Как найти размах теория вероятности


Загрузить PDF


Загрузить PDF

В статистике размах – разница между наибольшим и наименьшим результатами наблюдений. Размах показывает разброс значений в совокупности данных. Если размах большой, то значения в совокупности сильно разбросаны; если размах – небольшая величина, то значения в совокупности лежат близко друг к другу. Если вы хотите узнать, как вычислить размах, выполните следующие действия.

Шаги

  1. Изображение с названием Calculate Range Step 1

    1

    Запишите значения совокупности данных. Чтобы найти размах, нужно перечислить все значения для определения максимального и минимального чисел. Например: 14 , 19, 20 , 24, 25, 28.

    • Будет легче определить наибольшее и наименьшее значение в совокупности, если вы запишете значения в порядке возрастания. В нашем примере: 14, 19, 20, 24, 24, 25, 28 .
    • Запись значений по возрастанию также может помочь вам сделать другие расчеты, как например моду, среднее или медиану совокупности.
  2. Изображение с названием Calculate Range Step 2

    2

    Определите максимальное и минимальное числа. В нашем примере, это 14 и 28.

  3. Изображение с названием Calculate Range Step 3

    3

    Вычтете наименьшее число из наибольшего. Теперь, когда вы определили самое маленькое и самое большое число в совокупности, вам нужно вычесть их друг из друга: 25 – 14 = 11 – это и есть размах.

  4. Изображение с названием Calculate Range Step 4

    4

    Выделите размах. Как только вы нашли размах, четко выделите его. Это поможет вам избежать путаницы с любыми другими статистическими величинами, такими как среднее, медиана или мода.

    Реклама

Советы

  • Медиана статистической совокупности данных – такое значение, которое делит эту совокупность на две равные части. Таким образом, медиана не вычисляется путем деления размаха на 2. Чтобы найти медиану, необходимо перечислить значения данных по возрастанию и найти значение в середине списка. Это значение и является медианой. Например, если у Вас есть список из 29 значений (по возрастанию), пятнадцатое значение будет равноудалено от верхней и нижней части этого списка, так что пятнадцатое значение является медианой, независимо от того, как это значение соотносится с размахом.
  • Вы также можете интерпретировать “размах” в алгебраических выражениях, но сначала Вы должны понять концепцию алгебраической функции. Так как функция может быть задана на любом числе, даже неизвестном, то это число представляется в виде переменной (обычно «х»). Область определения – множество всех возможных значений х. Область значения функции (размах) – множество всех возможных значений функции (у) при определенных значениях х. К сожалению, нет единого способа вычислить область значения функции. Иногда, построив график функции или вычислив несколько значений, можно получить четкую закономерность.

Реклама

Об этой статье

Эту страницу просматривали 51 676 раз.

Была ли эта статья полезной?

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Ёжику Понятно

Видео-уроки на канале Ёжику Понятно. Подпишись!

Оглавление страницы:

Статистика. Числовые характеристики ряда чисел

Средним арифметическим нескольких чисел называется число, равное отношению суммы этих чисел к их количеству.

Другими словами, среднее арифметическое – это дробь, в числителе которой стоит сумма чисел, а взнаменателе – их количество.

Пример:

  • Вычислить среднее арифметическое данных чисел:  6, 10, 16, 20.

Среднее арифметрическое: ( 6 + 10 + 16 + 20 ) 4 = 52 4 = 13

Медиана ряда чисел – это число, стоящее посередине упорядоченного ряда чисел, если количество чисел в ряду нечётное.

Пример:

  • Найти медиану ряда чисел:  12, 2, 11, 3, 7, 10, 3

Сперва упорядочим этот ряд (расположим числа в порядке возрастания, от меньшего к большему):  2, 3, 3,  7 , 10, 11, 12

Посередине данного упорядоченного ряда стоит число 7.

Медиана ряда чисел – это полусумма двух стоящих посередине упорядоченного ряда чисел, если количество чисел в ряду чётное.

Пример:

  • Найти медиану ряда чисел:  8, 3, 10, 1, 16, 2, 3

Сперва упорядочим этот ряд (расположим числа в порядке возрастания, от меньшего к большему):   2, 3,  7 , 10 , 11, 12

Посередине данного упорядоченного ряда стоят два числа: 7 и 10.

Их полусумма равна: 7 + 10 2 = 17 2 = 8,5

Размах ряда чисел – это разность между наибольшим и наименьшим числом.

Пример:

  • Найти размах ряда чисел: 8, 3, 10, 1, 16, 2, 3

Для удобства упорядочим этот ряд: 1, 2, 3, 3, 8, 10, 16

Наибольшее значение ряда: 16. Наименьшее значение ряда: 1.

Размах:  16 − 1 = 15

Мода ряда чисел – наиболее часто встречающееся число в этом ряду.

Ряд чисел может иметь более одной моды, а может вообще не иметь моды.

