Как найти размах математика


Загрузить PDF


Загрузить PDF

В статистике размах – разница между наибольшим и наименьшим результатами наблюдений. Размах показывает разброс значений в совокупности данных. Если размах большой, то значения в совокупности сильно разбросаны; если размах – небольшая величина, то значения в совокупности лежат близко друг к другу. Если вы хотите узнать, как вычислить размах, выполните следующие действия.

Шаги

  1. Изображение с названием Calculate Range Step 1

    1

    Запишите значения совокупности данных. Чтобы найти размах, нужно перечислить все значения для определения максимального и минимального чисел. Например: 14 , 19, 20 , 24, 25, 28.

    • Будет легче определить наибольшее и наименьшее значение в совокупности, если вы запишете значения в порядке возрастания. В нашем примере: 14, 19, 20, 24, 24, 25, 28 .
    • Запись значений по возрастанию также может помочь вам сделать другие расчеты, как например моду, среднее или медиану совокупности.
  2. Изображение с названием Calculate Range Step 2

    2

    Определите максимальное и минимальное числа. В нашем примере, это 14 и 28.

  3. Изображение с названием Calculate Range Step 3

    3

    Вычтете наименьшее число из наибольшего. Теперь, когда вы определили самое маленькое и самое большое число в совокупности, вам нужно вычесть их друг из друга: 25 – 14 = 11 – это и есть размах.

  4. Изображение с названием Calculate Range Step 4

    4

    Выделите размах. Как только вы нашли размах, четко выделите его. Это поможет вам избежать путаницы с любыми другими статистическими величинами, такими как среднее, медиана или мода.

    Реклама

Советы

  • Медиана статистической совокупности данных – такое значение, которое делит эту совокупность на две равные части. Таким образом, медиана не вычисляется путем деления размаха на 2. Чтобы найти медиану, необходимо перечислить значения данных по возрастанию и найти значение в середине списка. Это значение и является медианой. Например, если у Вас есть список из 29 значений (по возрастанию), пятнадцатое значение будет равноудалено от верхней и нижней части этого списка, так что пятнадцатое значение является медианой, независимо от того, как это значение соотносится с размахом.
  • Вы также можете интерпретировать “размах” в алгебраических выражениях, но сначала Вы должны понять концепцию алгебраической функции. Так как функция может быть задана на любом числе, даже неизвестном, то это число представляется в виде переменной (обычно «х»). Область определения – множество всех возможных значений х. Область значения функции (размах) – множество всех возможных значений функции (у) при определенных значениях х. К сожалению, нет единого способа вычислить область значения функции. Иногда, построив график функции или вычислив несколько значений, можно получить четкую закономерность.

Реклама

Об этой статье

Эту страницу просматривали 52 206 раз.

Была ли эта статья полезной?

Среднее арифметическое нескольких величин – это отношение суммы величин к их количеству.

Правило. Чтобы вычислить среднее арифметическое нескольких чисел, нужно взять сумму этих чисел и разделить все на количество слагаемых. Частное и будет средним арифметическим этих чисел.

Например: найдем среднее арифметическое чисел 2; 6; 9; 15.

У нас четыре числа, значит надо их сумму разделить на четыре. Это и будет среднее арифметическое данных чисел: (2 + 6 + 9 + 15) : 4 = 8.

Размах ряда чисел – это разность между наибольшим и наименьшим из этих чисел.

Например: найдем размах чисел 2; 5; 8; 12; 33.

Наибольшее число здесь – 33, наименьшее – 2. Значит, размах составляет 31, т. е.: 33 – 2 = 31.

Мода ряда чисел – это число, которое встречается в данном ряду чаще других.

Например: найдем моду ряда чисел 1; 7; 3; 8; 7; 12; 22; 7; 11; 22; 8.

Чаще всего в этом ряде чисел встречается число 7 (3 раза). Оно и является модой данного ряда чисел.

