диагональ – это сумма векторов, которые соответствуют крайней левой и его верхней стороне. Напомним, что противоположные стороны параллелограмма равны и параллельны, поэтому они и обозначены одним вектором. В этом случае уже к прибавляется a. Результат при этом получается одинаковый, поэтому можно записать, что

35 vectory

На этом примере мы увидели, как работает ещё одно правило сложения векторов, который называется правилом параллелограмма. Если есть два вектора, которые необходимо сложить, то можно отложить их от одной точки, а потом достроить получившуюся фигуру до параллелограмма.

Задание. Сложите с помощью правила параллелограмма вектора, изображенные на рисунке:

36 vectory

Решение. Надо всего лишь построить параллелограмм, как показано на рисунке. Его диагональ и окажется искомым вектором:

37 vectory

Ещё один закон, использующийся в алгебре, называется сочетательным законом, записывается он так:

38 vectory

Оказывается, что и при действиях с векторами он также работает, то есть справедливо соотношение:

39 vectory

Здесь оранжевый вектор – это сумма красного (а) и синего (b) вектора. Если к оранжевому вектору добавить зеленый (с), то получится фиолетовый вектор, который, таким образом, является суммой

40 vectory

Желтый вектор – это сумма синего и зеленого вектора. Видно, что фиолетовый вектор представляет собой сумму красного и желтого, то есть он представляет сумму

41 vectory

Складывать можно любое количество векторов. В этом случае надо последовательно прикладывать эти вектора друг к другу, выстраивая «цепочку» векторов. Например, сложение 4 векторов, показанных на рисунке, будет осуществляться следующим образом:

42 vectory

Этот способ сложения векторов именуют правилом многоугольника. Естественно, в силу переместительного закона вектора можно прикладывать друг к другу в разной последовательности, при этом результат будет получаться один и тот же.

Задание. Сложите, используя правило многоугольника, вектора, изображенные на рисунке. Выполните сложение двумя разными способами:

43 vectory

В первом случае последовательно сложим вектора a, b, c и d. Во втором случае изменим последовательность сложения. Например, сложим их в порядке d, b, c, a:

44 vectory

Видно, что каждый из двух способов дал один и тот же результат, что ещё раз подтверждает справедливость переместительного закона сложения векторов.

Вычитание векторов

Напомним, что в алгебре операция вычитания вводится как операция обратная сложению. То есть если для трех чисел верно соотношение

a + b = c

то разностью чисел с и a как раз окажется b:

c – a = b

Аналогично вычитание понимается и в векторной алгебре. Пусть построены вектора а, b и c так, что

45 vectory

Этот пример показывает, как строить разность двух векторов. На рисунке вектора с и отложены от одной точки, а вектор b, являющийся их разницей, проведен от конца вычитаемого вектора к концу уменьшаемого вектора.

46 vectory

В данном случае под уменьшаемым вектором понимается тот, который в разнице стоит перед знаком минус, а вычитаемый вектор – тот, который находится уже после этого знака. Например, в записи

47 vectory

Вектор а – уменьшаемый, а вектор b – вычитаемый.

Задание. Постройте в тетради разность векторов, изображенных на рисунке:

48 vectory

Решение. Заметим, что в условии не сказано, какой вектор из какого надо вычитать. Поэтому можно построить сразу два ответа:

49 vectory

Несложно заметить, две получившиеся разности представляют собой противоположно направленные векторы одной длины. Такие векторы называются противоположными.

50 vectory

Очевидно, что если сложить друг с другом два противоположных вектора, то получится нулевой вектор:

51 vectory

Противоположные вектора играют в векторной алгебре такую же роль, как и противоположные числа. С их помощью удобно выполнять вычитание векторов. Напомним, что для обычных чисел справедливо соотношение:

52 vectory

Поэтому операцию вычитания можно заменить операцией сложения, если вместо вычитаемого вектора взять вектор, противоположный ему. Рассмотрим этот способ на примере. Пусть из надо вычесть b:

53 vectory

На первом шаге надо построить вектор, противоположный b:

54 vectory

Теперь надо просто сложить a и (– b):

55 vectory

В итоге нам удалось построить разность векторов а и b.

