Как найти разность дробей с разным знаменателем

Следующее действие, которое можно выполнять с обыкновенными дробями, – вычитание. В рамках этого материала мы рассмотрим, как правильно вычислить разность дробей с одинаковыми и разными знаменателями, как вычесть дробь из натурального числа и наоборот. Все примеры будут проиллюстрированы задачами. Заранее уточним, что мы будем разбирать лишь случаи, когда разность дробей дает в итоге положительное число.

Как найти разность дробей с одинаковыми знаменателями

Начнем сразу с наглядного примера: допустим, у нас есть яблоко, которое разделили на восемь частей. Оставим пять частей на тарелке и заберем две из них. Это действие можно записать так:

58-28

В итоге у нас осталось 3 восьмых доли, поскольку 5−2=3. Получается, что 58-28=38.

Благодаря этому простому примеру мы увидели, как именно работает правило вычитания для дробей, знаменатели которых одинаковы. Сформулируем его.

Определение 1

Чтобы найти разность дробей с одинаковыми знаменателями, нужно из числителя одной вычесть числитель другой, а знаменатель оставить прежним. Это правило можно записать в виде ab-cb=a-cb.  

Такую формулу мы будем использовать и в дальнейшем.

Возьмем конкретные примеры.

Пример 1

Вычтите из дроби 2415 обыкновенную дробь 1715.

Решение 

Мы видим, что эти дроби имеют одинаковые знаменатели. Поэтому все, что нам нужно сделать, – это вычесть 17 из 24. Мы получаем 7 и дописываем к ней знаменатель, получаем 715.

Наши подсчеты можно записать так: 2415-1715=24-1715=715

Если необходимо, можно сократить сложную дробь или выделить целую часть из неправильной, чтобы считать было удобнее.

Пример 2

Найдите разность 3712-1512.

Решение

Воспользуемся описанной выше формулой и подсчитаем: 3712-1512=37-1512=2212

Легко заметить, что числитель и знаменатель можно разделить на 2 (об этом мы уже говорили ранее, когда разбирали признаки делимости). Сократив ответ, получим 116. Это неправильная дробь, из которой мы выделим целую часть: 116=156.

Как найти разность дробей с разными знаменателями

Такое математическое действие можно свести к тому, что мы уже описывали выше. Для этого просто приведем нужные дроби к одному знаменателю. Сформулируем определение:

Определение 2

Чтобы найти разность дробей, у которых разные знаменатели, необходимо привести их к одному знаменателю и найти разность числителей.

Рассмотрим на примере, как это делается.

Пример 3

Вычтите из 29 дробь 115.

Решение 

Знаменатели разные, и нужно привести их к наименьшему общему значению. В данном случае НОК равно 45. Для первой дроби необходим дополнительный множитель 5, а для второй – 3.

Подсчитаем: 29=2·59·5=1045115=1·315·3=345

У нас получились две дроби с одинаковым знаменателем, и теперь мы легко можем найти их разность по описанному ранее алгоритму: 1045-345=10-345=745

Краткая запись решения выглядит так: 29-115=1045-345=10-345=745.

Не стоит пренебрегать сокращением результата или выделением из него целой части, если это необходимо. В данном примере нам этого не нужно делать.

Пример 4

Найдите разность 199 – 736.

Решение 

Приведем указанные в условии дроби к наименьшему общему знаменателю 36 и получим соответственно 769 и 736.

Считаем ответ: 7636-736=76-736=6936

Результат можно сократить на 3 и получить 2312. Числитель больше знаменателя, а значит, мы можем выделить целую часть. Итоговый ответ – 11112.

Краткая запись всего решения – 199-736=11112.

Как вычесть из обыкновенной дроби натуральное число

Такое действие также легко свести к простому вычитанию обыкновенных дробей. Это можно сделать, представив натуральное число в виде дроби. Покажем на примере.

Пример 5

Найдите разность 8321 – 3.

Решение 

3 – то же самое, что и 31. Тогда можно подсчитать так: 8321-3=2021.

Если в условии необходимо вычесть целое число из неправильной дроби, удобнее сначала выделить из нее целое, записав ее в виде смешанного числа. Тогда предыдущий пример можно решить иначе.

Из дроби 8321 при выделении целой части получится 8321=32021.

Теперь просто вычтем 3 из него: 32021-3=2021.