Медианой упорядоченного ряда чисел с нечетным числом членов называется число, записанное посередине, а медианой упорядоченного ряда чисел с четным числом членов называется среднее арифметическое двух чисел, записанных посередине.

Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного ряда.

Например: в ряде чисел 2; 5; 9; 15; 21 медианой является число 9, находящееся посередине.

Найдем медиану в ряде чисел 4; 5; 7; 11; 13; 19.

Здесь четное количество чисел (6). Поэтому ищем не одно, а два числа, записанных посередине. Это числа 7 и 11. Находим среднее арифметическое этих чисел: (7 + 11) : 2 = 9. Число 9 является медианой данного ряда чисел.

  1. В институте сдавали зачет по высшей математике. В группе было 10 человек, и они получили соответствующие оценки: 3; 5; 5; 4; 4; 4; 3; 2; 4; 5.

    Какую оценку получали чаще всего? Каков средний балл сдавшей зачет группы?

  2. Дан ряд чисел: 175; 172; 179; 171; 174; 170; 172; 169.

    Найдите медиану и размах ряда.

  3. Дан ряд чисел: 175; 172; 179; 171; 174; 170; 172; 169.

    Найдите моду ряда и среднее арифметическое ряда.

  4. Имеются следующие данные о месячной заработной плате пяти рабочих (тг): 126000; 138000; 132000; 141000; 150000.

    Найдите среднюю заработную плату.

  5. Магазин продает 8 видов булочек по следующим ценам: 31; 22; 24; 27; 30; 36; 19; 27.

    Найдите разность среднего арифметического и медианы этого набора.

  6. Найдите объем и медиану числового ряда.

    9; 7; 1; 1; 11; 5; 1.

  7. Товарные запасы хлопчатобумажных тканей в магазине за первое полугодие составили (тыс. тг) на начало каждого месяца:

    I II III IV V VI VII
    37 34 35 32 36 33 38

    Определите средний товарный запас хлопчатобумажных тканей за первое полугодие.

  8. Провели несколько измерений случайной величины: 2,5; 2,2; 2; 2,4; 2,9; 1,8.

    Найдите среднее арифметическое этого набора чисел.

  9. Провели несколько измерений случайной величины: 6; 18; 17; 14; 4; 22.

    Найдите медиану этого набора чисел.

  10. Провели несколько измерений случайной величины:

    800; 3200; 2000; 2600; 2900; 2000. Найдите моду этого набора чисел.

  11. Магазин продает 8 видов хлеба по следующим ценам: 60, 75, 80, 85, 90, 100, 110, 120 тенге.

    Найдите разность среднего арифметического и медианы этого набора.

  12. Дан числовой ряд: 1; 7; 3; 8; 7; 12; 22; 7; 11; 22; 7,8.

    Найдите среднее арифметическое, размах и моду.

Среднее арифметическое, размах, мода и медиана

  1. Алгебра
  2. Среднее арифметическое, размах, мода и медиана
Статистические характеристики

количество чисел

Калькулятор вычислит среднее арифметическое чисел, а также размах ряда чисел, моду ряда
чисел, медиану ряда. Для вычисления укажите количество чисел, добавьте числа и нажмите
рассчитать.

Среднее арифметическое, размах, мода и медиана

Средним арифметическим ряда чисел называется частное от деления суммы этих
чисел на число слагаемых.

Для ряда a1,a1,..,an среднее арифметическое вычисляется по
формуле:

begin{align}
& overline{a}=frac{a_1+a_2+…+a_n}{n}\
end{align}

Найдем среднее арифметическое для чисел 5,24, 6,97, 8,56, 7,32 и 6,23.

begin{align}
& overline{a}=frac{5,24+6,97+8,56+7,32+6,23}{5}=6.864\
end{align}


Размахом ряда чисел называется разность между наибольшим и наименьшим из
этих чисел.

Размах ряда 5,24, 6,97, 8,56, 7,32, 6,23 равен 8,56-5,24=3.32


Модой ряда чисел называется число, которое встречается в данном ряду чаще
других.