Примеры:

  1. Найти моду ряда: 1,  5,  6,  3 , 10,  32,  4,  3

Число, встречающееся в этом ряду чаще всех: 3.

Данный ряд имеет моду: 3.

  1. Найти моду ряда: 5, 2, 3, 4, 1, 0, 8

Каждое число в данном ряде встречается одинаковое количество раз (один раз).

Данный ряд не имеет моды.

  1. Найти моду ряда: 9 , 1 , 4 , 10 , 17 , 1 , 33 , 6 , 9 , 8 , 5 , 5

Числа 1, 5, 9  встречаются в этом ряде наибольшее количество раз (по два раза).

Данный ряд имеет три моды: 1, 5, 9.

Вероятности

Случайное событие – это событие, которое может произойти, а может не произойти.

Мы называем событие случайным, если нельзя утверждать, что это событие в данных обстоятельствах непременно произойдёт.

События обозначаются заглавными латинскими буквами.

Частота случайного события A в серии опытов – это отношение числа тех опытов, в которых событие A произошло, к общему числу проведенных опытов.

Примеры:

  1. Какова частота события «выпал орёл», если в серии опытов из 20 бросков монеты решка выпала 8 раз?

Если решка выпала 8 раз, то орёл выпал 20 − 8 = 12 раз.

Частота: 12 20 = 6 10 = 0,6

  1. Какова частота события «выпало чётное число очков» в серии опытов из восьми бросков кубика, если результаты представлены в виде числового ряда: 3, 2, 3, 5, 1, 1, 6, 4

Как мы видим, чётных чисел выпало три штуки.

Частота: 3 8 = 0,375

Каждое случайное событие делится на несколько элементарных исходов.  Они делятся на благоприятные исходы и неблагоприятные исходы.

Например, для события «выпало четное число очков» при броске кубика:

  • Благоприятные исходы:

«выпало два очка», «выпало четыре очка», «выпало шесть очков»

  • Неблагоприятные исходы:

«выпало одно очко», «выпало три очка», «выпало пять очков»

Все возможные исходы = благоприятные исходы + неблагоприятные исходы.

Вероятность случайного события P ( A ) – это отношение благоприятных исходов m к общему числу исходов n. P ( A ) = m n

Вероятность случайного события лежит в пределах от 0 до 1. 0 ≤ P ( A ) ≤ 1

Сумма вероятностей всех элементарных исходов случайного эксперимента равна 1.

Примеры:

  1. Какова вероятность вытащить из шляпы, в которой лежат три синих шара, белого кролика?

Число благоприятных исходов: m = 0 , так как ни одного кролика нет.

Число всех возможных исходов: n = 3 , так как есть три объекта, которые можно достать из шляпы.

A=«достать кролика», посчитаем вероятность этого события. P ( A ) = m n = 0 3 = 0

  1. Какова вероятность вытащить из шляпы, в которой лежат три синих шара, синий шар?

Число благоприятных исходов: m = 3 , так как каждый из трех шариков синий, каждый подходит.

Число всех возможных исходов: n = 3 , так как есть три объекта, которые можно достать из шляпы.

A=«достать синий шар», посчитаем вероятность этого события. P ( A ) = m n = 3 3 = 1

  1. Какова вероятность вытащить из шляпы, в которой лежат три синих шара и девять красных шаров, синий шар?

Число благоприятных исходов: m = 3 , так как всего синих шаров в шляпе три.

Число всех возможных исходов: n = 3 + 9 = 12 , так как всего в шляпе 12 объектов, которые можно достать.

A=«достать синий шар», посчитаем вероятность этого события. P ( A ) = m n = 3 12 = 0,25

Событие A ¯ называется противоположным событию A, если событие A ¯ происходит тогда, когда событие A не происходит (то есть вместо события A происходит событие A ¯ ).

Примеры противоположных событий:

  1. A : «купить молоко», A ¯ : «не купить молоко»
  1. A : «прибор исправен», A ¯ : «прибор неисправен»
  1. A : «выпал орёл», A ¯ : «выпала решка»
  1. A : «на игральной кости выпало нечетное число», A ¯ : «на игральной кости выпало чётное число»

Вероятность противоположного события определяется по формуле: P ( A ¯ ) = 1 − P ( A )

Примеры:

  1. Вероятность того, что новая шариковая ручка пишет плохо (или не пишет), равна 0,28. Покупатель в магазине выбирает одну шариковую ручку. Найдите вероятность того, что эта ручка пишет хорошо.

Пусть событие A: «ручка пишет плохо».

Противоположное событие: A ¯ : «ручка пишет хорошо»

P ( A ) = 0,28. Найдём вероятность противоположного события по формуле:

P ( A ¯ ) = 1 − P ( A ) = 1 − 0,28 = 0,72

  1. В среднем из 100 карманных фонариков, поступивших в продажу, 8 неисправных. Найдите вероятность того, что выбранный наудачу в магазине фонарик окажется исправен.