Как вычесть обыкновенную дробь из натурального числа

Это действие делается аналогично предыдущему: мы переписываем натуральное число в виде дроби, приводим обе к единому знаменателю и находим разность. Проиллюстрируем это примером.

Пример 6

Найдите разность: 7-53.

Решение 

Сделаем 7 дробью 71. Делаем вычитание и преобразуем конечный результат, выделяя из него целую часть: 7-53=513. 

Есть и другой способ произвести расчеты. Он обладает некоторыми преимуществами, которыми можно воспользоваться в тех случаях, если числители и знаменатели дробей в задаче – большие числа.

Определение 3

Если та дробь, которую нужно вычесть, является правильной, то натуральное число, из которого мы вычитаем, нужно представить в виде суммы двух чисел, одно из которых равно 1. После этого нужно вычесть нужную дробь из единицы и получить ответ.

Пример 7

Вычислите разность 1 065 -1362.

Решение

Дробь, которую нужно вычесть – правильная, ведь ее числитель меньше знаменателя. Поэтому нам нужно отнять единицу от 1065 и вычесть из нее нужную дробь: 1065-1362=(1064+1)-1362

Теперь нам нужно найти ответ. Используя свойства вычитания, полученное выражение можно записать как 1064+1-1362. Подсчитаем разность в скобках. Для этого единицу представим как дробь 11.

Получается, что 1-1362=11-1362=6262-1362=4962.

Теперь вспомним про 1064 и сформулируем ответ: 10644962.

Используем старый способ, чтобы доказать, что он менее удобен. Вот такие вычисления вышли бы у нас:

1065-1362=10651-1362=1065·621·62-1362=6603062-1362==66030-1362=6601762=106446

Ответ тот же, но подсчеты, очевидно, более громоздкие.

Мы рассмотрели случай, когда нужно вычесть правильную дробь. Если она неправильная, мы заменяем ее смешанным числом и производим вычитание по знакомым правилам.

Пример 8

Вычислите разность 644 – 735.

Решение 

Вторая дробь – неправильная, и от нее надо отделить целую часть.

735=1435

Теперь вычисляем аналогично предыдущему примеру: 630-35=(629+1)-35=629+1-35=629+25=62925

Свойства вычитания при работе с дробями

Те свойства, которыми обладает вычитание натуральных чисел, распространяются и на случаи вычитания обыкновенных дробей. Рассмотрим, как использовать их при решении примеров.

Пример 9

Найдите разность 244-32-56.

Решение

Схожие примеры мы уже решали, когда разбирали вычитание суммы из числа, поэтому действуем по уже известному алгоритму. Сначала подсчитаем разность 254-32, а потом отнимем от нее последнюю дробь:

254-32=244-64=194194-56=5712-1012=4712

Преобразуем ответ, выделив из него целую часть. Итог – 31112.

Краткая запись всего решения:

254-32-56=254-32-56=254-64-56==194-56=5712-1012=4712=31112

Если в выражении присутствуют и дроби, и натуральные числа, то рекомендуется при подсчетах сгруппировать их по типам.

Пример 10

Н айдите разность 98+1720-5+35.

Решение 

Зная основные свойства вычитания и сложения, мы можем сгруппировать числа следующим образом: 98+1720-5+35=98+1720-5-35=98-5+1720-35

Завершим расчеты: 98-5+1720-35=93+1720-1220=93+520=93+14=9314 

Понятие дроби

Дробь — одна из форм представления числа в математике. Это запись, в которой a и b являются числами или выражениями. Есть два формата записи:

  • обыкновенный вид —

    или

    ,

  • десятичный вид — 0,5.

Над чертой принято писать делимое, которое является числителем. А под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление.
состав дроби

Дроби бывают двух видов:

  1. Числовые — состоят из чисел, например,

    или

    .

  2. Алгебраические — состоят из переменных, например,

    . В этом случае значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например

и

.

Неправильной — такую дробь, у которой числитель больше знаменателя или равен ему. Например,

. Такое число является смешанным и читается, как пять целых одна четвертая, а записывается —

.

Основные свойства дробей:

  1. Дробь не имеет значения, если знаменатель равен нулю.

  2. Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

  3. Равными называют

    и

    в том случае, если a × d = b × c.