Ряд чисел может иметь более одной моды, а может не иметь моды совсем.

Модой ряда 32, 26, 18, 26, 15, 21, 26 является число 26, встречается 3 раза.

В ряду чисел 5,24, 6,97, 8,56, 7,32 и 6,23 моды нет.

Ряд 1, 1, 2, 2, 3 содержит 2 моды: 1 и 2.


Медианой упорядоченного ряда чисел с нечётным числом членов называется
число, записанное посередине, а медианой упорядоченного ряда чисел с чётным
числом членов называется среднее арифметическое двух чисел, записанных посередине.

Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного
ряда.

Медиана ряда 4, 1, 2, 3, 3, 1 равна 2.5.

Примеры

Рассмотрим примеры нахождения среднего арифметического чисел, а также размаха, медианы и моды
ряда.

  1. Среднее арифметическое чисел 30, 5, 23, 5, 28, 30

    begin{align}
    & overline{a}=frac{30+5+23+5+28+30}{6}=20frac{1}{6}\
    end{align}

    Размах ряда: 30-5=25

    Моды ряда: 5 и 30

    Медиана ряда: 25.5

  2. Среднее арифметическое чисел 40, 35, 30, 25, 30, 35

    begin{align}
    & overline{a}=frac{40+35+30+25+30+35}{6}=32frac{1}{2}\
    end{align}

    Размах ряда: 40-25=15

    Моды ряда: 30, 35

    Медиана ряда: 32.5

  3. Среднее арифметическое чисел 21, 18,5, 25,3, 18,5, 17,9

    begin{align}
    & overline{a}=frac{21+18,5+25,3+18,5+17,9}{5}=20,24\
    end{align}

    Размах ряда: 25,3-17,9=7,4

    Мода ряда: 18,5

    Медиана ряда: 18,5

Примеры

Примеры нахождения среднего арифметического отрицательных и вещественных чисел.

  1. Среднее арифметическое чисел 67,1, 68,2, 67,1, 70,4, 68,2

    begin{align}
    & overline{a}=frac{67,1+68,2+67,1+70,4+68,2}{5}=68,2\
    end{align}

    Размах ряда: 70,4-67,1=3,3

    Моды ряда: 67.1, 68.2

    Медиана ряда: 68.2

  2. Среднее арифметическое чисел 0,6, 0,8, 0,5, 0,9, 1,1

    begin{align}
    & overline{a}=frac{0,6+0,8+0,5+0,9+1,1}{5}=0.78\
    end{align}

    Размах ряда: 1,1-0,5=0.6

    Ряд не имеет моды

    Медиана ряда: 0.8

  3. Среднее арифметическое чисел -21, -33, -35, -19, -20, -22

    begin{align}
    & overline{a}=frac{(-21)+(-33)+(-35)+(-19)+(-20)+(-22)}{6}=-25\
    end{align}

    Размах ряда: (-19)-(-35)=16

    Ряд не имеет моды

    Медиана ряда: -21,5

  4. Среднее арифметическое чисел -4, -6, 0, -4, 0, 6, 8, -12

    begin{align}
    & overline{a}=frac{(-4)+(-6)+0+(-4)+0+6+8+(-12)}{8}=-1,5\
    end{align}

    Размах ряда: 8-(-12)=20

    Моды ряда: -4, 0

    Медиана ряда: -2

  5. Среднее арифметическое чисел 275, 286, 250, 290, 296, 315, 325

    begin{align}
    & overline{a}=frac{275+286+250+290+296+315+325}{7}=291\
    end{align}

    Размах ряда: 325-250=75

    Ряд не имеет моды

    Медиана ряда: 290

  6. Среднее арифметическое чисел 38, 42, 36, 45, 48, 45, 45, 42, 40, 47, 39

    begin{align}
    & overline{a}=frac{38+42+36+45+48+45+45+42+40+47+39}{11}=42frac{6}{11}\
    end{align}