Пусть событие A: «фонарик неисправен»

Противоположное событие A ¯ : «фонарик исправен»

P ( A ) = 8 100 = 0,08

P ( A ¯ ) = 1 − P ( A ) = 1 − 0,08 = 0,92

Ответ: 0,92

Теоремы о вероятностных событиях

Два события называются несовместными, если они не могут произойти одновременно, то есть если наступление одного из них исключает наступление другого. В противном случае события называются совместными.

Примеры несовместных событий:

  • Выпадение 1, выпадение 5, выпадение 6 при бросании кости

За один бросок может выпасть либо 1, либо 5, либо 6. Одновременно два или три значения выпасть не могут, только одно.

  • Выпадение орла, выпадение решки при броске монеты

За один бросок может выпасить либо орёл, либо решка, одновременно орёл и решка выпасть не могут.

Теорема сложения вероятностей несовместных событий:

Вероятность появления одного из двух (или более) несовместных событий равна сумме вероятностей этих событий.

P ( A + B ) = P ( A ) + P ( B )

Примеры:

  1. Паша на экзамене вытягивает билет. Все билеты относятся к одной из трех тем: «углы», «треугольники», «четырехугольники». Вероятность того, что Паше попадется билет по теме «треугольники» равна 0,22, вероятность того, что ему попадется билет по теме «четырехугольники» равна 0,31, вероятность того, что ему попадется билет по теме «углы» равна 0,47. Паша знает тему «углы» и тему «треугольники», но «четырехугольники» вызывают у него затруднения. Найдите вероятность того, что ему попадется билет по теме «треугольники» или по теме «углы».

Решение:

Событие A = «вытащить билет по теме углы» и событие B = «вытащить билет по теме треугольники» – несовместные.

Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий:

P ( A + B ) = P ( A ) + P ( B )

P ( A + B ) = 0,47 + 0,22 = 0,69

Ответ: 0,69

  1. Макар играет в лотерею. Вероятность выиграть стиральную машину равна 0,001, вероятность выиграть денежный приз 0,013, вероятность выиграть сувенир 0,04. Найдите вероятность того, что лотерейный билет принесёт Макару какой-нибудь приз.

Решение:

Событие A = «выиграть машину», событие B = «выиграть денежный приз» и событие C = «выиграть сувенир» несовместные.

Вероятность появления одного из трех несовместных событий равна сумме вероятностей этих событий:

P ( A + B + C ) = P ( A ) + P ( B ) + P ( C )

P ( A + B + C ) = 0,001 + 0,013 + 0,04 = 0,054

Ответ: 0,054

Два события называются независимыми, если наступление одного из них не влияет на вероятность наступления другого. В противном случает события называются зависимыми.

Примеры независимых событий:

  • Игральный кубик бросают два раза. Выпадение трех очков при первом броске и выпадение четырех очков при втором броске являются независимыми событиями.

При первом броске вероятность выпадания трех очков равна 1 6 , при втором броске вероятность выпадания четырех очков снова равна 1 6 . Не смотря на то, что кубик кидают два раза, у него по-прежнему остаётся шесть граней, при каждом новом броске может выпасть одно из шести чисел с той же самой вероятностью 1 6 , вне зависимости от того, что выпадало до этого.

  • Монету бросают три раза. Выпадение орла при первом броске, выпадение орла при втором броске, выпадение орла при третье броске явлюятся независимыми событиями.

При первом броске вероятность выпадения орла равна 0,5, при втором броске вероятность выпадения орла равна 0,5, при третьем броске вероятность выпадения орла равна 0,5. Не смотря на то, что монету кидают несколько раз, при каждом новом броске может выпасть орёл или решка с той же самой вероятностью 0,5, вне зависимости от того, что выпадало до этого.

Примеры зависимых событий:

  • В шляпе лежат три синих шара и два красных. Последовательно извлекются два шара. Извлечь в первый раз синий шар и извлечь во второй раз синий шар – два зависимых события.

Почему же они зависимые? Потому что первоначально вероятность вытащить синий шар равна 3 5 (всего шаров 5, синих 3). После того, как один синий шар вытащили, количество благоприятных исходов изменилась, общее количество шаров изменилось. При следующем вынимании шара из шляпы вероятность вытащить синий шар равна 2 4 = 1 2 (всего шаров 4, синих 2). Таким образом наступление первого события влияет на вероятность наступления второго.

Теорема умножения вероятностей независимых событий:

Вероятность появления двух (или более) независимых событий равна произведению вероятностей этих событий.

P ( A ⋅ B ) = P ( A ) ⋅ P ( B )

Примеры:

  1. В первой шляпе лежит один синий шар и один красный, во второй шляпе лежит 1 синий шар и 4 красных. Из каждой шляпы извлекли по одному шару. Найдите вероятность того, что оба шара красные.