  4. Если числитель и знаменатель умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Онлайн-школа Skysmart приглашает детей и подростков на курсы по математике — за интересными задачами, новыми прикладными знаниями и хорошими оценками!

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Узнай, какие профессии будущего тебе подойдут

Пройди тест — и мы покажем, кем ты можешь стать, а ещё пришлём подробный гайд, как реализовать себя уже сейчас

Узнай, какие профессии будущего тебе подойдут

Вычитание дробей с одинаковыми знаменателями

Для вычитания дробей с одинаковыми знаменателями нужно от числителя первой отнять числитель второй, а знаменатель оставить тот же.
Вычитание дробей с одинаковыми знаменателями

Прежде, чем зафиксировать ответ, важно проверить возможность сокращения.

Рассмотрим это правило на примере:
пример вычитания дробей с одинаковыми знаменателями

Вычитание дробей с разными знаменателями

Как вычитать дроби с разными знаменателями? Для этого приводим их к общему знаменателю и находим разность числителей.

Рассмотрим пример, в котором нужно найти разность

и

.

Как решаем:

  • Первым делом нам нужно привести дроби к общему знаменателю. Для определения единого знаменателя понадобится найти наименьшее общее кратное — НОК.

  • Чтобы найти НОК, раскладываем знаменатели 9 и 15 на простые множители:

    9 = 3 × 3

    15 = 3 × 5

  • Сначала выпишем множители из первого разложения: 3 × 3. Теперь добавим множитель из второго разложения, которого не было в первом — это 5. Перемножаем и получаем НОК:

    НОК (9, 15) = 3 × 3 × 5 = 45

  • Найдем дополнительные множители. Для этого НОК делим на каждый знаменатель:

    45 : 9 = 5

    45 : 15 = 3

  • Полученные числа умножим на соответствующие дроби:

    решение примера найти разность 2/9 и 1/15 шаг 3 для числа 2/9 и
    решение примера найти разность 1/15 шаг 3 для числа 1/15

  • Перейдем к вычитанию заданных чисел:

    ответ на пример найти разность 2/9 и 1/15

Ответ:

финальная запись ответа для примера найти разность 2/9 и 1/15

Вычитание обыкновенной дроби из натурального числа

Для вычитания из обыкновенной дроби натурального числа необходимо это действие привести к вычитанию обыкновенных дробей.

Разберем для наглядности пример разности 3 и

.

Как решаем:

  • Представим натуральное число в виде смешанного — займем единицу и переведем ее в неправильную дробь с тем же знаменателем, что у вычитаемой:

    .

  • Вычтем одну дробь из другой:

Ответ: две целых одна седьмая.

Вычитание натурального числа из обыкновенной дроби

Для вычитания натурального числа из обыкновенной дроби нужно последовать тому же алгоритму, что и в предыдущем примере. А именно: перевести натуральное число в вид дроби, привести все к единому знаменателю, найти разность.

Рассмотрим пример разности

и 3.

Как решаем:

А еще можно вот так:

  • Представим

    в виде смешанной дроби, для этого разделим делитель на делимое:

  • Произведем вычитание:

Математика

5 класс

Урок № 59

Вычитание дробей

Перечень рассматриваемых вопросов:

– вычитание дробей с одинаковыми знаменателями;

– вычитание дробей с разными знаменателями;

– проверка вычитания сложением.

Тезаурус

Разность двух дробей – это дробь, которая в сумме с вычитаемым даёт уменьшаемое.

Разность двух дробей с общим знаменателем – это дробь с тем же знаменателем, числитель которой равен разности числителей уменьшаемого и вычитаемого.

Обязательная литература:

  1. Никольский С. М. Математика. 5 класс. Учебник для общеобразовательных учреждений. ФГОС. / С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 272.

Дополнительная литература:

  1. Чулков П. В. Математика: тематические тесты. 5 кл. / П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. – М.: Просвещение, 2009, стр.142.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. / И. Ф. Шарыгин, А. В. Шевкин. – М.: Просвещение, 2014, стр. 95.

Теоретический материал для самостоятельного изучения

Вспомним, что такое разность дробей. Разностью двух дробей называют дробь, которая в сумме с вычитаемым даёт уменьшаемое.

Будем пока рассматривать случаи, когда уменьшаемое больше вычитаемого.