    Размах ряда: 48-36=12

    Мода ряда: 45

    Медиана ряда: 42

  7. Среднее арифметическое чисел 3,8, 7,2, 6,4, 6,8, 7,2

    begin{align}
    & overline{a}=frac{3,8+7,2+6,4+6,8+7,2}{5}=6,28\
    end{align}

    Размах ряда: 7,2-3,8=3,4

    Мода ряда: 7,2

    Медиана ряда: 6,8

  8. Среднее арифметическое чисел 21,6, 37,3, 16,4, 12,6

    begin{align}
    & overline{a}=frac{21,6+37,3+16,4+12,6}{4}=21,025\
    end{align}

    Размах ряда: 37,3-12,6=24,7

    Мода ряда: 12,6

    Медиана ряда: 17,1

Кроме среднего арифметического числовой ряд можно описать и с помощью других характеристик. Одной из них является размах ряда.

В статистике размахом ряда называют разницу между самым большим и самым маленьким результатами наблюдений. Другими словами, в совокупности данных размах отражает разброс значений.

Таким образом, если размах — большая величина, то и значения в совокупности будут сильно разбросаны, а если размах маленький, то, соответственно, значения будут располагаться рядом друг с другом.

На письме размах ряда обычно сокращенно обозначают буквой $R$.

Размах ряда — это разность между наибольшим и наименьшим значениями чисел.

Формула для расчета

Для того чтобы рассчитать размах ряда, можно применить следующую формулу:

$$textcolor{blue}{R}=textcolor{lightblue}{x}-textcolor{green}{y}$$

В свою очередь, $textcolor{blue}{R}$ — размах ряда, $textcolor{lightblue}{x}$ — максимальное значение, а $textcolor{green}{y}$ — минимальное. Используя эту формулу можно с легкостью решать задачи, где нужно найти значение $textcolor{blue}{R}$.

Чтобы найти размах ряда нужно из наибольшего значения вычесть наименьшее.

Рассмотрим на примере. Дровосек пилил бревно. Чтобы брёвна можно было аккуратно сложить, он старался делать их примерно одной длины. Когда работа была сделана, он решил проверить, как хорошо у него это получилось. Для этого он измерил все брёвна и получил такие значения:

$$43, 32, 36, 51, 48$$

Рассчитаем размах ряда. Выбираем самое большое и самое маленькое число.

$$43, textcolor{green}{32}, 36, textcolor{lightblue}{51}, 48$$

Вычитаем из наибольшего наименьшее:

$$textcolor{lightblue}{51}-textcolor{green}{32} = 19$$

$19$ — размах ряда.

Среднее арифметическое

Средним арифметическим ряда чисел
называется частное от деления суммы этих чисел на число слагаемых.

Определить сколько деталей в среднем изготовили рабочие  за
смену:

(23+20+25+20+23+25+35+37+34+23+30+29):12=324:12=27(мин)

27-среднее
арифметическое рассматриваемого ряда.

Размах

Размахом ряда чисел называется разность
между наибольшим и наименьшим из этих чисел.

Размах = наибольшее число – наименьшее число

23; 20; 25; 20; 23; 25; 35; 37; 34; 23; 30; 29

Наибольшее количество деталей 37

Наименьшее – 20 деталей

Размах = 37 – 20 = 17 деталей.

Мода

Модой
ряда чисел называется число, наиболее часто встречающееся в данном ряду.

23; 20; 25; 20; 23; 25; 35; 37; 34; 23; 30; 29

Часто встречается число –  23

23 – мода рассматриваемого ряда.

Медиана

Медиана – число, которое разделяет набор
чисел на две части, одинаковые по численности.

Алгоритм нахождения медианы набора
чисел:

Упорядочить числовой набор (составить ранжированный ряд).

Одновременно зачеркиваем “самое большое” и “самое маленькое”
числа данного набора чисел до тех пор, пока не останется одно число или два
числа.

Если осталось одно число, то оно и есть медиана.

Если осталось два числа, то медианой будет среднее
арифметическое двух оставшихся чисел.