Решение:

Событие A: «извлечь красный шар из первой шляпы».

Событие B: «извлечь красный шар из второй шляпы».

Оба этих события независимы друг от друга, так как при извлечении шпара из первой шляпы, вторая остаётся нетронутой. Найдём вероятности этих событий.

P ( A ) = 1 2    (всего шаров два, красных – один).

P ( B ) = 4 5    (всего шаров пять, красных четыре).

P ( A ⋅ B ) = P ( A ) ⋅ P ( B )

P ( A ⋅ B ) = 1 2 ⋅ 4 5 = 0,4

Ответ: 0,4

  1. Стрелок 3 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,9. Найдите вероятность того, что стрелок первые 2 раза попал в мишени, а последний раз промахнулся.

Решение:

Событие A: «попадание», событие B: «промах». По условию P ( A ) = 0,9. Найдём вероятность промаха, она равна

P ( B ) = 1 − P ( A ) = 1 − 0,9 = 0,1

Каждый из выстрелов – событие, не зависящее от предыдущих или последующих выстрелов, то есть все три события – независимые. Вероятность появления трех независимых событий равна произведению их вероятностей, то есть

P ( A ⋅ A ⋅ B ) = P ( A ) ⋅ P ( A ) ⋅ P ( B )

P ( A ⋅ A ⋅ B ) = 0,9 ⋅ 0,9 ⋅ 0,1 = 0,081

Ответ: 0,081

Симметричная монета в теории вероятности

Симметричная монета: Орёл Симметричная монета: Решка

Математическая монета, которая используется в теории вероятности, лишена многих качеств бычной моенты: цвета, размера, веса и достоинства. Она не сделана ни из какого материала и не может служить платёжным средством. Монета имеет две стороны, одна из которых орёл (О), а другая решка (Р). Монету бросают и она падает одной стороной вверх. Никаких других свойств у монеты нет. Рассмотрим различные опыты с монетой

Бросание одной монеты

Возможные исходы:
О
Р
Всего два исхода. Вероятность каждого исхода из двух возможных равна 1 2 = 0,5

Бросание двух монет (бросание одной монеты два раза подряд)

Возможные исходы:
О О
О Р
Р О
Р Р
Всего четыре исхода. Вероятность каждого исхода из четырех возможных равна 1 4 = 0,25

Бросание трех монет (бросание одной монеты три раза подряд)

Возможные исходы:
О О О
О О Р
О Р О
О Р Р
Р О О
Р О Р
Р Р О
Р Р Р
Всего восемь исходов. Вероятность каждого исхода из восьми возможных равна 1 8 = 0,125

Бросание четырех монет (бросание одной монеты четыре раза подряд)

Возможные исходы:
О О О О
О О О Р
О О Р О
О О Р Р
О Р О О
О Р О Р
О Р Р О
О Р Р Р
Р О О О
Р О О Р
Р О Р О
Р О Р Р
Р Р О О
Р Р О Р
Р Р Р О
Р Р Р Р
Всего шестнадцать исходов. Вероятность каждого исхода из шестнадцати возможных равна 1 16 = 0,0625

Примеры:

  1. Симметричную монету бросают три раза подряд. Какова вероятность, что решка выпадет ровно один раз?

Решение:

Всего восемь различных исходов (см. опыт с бросанием трех монет). Исходов, в которых решка выпала ровно один раз, три.

P = 3 8 = 0,375

Ответ: 0,375

  1. Cимметричную монету бросают четыре раза подряд. Найдите вероятность того, что орёл выпадет хотя бы два раза.

Решение:

В опыте с бросанием четырех монет всего шестнадцать различных исходов. Благоприятные исходы – те, в которых выпало два, три или четыре орла. Таких исходов всего одиннадцать.

P = 11 16 = 0,6875

Ответ: 0,6875

Симметричная игральная кость в теории вероятности

Симметричная игральная кость

Математическая игральная кость, которая используется в теории вероятности, это правильная кость, у которой шансы на выпадение каждой грани равны. Подобно математической монете, математическая кость не имеет ни цвета, ни размера. Ни веса, ни иых материальных качеств. Рассмотрим различные опыты с игральной костью.

Бросание одной кости

Возможные исходы: 1, 2, 3, 4, 5, 6. Всего шесть исходов. Вероятность каждого исхода из шести возможных равна 1 6 .

Бросание двух костей (бросание одной кости два раза подряд)

Для того, чтобы перебрать все возможные варианты, составим таблицу:

Симметричная игральная кость: возможные варианты выпадения очков при бросании двух костей

Первое число в паре – количество очков, выпавших на первом кубике. Второе число в паре – количество очков, выпавших на втором кубике. Всего возможно тридцать шесть различных исходов.