Разность двух дробей с общим знаменателем есть дробь с тем же знаменателем, числитель которой равен разности числителей уменьшаемого и вычитаемого.

Какую часть корзинки осталось набрать?

Давайте подумаем, как построить ход решения и какими арифметическими действиями его сопроводить?

Так как Таня ходила за ягодами два раза, то найти, сколько всего ягод она набрала, нам поможет арифметическое действие – сложение:

Вопрос в задаче – какую часть корзинки осталось набрать?

Значит, нам нужно из объёма всей корзинки, вычесть ту часть, которую Таня уже набрала.

Сделаем проверку:

Сумма разности и вычитаемого действительно равна уменьшаемому.

Чтобы найти разность двух дробей с разными знаменателями, надо привести их к общему знаменателю, а затем применить правило вычитания дробей с общим знаменателем.

Например, найдём разность семи восьмых и трёх пятых. Знаменатели дробей взаимно простые числа, поэтому общий знаменатель равен их произведению, т. е. сорока.

Не забываем умножить дополнительные множители и на числители. В итоге получаем дробь одиннадцать сороковых.

Решим задачу. Две сестры помогли маме помыть посуду.

Младшая – ?

Найдём разность всей вымытой посуды и той части, которую вымыла старшая дочь.

Итак, чтобы найти разность двух дробей, нужно определить равные или разные у них знаменатели, а затем использовать то правило вычитания дробей, которое подходит в конкретном случае.

Вычитание обыкновенных дробей

Разбор решения заданий тренировочного модуля

№1. На ветке сидели воробьи. Когда четверть воробьёв улетела, их осталось 9. Сколько воробьёв было на ветке?

По рисунку видно, что в трёх равных оставшихся частях 9 воробьёв, значит в одной части:

  1. 9 : 3 = 3 – воробья в одной части.

Одна часть воробьёв улетела, значит, улетело 3.

Тогда:

  1. 3 + 9 = 12 – воробьёв было всего на ветке.

Или можно ответить на вопрос так: в одной части 3 воробья, а всего таких частей 4, значит:

  1. 3 ∙ 4 = 12 – воробьёв было всего на ветке.

Ответ: 12 воробьёв сидело на ветке.

№2. Выберите выражения, в которых в результате вычитания получается единица.

Решение: найдём результаты каждого выражения.

Мы видим, что только в двух выражениях в результате получилась единица. Это и есть верные ответы.

При вычитании дробей, как и при сложении, могут встретиться несколько случаев.

Вычитание дробей с одинаковыми знаменателями

При вычитании дробей с одинаковыми знаменателями от числителя уменьшаемого (первой дроби) отнимают
числитель вычитаемого (второй дроби), а знаменатель оставляют прежним.

Пример.

пример вычитания дробей

Запомните!
!

Прежде чем записать конечный ответ, проверьте, нельзя ли сократить полученную дробь.

В буквенном виде правило вычитания дробей с одинаковыми знаменателями
записывают так:

вычитание дробей в буквенной записи

Вычитание правильной дроби из единицы

Когда нужно вычесть из единицы правильную дробь, единицу представляют в виде
неправильной дроби, знаменатель которой, равен знаменателю вычитаемой дроби.

Пример.

пример вычитания из единицы правильной дроби
Знаменатель вычитаемой дроби равен 7, значит, единицу представляют как неправильную
дробь

и вычитают по правилу вычитания дробей с одинаковыми знаменателями.
решение примера на вычитание из единицы правильной дроби

Вычитание правильной дроби из целого числа

Чтобы из целого числа вычесть правильную дробь нужно представить это натуральное число
в виде смешанного числа.

Для этого занимаем единицу в натуральном числе и представляем её в виде неправильной дроби,
знаменатель которой равен знаменателю вычитаемой дроби.

Пример.

пример вычитания правильной дроби из целого числа
В примере единицу мы заменили неправильной дробью

и вместо 3 записали смешанное
число и от дробной части отняли дробь.

Вычитание смешанных чисел

При вычитании смешанных чисел отдельно из целой части вычитают целую часть, а из дробной части
вычитают дробную часть.

При подобных расчётах могут встретиться разные случаи.

Первый случай вычитания смешанных чисел

У дробных частей одинаковые знаменатели и числитель дробной части
уменьшаемого (из чего вычитаем) больше или равен числителю дробной части вычитаемого
(что вычитаем).