Умножение вектора на число

Предположим, что нам надо сложить два равных вектора. В результате мы получим новый вектор, который будет сонаправлен с исходным, но его длина будет вдвое больше. Логично считать, что получившийся вектор вдвое больше исходного, то есть он получился при умножении вектора на число 2:

56 vectory

Аналогично можно построить вектора, которые больше исходного не в 2, а в 3,4 и т. д. раз:

57 vectory

Итак, чтобы умножить вектор на положительное число k, надо построить сонаправленный с ним вектор, длина которого в k раз больше.А как умножать вектор на отрицательное число? Здесь нужно использовать противоположный вектор. Логично считать, что он получается при умножении (– 1) на вектор. Зная это, легко умножать вектор и на другие отрицательные числа:

58 vectory

Естественно, что если вектор умножается на ноль, то в результате получается нулевой вектор.

Задание. На рисунке показаны вектора а и b. Найдите вектора

59 vectory

Решение. Для построения снам надо сначала умножить исходные вектора на 4 и 2, а далее полученные результаты сложить:

60 vectory

Для нахождения вектора d надо построить вектор, противоположный вектору 2b, и уже его складывать с 4a:

61 vectory

Наконец, для нахождения вектора е необходимо построить противоположный вектор уже для :

62 vectory

Некоторые правила обычной алгебры, касающиеся операции умножения, справедливы и для векторов. Первый такое правило – это сочетательный закон:

63 vectory

Видно, что мы можем либо сразу умножить вектор а на число 12, либо сначала его умножить на 4, а потом на 3. Результат операции при этом не изменится.

Также в отношении операции умножения векторов на число справедлив распределительный закона, которые позволяют раскрывать скобки:

64 vectory

Например, пусть нам надо сложить вектора и . Распределительный закон говорит, что мы можем поступить двумя способами. В первом случае мы просто строим вектора 2а и 3а и складываем их. Во втором случае мы складываем только числа 2 и 3 (получаем 5), и далее уже умножаем вектор а на число 5:

65 vectory

Есть ещё один распределительный закон, в котором в скобках находится уже сумма векторов, а не чисел:

66 vectory

Этот закон можно применить в случае, когда нам необходимо, например, сложить вектора и 4b. Конечно, можно просто построить их и сложить, однако закон говорит, что мы можем сначала сложить aи b, и уже потом эту сумму умножить на 4:

67 vectory

Сформулированные нами законы сложения и умножения векторов позволяют выполнять действия с векторами так же, как с числами. В том числе можно упрощать выражения, содержащие векторные величины. Например, пусть известны вектора а, b и с, и надо найти вектор

68 vectory

Видно, что выражение значительно упростилось.

Решение задач с помощью векторов

Вектора активно используются в физике при решении многих задач, однако они также помогают доказывать геометрические теоремы. Рассмотрим несколько примеров, и начнем со вспомогательной задачи.

Задание. Известно, что С – это середина отрезка АВ. Докажите, что для любой точки О выполняется равенство:

69 vectory

Используя правило треугольника, вектор ОС можно представить в виде двух различных сумм:

70 vectory

Проанализируем выражение в скобках. Вектора АС и ВС коллинеарны, ведь они лежат на одной прямой АВ. При этом они противоположно направлены. Длина у них одинакова, ведь С – середина АВ. Тогда по определению АС и ВС – противоположные вектора, и их сумма равна нулю:

71 vectory

Задание. Докажите, что если в трапеции провести прямую, проходящую через середины ее оснований, то она также пройдет через точку, в которой пересекаются продолжения боковых сторон трапеции.

Решение. Построим трапецию, обозначим ее вершины и середины оснований:

72 vectory

Здесь ABCD – трапеция, основаниями которой являются отрезки ВС и AD. M и N – их середины. Прямые АВ и CD пересекаются в точке O. Необходимо доказать, что прямая MN также проходит через О.

Заметим, что ∆ОВС и ∆ОАD подобны. Действительно, у них есть общий ∠ВОС, а ∠ОВС и ∠ОАD одинаковы как односторонние углы при секущей АВ, поэтому треугольники подобны по 1-ому признаку. Обозначим коэффициент подобия буквой k, тогда можно записать, что

73 vectory

Так как отрезки ОА и АВ лежат на одной прямой, то вектора ОА и АВ коллинеарны и притом сонаправлены, поэтому в (1) отрезки можно заменить векторами:

74 vectory

(это соотношение мы доказали в предыдущей, вспомогательной задаче).