Такую таблицу не составит труда нарисовать на экзамене, если попадётся задача на бросание двух кубиков. Сумма чисел в ячейке – сумма выпавших очков.

Симметричная игральная кость: сумма очков при бросании двух костей - все варианты

Примеры:

  1. Какова вероятность, что сумма очков при бросании двух кубиков, будет равна 7?

Решение:

Как видно из таблицы, всего 36 различных вариантов выпадания очков на двух кубиках. Благоприятных вариантов – когда сумма очков будет равна семи – всего 6.

P = 6 36 = 1 6

Ответ: 1 6

  1. Какова вероятность, что сумма очков при бросании двух кубиков, будет меньше десяти?

Решение:

Как видно из таблицы, всего 36 различных вариантов выпадания очков на двух кубиках. Благоприятные варианты – когда сумма очков будет равна 1, 2, 3, 4, 5, 6, 7, 8, или 9. Таких ячеек в таблице 30.

P = 30 36 = 5 6

Ответ: 5 6

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 февраля 2021 года; проверки требуют 3 правки.

У этого термина существуют и другие значения, см. размах.

Размах — разность между наибольшим и наименьшим значениями результатов наблюдений. Пусть X_{1},ldots ,X_{n} — взаимно независимые случайные величины с функцией распределения F(x) и плотностью вероятности f(x). В этом случае размах W_{n} определяется как разность между наибольшим и наименьшим значениями среди X_{1},ldots ,X_{n}; размах {displaystyle Wn} представляет собой случайную величину, которой соответствует функция распределения:

{displaystyle P{W_{n}leq w}=nint _{-infty }^{infty }[F(w+x)-F(x)]^{n-1}f(x),mathrm {d} x}

(при w >= 0; если w < 0, то P {W <= w} = 0).

В математической статистике размах, надлежащим образом нормированный, применяется как оценка неизвестного квадратичного отклонения. Например, если X_{k} имеют нормальное распределение с параметрами (а, s), то при n = 5 и 10, соответственно, величины 0,4299W5 и 0,3249W10 будут несмещенными оценками s. Такие оценки часто используют при статистическом контроле качества, поскольку определение Р. нескольких результатов измерений не требует сложных вычислений.

Литература[править | править код]

  • Вальд А. , Математическая статистика с техническими приложениями, пер. с англ., М., 1956.

Примечания[править | править код]

Содержание материала

  1. Среднее арифметическое
  2. Видео
  3. Среднее арифметическое
  4. Межквартильный размах
  5. Мода выборки
  6. Размах, полученный из процентилей
  7. Что такое процентили
  8. Применение процентилей
  9. Статистические характеристики
  10. Упорядоченный ряд и таблица частот
  11. Как определить размах числового ряда?
  12. Мода и медиана
  13. Бонус: Вебинары с нашего курса по подготовке к ЕГЭ
  14. ЕГЭ Теория вероятности

Среднее арифметическое

Вероятно, большинство из вас использовало такую важную описательную статистику, как среднее.

Среднее — очень информативная мера “центрального положения” наблюдаемой переменной, особенно если сообщается ее доверительный интервал. Исследователю нужны такие статистики, которые позволяют сделать вывод относительно популяции в целом. Одной из таких статистик является среднее.

Доверительный интервал для среднего представляет интервал значений вокруг оценки, где с данным уровнем доверия, находится “истинное” (неизвестное) среднее популяции.

Например, если среднее выборки равно 23, а нижняя и верхняя границы доверительного интервала с уровнем p=.95 равны 19 и 27 соответственно, то можно заключить, что с вероятностью 95% интервал с границами 19 и 27 накрывает среднее популяции.

Если вы установите больший уровень доверия, то интервал станет шире, поэтому возрастает вероятность, с которой он “накрывает” неизвестное среднее популяции, и наоборот.

Хорошо известно, например, что чем “неопределенней” прогноз погоды (т.е. шире доверительный интервал), тем вероятнее он будет верным. Заметим, что ширина доверительного интервала зависит от объема или размера выборки, а также от разброса (изменчивости) данных. Увеличение размера выборки делает оценку среднего более надежной. Увеличение разброса наблюдаемых значений уменьшает надежность оценки.

Вычисление доверительных интервалов основывается на предположении нормальности наблюдаемых величин. Если это предположение не выполнено, то оценка может оказаться плохой, особенно для малых выборок.

При увеличении объема выборки, скажем, до 100 или более, качество оценки улучшается и без предположения нормальности выборки.

Довольно трудно «ощутить» числовые измерения, пока данные не будут содержательно обобщены. Диаграмма часто полезна в качестве отправной точки. Мы можем также сжать информацию, используя важные характеристики данных. В частности, если бы мы знали, из чего состоит представленная величина, или если бы мы знали, насколько широко рассеяны наблюдения, то мы бы смогли сформировать образ этих данных.

Среднее арифметическое, которое очень часто называют просто «среднее», получают путем сложения всех значений и деления этой суммы на число значений в наборе.