Пример.

вычитание смешанных чисел

Второй случай вычитания смешанных чисел

У дробных частей разные знаменатели.

В этом случае вначале нужно

привести к общему знаменателю
дробные части, а затем
выполнить вычитание целой части из целой, а дробной из дробной.

Пример.

вычитание смешанных чисел с разными знаменателями

Третий случай вычитания смешанных чисел

Дробная часть уменьшаемого меньше дробной части вычитаемого.

Пример.

дробная чать уменьшаемого меньше дробной части вычитаемого

Так как у дробных частей разные знаменатели, то как и
во втором случае, вначале приведём обыкновенные дроби к общему знаменателю.

приведение дробей к общему знаменателю

Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого.

3 < 14

Поэтому, вспомнив
вычитание правильной дроби из целого числа, займём единицу из целой части и представим
эту единицу в виде неправильной дроби с одинаковым знаменателем и числителем равным 18.

представим единицу в виде неправильной дроби

Сложим полученную неправильную дробь

и дробную часть
уменьшаемого и получим:
Сложим полученную неправильную дробь

Все рассмотренные случаи можно описать с помощью правил вычитания
смешанных чисел
.

  • Привести дробные части уменьшаемого и вычитаемого к наименьшему общему знаменателю.
  • Если дробная часть уменьшаемого меньше дробной части
    вычитаемого, то занимаем у целой части уменьшаемого единицу. Эту единицу
    превращаем в неправильную дробь с одинаковым числителем и знаменателем равными наименьшему общему знаменателю.
  • Прибавляем полученную неправильную дробь к дробной части уменьшаемого.
  • Вычитаем из целой части целую, а из дробной — дробную.
  • Проверяем, нельзя ли сократить и выделить целую часть в конечной дроби.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

13 ноября 2019 в 6:24

Валя Гутник
(^-^)
Профиль
Благодарили: 0

Сообщений: 7

(^-^)
Валя Гутник
Профиль
Благодарили: 0

Сообщений: 7

как вычитать дроби с разным знаменателем

  − 

 

0
Спасибоthanks
Ответить

15 апреля 2020 в 13:34
Ответ для Валя Гутник

Саша Алекс
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Саша Алекс
Профиль
Благодарили: 0

Сообщений: 1


Хз

0
Спасибоthanks
Ответить

18 марта 2019 в 18:37

Никита Рулькевич
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Никита Рулькевич
Профиль
Благодарили: 0

Сообщений: 2

0
Спасибоthanks
Ответить

18 марта 2019 в 18:51
Ответ для Никита Рулькевич

Никита Рулькевич
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Никита Рулькевич
Профиль
Благодарили: 0

Сообщений: 2


11 wink

0
Спасибоthanks
Ответить

4 сентября 2015 в 12:08

Зарина-И-Владимир Вебер
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Зарина-И-Владимир Вебер
Профиль
Благодарили: 0

Сообщений: 1

?12

  ? 7

? ?

?я незнаю ответ помогите пожалуста

0
Спасибоthanks
Ответить

2 сентября 2016 в 14:33
Ответ для Зарина-И-Владимир Вебер

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Сначала — действие в скобках. Переводим в дробь целую часть, приводим к общему знаменателю, производим действие, далее производим умножение.

= (

 ?) ·  = · = = == 2=2,5      

0
Спасибоthanks
Ответить

7 апреля 2015 в 13:14

Женечка Беляевская
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Женечка Беляевская
Профиль
Благодарили: 0

Сообщений: 1

вычитание дроби из целого числа 9-

 

0
Спасибоthanks
Ответить

8 апреля 2015 в 0:39
Ответ для Женечка Беляевская

Алёна Гермес
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Алёна Гермес
Профиль
Благодарили: 0

Сообщений: 2


9-3/4 = 9/1-3/4 = 36/4-3/4 = 33/4 = 8  

Целое число представляем в виде дроби, затем приводим к общему знаменателю, путем умножения первой дроби на знаменаетль второй и знаменателя первой на вторую дробь. Получаем неправельную дробь, и превращаем её в правильную, делим 33 на 4 и получаем 8 и остаток от деления 1. 