Аналогичную формулу можно составить и для второго основания и его середины N:

75 vectory

Полученное нами равенство означает, что вектора ON и ОМ коллинеарны, а значит, лежат на одной прямой (эти вектора не могут лежать на параллельных прямых, так как имеют общую точку О). Тогда получается, что О, M и N лежат на одной прямой, ч. т. д.

С прошлых уроков вам уже известно, что векторы можно складывать и делать это вы уже умеете с помощью правила треугольника.

Для того, чтобы изобразить вектор суммы двух векторов  и , от некоторой точки А откладывают вектор . Далее от точки B откладывают вектор . Тогда вектор .

Для дальнейшей работы с векторами нам понадобится знание следующих законов сложения векторов.

Сумма векторов . Этот закон называют переместительным законом: от перемены мест слагаемых сумма не меняется.

И ещё один закон. . Этот закон называют сочетательным законом.

По очереди докажем каждый из них.

Рассмотрим переместительный закон для неколлинеарных векторов  и .

Доказательство.

Итак, от произвольной точки А отложим вектор , и вектор .

На этих векторах построим параллелограмм ABCD.

А теперь, пользуясь правилом треугольника сложения двух векторов, заметим, что , то есть равен сумме векторов .

 

С дугой стороны, ,  

Отсюда можем сделать вывод, что сумма векторов  равна сумме векторов .

Что и требовалось доказать.

Теперь перейдём к доказательству сочетательного закона для трёх неколлинеарных векторов .

От произвольной точки А отложим Вектор , равный вектору . От точки B отложим вектор , равный вектору . А от точки C отложим вектор , равный вектору .

Рассмотрим левую часть равенства, выражающего сочетательный закон. Запишем вектора  как .

В скобках записана сумма векторов . Пользуясь правилом треугольника, можем записать, что эта сумма равна вектору .

А сумма вектора  и , в свою очередь, по правилу треугольника равна вектору .

Теперь аналогично поступим с правой частью равенства, задающего сочетательный закон.

По правилу треугольника .

Отсюда делаем вывод, .

Что и требовалось доказать.

Вернёмся к рисунку из доказательства переместительного закона.

Обратите внимание, если векторы  отложить от одной точки и построить на них параллелограмм, то диагональ этого параллелограмма задаёт вектор суммы векторов  и .

Такое правило сложения векторов называют правилом параллелограмма.

Изобразим вектор суммы для каждой пары векторов, пользуясь правилом параллелограмма.

Первым изобразим вектор суммы векторов  и .

Отложим от произвольной точки А вектор , равный вектору .

Далее от точки А отложим вектор , равный вектору .

Теперь на этих векторах построим параллелограмм ABCD. Вектор  является вектором суммы векторов  и .

Далее изобразим вектор суммы векторов  и .

Обратите внимание, что каждый раз вектор суммы берёт своё начала из точки начала обоих векторов-слагаемых.

Последним изобразим вектор суммы векторов  и .

Задача. В треугольнике  сторона  равна  — , а .

Найти длину векторов   и .

Решение.

Ответ: .

Давайте подведём итоги нашего урока.

Сегодня вы познакомились с законами сложения векторов. А именно с переместительным и сочетательным законами сложения векторов. А так же освоили правило параллелограмма для сложения двух векторов.

Оно заключается в следующем: чтобы сложить неколлинеарные векторы  и , нужно отложить от произвольной точки А векторы  и  равные векторам  и  соответственно, и построить на них параллелограмм ABCD. Тогда вектор
 равен сумме векторов  и .

Пройдите тест

Нажмите здесь

В различных школьных учебниках определение равных векторов даётся по-разному.

В классическом учебнике Погорелова А. В. понятие равных векторов вводится с помощью параллельного переноса.

Определение 1

Два вектора называются равными, если они совмещаются параллельным переносом.

(то есть существует параллельный перенос, который переводит начало и конец одного вектора соответственно в начало и конец другого).

ravnye-vektoryНапример, изображенные на рисунке

    [overrightarrow {AB} ]

и

    [overrightarrow {CD} ]

— равные векторы.

Равенство векторов обозначают так:

    [overrightarrow {AB} = overrightarrow {CD} ]

Теорема

(Свойства равных векторов)

1) Равные векторы сонаправлены и имеют равные длины.

2) Равные векторы имеют равные координаты.