Это можно показать с помощью алгебраической формулы. Набор n наблюдений переменной X можно изобразить как X1, X2, X3, …, Xn. Например, за X можно обозначить рост индивидуума (см), X1 обозначит рост 1-го индивидуума, а Xi — рост i-го индивидуума. Формула для определения среднего арифметического наблюдений   = (Х1 + Х2 + ... + Xn) / n (произносится «икс с чертой»):

(Х1 + Х2 + ... + Xn) / n = 1 + Х2 + … + Xn) / n

Можно сократить это выражение:

где  (греческая буква «сигма») означает «суммирова

где i = 1 (греческая буква «сигма») означает «суммирование», а индексы внизу и вверху этой буквы означают, что суммирование производится от i = 1 до i = n. Это выражение часто сокращают еще больше:


или

Видео

Среднее арифметическое

Понятие среднего значения часто используется в повседневной жизни.

Примеры:

  • средняя зарплата жителей страны;
  • средний балл учащихся;
  • средняя скорость движения;
  • средняя производительность труда.

Речь идет о среднем арифметическом — результате деления суммы элементов выборки на их количество.

Среднее арифметическое — это результат деления суммы элементов выборки на их количество.

Вернемся к нашему примеру

Вернемся к нашему примеру

Узнаем сколько в среднем мы тратили в каждом из ше

Узнаем сколько в среднем мы тратили в каждом из шести дней:

Межквартильный размах

В статистике для анализа выборки часто прибегают к другому показателю вариации – межквартильному размаху. Квартиль – это то значение, которые делит ранжированные (отсортированные) данные на части, кратные одной четверти, или 25%. Так, 1-й квартиль – это значение, ниже которого находится 25% совокупности. 2-й квартиль делит совокупность данных пополам (то бишь медиана), ну и 3-й квартиль отделяет 25% наибольших значений. Так вот межквартильный размах – это разница между 3-м и 1-м квартилями. У данного показателя есть одно неоспоримое преимущество: он является робастным, т.е. не зависит от аномальных отклонений.

Наглядное отображение размаха вариации и межкварительного расстояния производят с помощью диаграммы «ящик с усами».

Мода выборки

Иногда важно знать не среднее арифметическое выборки, а то, какая из ее вариант встречается наиболее часто. Так, при управлении магазином одежды менеджеру не важен средний размер продаваемых футболок, а необходима информация о том, какие размеры наиболее популярны. Для этого используется такой показатель, как мода выборки.

В примере с математическим тестом сразу 3 ученика

В примере с математическим тестом сразу 3 ученика набрали по 13 баллов, а частота всех других вариант не превысила 2, поэтому мода выборки равна 13. Возможна ситуация, когда в ряде есть сразу две или более вариант, которые встречаются одинаково часто и чаще остальных вариант. Например, в ряде

1, 2, 3, 3, 3, 4, 5, 5, 5

варианты 3 и 5 встречаются по три раза. В таком случае ряд имеет сразу две моды – 3 и 5, а всю выборку именуют мультимодальной. Особо выделяется случай, когда в выборке все варианты встречаются с одинаковой частотой:

6, 6, 7, 7, 8, 8.

Здесь числа 6, 7 и 8 встречаются одинаково часто (по два раза), а другие варианты отсутствуют. В таких случаях говорят, что ряд не имеет моды.

Размах, полученный из процентилей

Что такое процентили

Предположим, что мы расположим наши данные упорядоченно от самой маленькой величины перемен­ной X и до самой большой величины. Величина X, до которой расположен 1% наблюдений (и выше которой расположены 99% наблюдений), называется первым процентилем.

Величина X, до которой находится 2% наблюдений, называется 2-м процентилем, и т. д.

Величины X, которые делят упорядоченный набор значений на 10 равных групп, т. е. 10-й, 20-й, 30-й,…, 90 и процентили, называются децилями. Величины X, которые делят упорядоченный набор значений на 4 равные группы, т.е. 25-й, 50-й и 75-й процентили, называются квартилями. 50-й процентиль — это ме­диана.

Применение процентилей

Мы можем добиться такой формы описания рас­сеяния, на которую не повлияет выброс (аномальное значение), исключая экстремальные величины и определяя размах остающихся наблюдений.

Межквартильный размах — это разница между 1-м и 3-м квартилями, т.е. между 25-м и 75-м процентилями. В него входят центральные 50% наблюдений в упорядоченном наборе, где 25% наблюдений находятся ниже центральной точки и 25% — выше.

Интердецильный размах содержит в себе центральные 80% наблюдений, т. е. те наблю­дения, которые располагаются между 10-м и 90-м процентилями.

Мы часто используем размах, который содержит 95% наблюдений, т.е. он исключает 2,5% наблюдений снизу и 2,5% сверху. Указание такого интервала актуально, например, для осуществления диагностики болезни. Такой интервал называется референтный интервал, референтный размах или нормальный размах.