23; 20; 25; 20; 23; 25; 35; 37; 34; 23; 30; 29

20;  20; 23; 23; 23;
25; 25; 29; 30; 34; 35; 37

Медиана этого ряда: (25+25): 2=25.

Среднее
арифметическое, размах и мода, медиана.

         Проведя
учет деталей, изготовленных за смену рабочими одной бригады, получили такой ряд
данных:

23; 20; 25; 20; 23;
25; 35; 37; 34; 23; 30; 29

Задания
для самостоятельного решения

1

Записан  рост
(в  сантиметрах)  пяти  учащихся: 158, 166, 134, 130, 132.  На сколько
отличается  среднее  арифметическое  этого  набора  чисел  от  его медианы?

2

В
течение четверти Ира получила следующие отметки по математике: три «двойки», 
две «тройки»,  десять «четверок»  и  пять «пятерок». Найдите сумму среднего
арифметического и медианы ее оценок.

3

Записан рост (в
сантиметрах) пяти учащихся: 149, 136, 163, 152, 145. Найдите разность среднего
арифметического этого набора чисел и его медианы?

4

Записан
возраст (в годах) семи сотрудников: 25, 37, 42, 24, 33, 50, 27. На сколько

отличается
среднее арифметическое этого набора чисел от его медианы?

5

Курс доллара в
течение недели: 30,48; 30,33; 30,45; 30,28; 30,37; 30,29; 30,34. Найдите медиану
этого ряда.

6

Каждые 
полчаса  гидролог  замеряет  температуру  воды  в  водоеме  и получает

следующий 
ряд  значений: 12,8; 13,1; 12,7;  13,2; 12,7; 13,3; 12,6; 12,9; 12,7; 13;
12,7. Найдите медиану этого ряда.

7

Стоимость  мясных 
блюд  в  кафе представляет  ряд: 198; 214; 222; 224; 229; 173; 189. Найдите 
разницу  между  средним арифметическим и медианой этого ряда.

8

Учащимися 
класса  за  контрольную  работу  по  алгебре  были  получены оценки:

3;
4; 4; 4; 2; 5; 5; 5; 3; 3; 4; 3; 3; 5; 4. Найдите разницу между средним
арифметическим и медианой этого ряда.

9

Температура
воздуха в Москве в  течение недели представляла ряд 23, 25, 27,  24, 21, 28,
27 градусов ниже нуля. Найдите сумму медианы и размаха этого ряда чисел.

10

На 
соревнованиях  по  стрельбе  учащимися 9  класса  были  показаны результаты,

представляющие
ряд 82, 49, 61, 77, 58, 42 очков. Найдите среднее арифметическое этого ряда
чисел. 

11

Продажа фруктов
в магазине за неделю представляет ряд 345, 229, 456, 358, 538, 649, 708 кг в 
день.  Найдите  разницу  между  медианой  и средним арифметическим этого ряда
чисел.  

12

Повышение 
цен  на  некоторые  продукты  представляет  собой  ряд 3,4; 6,5; 2,8; 3,7;
5,1; 4,1; 5,9 процентов. Найдите разницу между медианой и размахом этого ряда
чисел. 

13

В транспортном
агентстве в течение 6 дней фиксировалось количество заказов на доставку груза.
Получили следующий ряд данных: 40, 41, 39, 36, 41, 31. На сколько отличается
мода этого набора чисел от его среднего арифметического?

14

Игрок в боулинг сделал 5 бросков и выбил 8, 9, 7, 10, 6 кеглей.
Найдите среднее

арифметическое этого ряда чисел.

15

Средняя
температура в январе –18 градусов, в феврале –15 градусов, в марте –7 
градусов, в  апреле +12  градусов.  Найдите  среднее арифметическое этого
ряда чисел.

Ответы

1

10

2

7,85

3

0

4

1

5

30,34

6

12,8

7

7

8

0,2

9

32

10

61,5

11

13

12

0,4

13

3

14

8

15


7

Добавить комментарий