3) От любой точки можно отложить вектор, равный данному, и притом только один.

Доказательство:

1) 1-е свойство вытекает непосредственно из определения равных векторов и свойств параллельного переноса.

2) Пусть дан вектор

    [overrightarrow {AB} ]

с началом в точке A(x1; y1) и концом в точке B(x2; y2).

По определению равных векторов, вектор

    [overrightarrow {A^/ B^/ } ]

равный данному, получен из

    [overrightarrow {AB} ]

параллельным переносом.

Если этот параллельный перенос задан формулами

    [left{ begin{array}{l} x^/ = x + m, \ y^/ = y + n, \ end{array} right.]

то A′(x1+m; y1+n), B′(x2+m; y2+n).

Найдём координаты каждого из векторов:

    [overrightarrow {AB} (x_2 - x_1 ;y_2 - y_1 ),]

    [overrightarrow {A^/ B^/ } ((x_2 + m) - (x_1 + m);(y_2 + n) - (y_1 + n)),]

    [overrightarrow {A^/ B^/ } (x_2 + m - x_1 - m;y_2 + n - y_1 - n),]

    [overrightarrow {A^/ B^/ } (x_2 - x_1 ;y_2 - y_1 ).]

То есть координаты равных векторов

    [overrightarrow {AB} ]

и

    [overrightarrow {A^/ B^/ } ]

равны.

Что и требовалось доказать.

Таким образом, координаты задают длину и направление вектора, но не фиксируют его.

3) Пусть даны вектор

    [overrightarrow {AB} ]

и точка C.
Существует и притом единственный параллельный перенос, при котором точка A переходит в точку C — параллельный перенос на вектор

    [overrightarrow {AC} ]

При таком параллельном переносе вектор

    [overrightarrow {AB} ]

переходит в вектор

    [overrightarrow {CD.} ]

По определению равных векторов,

    [overrightarrow {CD} = overrightarrow {AB} .]

Что и требовалось доказать.

На практике, если требуется отложить от некоторой точки вектор, равный данному, удобно это делать с помощью параллелограмма (если точка, от которой откладывается вектор, не лежит на прямой, содержащей этот вектор).

postroit-vektor-ravnyj-dannomuНапример,

вектор

    [overrightarrow {CD} ,]

отложенный от точки C, равен вектору

    [overrightarrow {AB} ]

Теорема

(Признаки равенства векторов) 

1) Если векторы сонаправлены и имеют одинаковые длины, то они равны.

2) Если у векторов соответствующие координаты равны, то векторы равны.

Доказательство:

1) priznaki-ravenstva-vektorovПусть векторы

    [overrightarrow {AB} ]

и

    [overrightarrow {CD} ]

сонаправлены и имеют одинаковые длины.

Параллельный перенос, который переводит точку A в точку C, совмещает луч CD с лучом AB (поскольку векторы одинаково направлены). А так как длины отрезков CD и AB равны, то точка D при этом совместится с точкой B. Таким образом, этот параллельный перенос вектор

    [overrightarrow {AB}]

переводит в вектор

    [overrightarrow {CD}]

По определению равных векторов,

    [overrightarrow {CD} = overrightarrow {AB} .]

Что и требовалось доказать.

2) Пусть векторы

    [overrightarrow {AB} ]

и

    [overrightarrow {A^/ B^/ } ]

имеют равные координаты.
Если A(x1; y1), B(x2; y2), A′(x′1; y′1), B′(x′2; y′2), то по условию x2-x1=x′2-x′1,y2-y1=y′2-y′1.

Отсюда x′2=x2+x′1-x1, y′2 =y2+y′1-y1.

Параллельный перенос, заданный формулами

    [left{ begin{array}{l} x^/ = x - x_1 + x_1^/ , \ y^/ = y - y_1 + y_1^/ , \ end{array} right.]

переводит точку A в точку A′, точку B — в точку B′, то есть совмещает векторы

    [overrightarrow {AB} ]

и

    [overrightarrow {A^/ B^/ } ]

А это означает, что

    [overrightarrow {A^/ B^/ } = overrightarrow {AB} .]

Что и требовалось доказать.

В учебнике Атанасяна Л. С. и др. дано другое определение равных векторов.

Определение 2

Два вектора называются равными, если они сонаправлены и имеют одинаковую длину.

Добавить комментарий