Статистические характеристики

К основным статистическим характеристикам выборки данных…

Какая еще такая «выборка»!?

Под словом «выборка» подразумевается просто данные, которые ты собираешься исследовать.

Дальше на примерах будет все понятно.

Так вот к основным статистическим характеристикам выборки данных относятся:

  • объем выборки,
  • размах выборки,
  • среднее арифметическое,
  • мода,
  • медиана,
  • частота,
  • относительная частота.

Стоп-стоп-стоп! Сколько новых слов! Давай обо всем по порядку.

Упорядоченный ряд и таблица частот

В ряде данных в таблице 1 числа приведены в произвольном порядке. Перепишем ряд так, чтобы все числа шли в неубывающем порядке, то есть от самого маленького к самому большому:

12, 12, 13, 13, 13, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 24, 25, 25.

Такую запись называют упорядоченным рядом данных.

Его характеристики ничем не отличаются от изначаль

Его характеристики ничем не отличаются от изначальной выборки, однако с ним удобнее работать. С его помощью можно видеть, что ни одному ученику не удалось набрать 22 или 23 балла на тесте, но сразу двое учащихся дали 25 правильных ответов. На основе упорядоченного ряда данных несложно составить таблицу частот, в которой будет указано, как часто та или иная варианта выборки встречается в ряде. Выглядеть она будет так:

При составлении этой таблицы мы исключили из нее т

При составлении этой таблицы мы исключили из нее те варианты количества набранных баллов, частота которых равна нулю (от 0 до 12, 22 и 23).Заметим, что сумма чисел в нижней строке таблицы частот должна равняться объему выборки. Действительно,

2+3+1+1+2+2+1+2+2+1+1+2 = 20.

С помощью таблицы частот можно быстрее посчитать среднее арифметическое выборки. Для этого каждую варианту надо умножить на ее частоту, после чего сложить полученные результаты и поделить их на объем выборки:

(12•2+13•3+14•1+15•1+16•2+17•2+18•1+19•2+20•2+21•1+24•1+25•2):20 =

(24+39+14+15+32+34+18+38+40+42+24+50):20 = 349:20 = 17,45.

Как определить размах числового ряда?

Среднее арифметическое, размах, мода и медиана

  1. Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на число слагаемых. …
  2. Размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел. …
  3. Модой ряда чисел называется число, которое встречается в данном ряду чаще других.

Мода и медиана

Модой называют элемент, который встречается в выборке чаще других.

Рассмотрим следующую выборку: шестеро спортсменов, а также время в секундах за которое они пробегают 100 метров

Элемент 14 встречается в выборке чаще других, поэт

Элемент 14 встречается в выборке чаще других, поэтому элемент 14 назовем модой.

Рассмотрим еще одну выборку. Тех же спортсменов, а также смартфоны, которые им принадлежат

Элемент iphone встречается в выборке чаще других,

Элемент iphone встречается в выборке чаще других, значит элемент iphone является модой. Говоря простым языком, носить iphone модно.

Конечно элементы выборки в этот раз выражены не числами, а другими объектами (смартфонами), но для общего представления о моде этот пример вполне приемлем.

Рассмотрим следующую выборку: семеро спортсменов, а также их рост в сантиметрах:

Упорядочим данные в таблице так, чтобы рост спортс

Упорядочим данные в таблице так, чтобы рост спортсменов шел по возрастанию. Другими словами, построим спортсменов по росту:

Выпишем рост спортсменов отдельно:

Выпишем рост спортсменов отдельно:

180, 182, 183, 184, 185, 188, 190

В получившейся выборке 7 элементов. Посередине этой выборки располагается элемент 184. Слева и справа от него по три элемента. Такой элемент как 184 называют медианой упорядоченной выборки.

Медианой упорядоченной выборки называют элемент, располагающийся посередине.

Отметим, что данное определение справедливо в случае, если количество элементов упорядоченной выборки является нечётным.

В рассмотренном выше примере, количество элементов упорядоченной выборки было нечётным. Это позволило нам быстро указать медиану

Но возможны случаи, когда количество элементов выб

Но возможны случаи, когда количество элементов выборки чётно.

К примеру, рассмотрим выборку в которой не семеро спортсменов, а шестеро:

Построим этих шестерых спортсменов по росту:

Построим этих шестерых спортсменов по росту:

Выпишем рост спортсменов отдельно:

Выпишем рост спортсменов отдельно:

180, 182, 184, 186, 188, 190

В данной выборке не получается указать элемент, который находился бы посередине. Если указать элемент 184 как медиану, то слева от этого элемента будут располагаться два элемента, а справа — три. Если как медиану указать элемент 186, то слева от этого элемента будут располагаться три элемента, а справа — два.

В таких случаях для определения медианы выборки, нужно взять два элемента выборки, находящихся посередине и найти их среднее арифметическое. Полученный результат будет являться медианой.

Вернемся к нашим спортсменам. В упорядоченной выборке 180, 182, 184, 186, 188, 190 посередине располагаются элементы 184 и 186

Найдем среднее арифметическое элементов 184 и 186

Найдем среднее арифметическое элементов 184 и 186

Элемент 185 является медианой выборки, несмотря на

Элемент 185 является медианой выборки, несмотря на то, что этот элемент не является членом исходной и упорядоченной выборки. Спортсмена с ростом 185 нет среди остальных спортсменов. Рост в 185 см используется в данном случае для статистики, чтобы можно было сказать о том, что срединный рост спортсменов составляет 185 см.

Поэтому более точное определение медианы зависит от количества элементов в выборке.

Если количество элементов упорядоченной выборки нечётно, то медианой выборки называют элемент, располагающийся посередине.

Если количество элементов упорядоченной выборки чётно, то медианой выборки называют среднее арифметическое двух чисел, располагающихся посередине этой выборки.

Медиана и среднее арифметическое по сути являются «близкими родственниками», поскольку и то и другое используют для определения среднего значения. Например, для предыдущей упорядоченной выборки 180, 182, 184, 186, 188, 190 мы определили медиану, равную 185. Этот же результат можно получить путем определения среднего арифметического элементов 180, 182, 184, 186, 188, 190

Но медиана в некоторых случаях отражает более реал

Но медиана в некоторых случаях отражает более реальную ситуацию. Например, рассмотрим следующий пример:

Было подсчитано количество имеющихся очков у каждого спортсмена. В результате получилась следующая выборка:

0, 1, 1, 1, 2, 1, 2, 3, 5, 4, 5, 0, 1, 6, 1

Определим среднее арифметическое для данной выборки — получим значение 2,2

По данному значению можно сказать, что в среднем у

По данному значению можно сказать, что в среднем у спортсменов 2,2 очка

Теперь определим медиану для этой же выборки. Упорядочим элементы выборки и укажем элемент, находящийся посередине:

0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6

В данном примере медиана лучше отражает реальную ситуацию, поскольку половина спортсменов имеет не более одного очка.

Бонус: Вебинары с нашего курса по подготовке к ЕГЭ

Этот вебинар по родственной математической статистике теме — теории вероятности.

А вот наша статья о теории вероятности.

ЕГЭ Теория вероятности

Что вы узнаете на этом уроке?

20% урока — теория.

  • Мы разберём, что такое вероятность;
  • Узнаем, что можно называть случайным событием;
  • Рассмотрим, на какие типы можно разделить события:
    • Что такое совместные и несовместные события;
    • Что такое зависимые и независимые события;
    • Выучим формулы, которые нужно применять для разных типов событий.

80% урока — решение задач

  • Мы решим 54 задачи на первом уроке и ещё 22 (посложнее) на втором;
  • Отработаем все 6 типов задач, которые могут встретиться в ЕГЭ:

Теги

Кроме среднего арифметического числовой ряд можно описать и с помощью других характеристик. Одной из них является размах ряда.

В статистике размахом ряда называют разницу между самым большим и самым маленьким результатами наблюдений. Другими словами, в совокупности данных размах отражает разброс значений.

Таким образом, если размах — большая величина, то и значения в совокупности будут сильно разбросаны, а если размах маленький, то, соответственно, значения будут располагаться рядом друг с другом.

На письме размах ряда обычно сокращенно обозначают буквой $R$.

Размах ряда — это разность между наибольшим и наименьшим значениями чисел.

Формула для расчета

Для того чтобы рассчитать размах ряда, можно применить следующую формулу:

$$textcolor{blue}{R}=textcolor{lightblue}{x}-textcolor{green}{y}$$

В свою очередь, $textcolor{blue}{R}$ — размах ряда, $textcolor{lightblue}{x}$ — максимальное значение, а $textcolor{green}{y}$ — минимальное. Используя эту формулу можно с легкостью решать задачи, где нужно найти значение $textcolor{blue}{R}$.

Чтобы найти размах ряда нужно из наибольшего значения вычесть наименьшее.

Рассмотрим на примере. Дровосек пилил бревно. Чтобы брёвна можно было аккуратно сложить, он старался делать их примерно одной длины. Когда работа была сделана, он решил проверить, как хорошо у него это получилось. Для этого он измерил все брёвна и получил такие значения:

$$43, 32, 36, 51, 48$$

Рассчитаем размах ряда. Выбираем самое большое и самое маленькое число.

$$43, textcolor{green}{32}, 36, textcolor{lightblue}{51}, 48$$

Вычитаем из наибольшего наименьшее:

$$textcolor{lightblue}{51}-textcolor{green}{32} = 19$$

$19$ — размах ряда.

Добавить комментарий