0
Спасибоthanks
Ответить

14 апреля 2015 в 17:00
Ответ для Женечка Беляевская

Asel Talantbekovna
(^-^)
Профиль
Благодарили: 0

Сообщений: 8

(^-^)
Asel Talantbekovna
Профиль
Благодарили: 0

Сообщений: 8


9- = 8  —  =8 =8 

0
Спасибоthanks
Ответить

6 апреля 2015 в 14:02

Алексей Старков
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Алексей Старков
Профиль
Благодарили: 0

Сообщений: 1

(1 — 1/2): (1/2 — 1/3) = 

0
Спасибоthanks
Ответить

7 апреля 2015 в 3:34
Ответ для Алексей Старков

Алёна Гермес
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Алёна Гермес
Профиль
Благодарили: 0

Сообщений: 2


1) (1 — 1/2) = 1/1 — 1/2 = 2/2 — 1/2 = 1/2
Находим общий заменатель, перемножая первую дробь на знаменатель второй, и вторую на знаменатель первой. 

2) (1/2 — 1/3) = 3/6 — 2/6 = 1/6
Находим общий знаменатель. 

3) 1/2: 1/6 = 1/2  · 6/1 = 6/2 =3/1 = 3
Что бы разделить одну дробь на другую, нужно перевернуть вторую дробь и разделить её на первую. Затем следует сократить дробь.

0
Спасибоthanks
Ответить

14 апреля 2015 в 17:08
Ответ для Алексей Старков

Asel Talantbekovna
(^-^)
Профиль
Благодарили: 0

Сообщений: 8

(^-^)
Asel Talantbekovna
Профиль
Благодарили: 0

Сообщений: 8


(1- ): ( — )

1) 

  — = 

2) 

 =  

3) 

 –  =  =  

0
Спасибоthanks
Ответить

14 апреля 2015 в 17:10
Ответ для Алексей Старков

Asel Talantbekovna
(^-^)
Профиль
Благодарили: 0

Сообщений: 8

(^-^)
Asel Talantbekovna
Профиль
Благодарили: 0

Сообщений: 8


последнее дествие исправлю!
 : =  

0
Спасибоthanks
Ответить

9 апреля 2019 в 17:24
Ответ для Алексей Старков

Настя Бородина
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Настя Бородина
Профиль
Благодарили: 0

Сообщений: 1


самый понятный овет 

0
Спасибоthanks
Ответить


Содержание:

  • Вычитание дробей с одинаковыми знаменателями
  • Вычитание дробей с разными знаменателями
  • Вычитание смешанных дробей

Определение

Вычитание дробей является действием, обратным к
сложению. Вычесть из одной дроби другую –
это означает найти такую третью дробь, которая в сумме со второй дробью дает первую.

Вычитание дробей с одинаковыми знаменателями

Чтобы вычесть дроби с одинаковыми знаменателями, нужно от
числителя первой дроби отнять числитель второй, а
знаменатель оставить без изменений.

Пример

Задание. Найти разность дробей
$frac{10}{11}$ и $frac{7}{11}$

$$frac{10}{11}-frac{7}{11}=frac{10-7}{11}=frac{3}{11}$$

Ответ. $frac{10}{11}-frac{7}{11}=frac{3}{11}$

Вычитание дробей с разными знаменателями

Чтобы вычислить дроби с разными знаменателями, нужно вначале привести их к наименьшему
общему знаменателю, а затем отнимать их как дроби с одинаковым знаменателем.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Вычесть дроби $frac{2}{5}$ и $frac{1}{3}$

Решение. Заданные дроби имеют разные знаменатели, приводим их к общему, который равен 15 (как НОК знаменателей 5 и 3),
тогда дополнительные множители соответственно к первой дроби –
$15:5=3$ , ко второй – $15:3=5$ . Получаем:

$$frac{2}{5}-frac{1}{3}=frac{2^{3}}{5}-frac{1^{5}}{3}=frac{2 cdot 3-1 cdot 5}{15}=frac{6-5}{15}=frac{1}{15}$$

Ответ. $frac{2}{5}-frac{1}{3}=frac{1}{15}$

Вычитание смешанных дробей

Чтобы вычесть одно смешанное число из другого смешанного числа, надо, если это возможно, от целого отнять целое, а от дроби отнять дробь.

Пример

Задание. Найти разность $6 frac{7}{11}-2 frac{1}{22}$

Решение. Выполним вычитание по описанному выше правилу

$$6 frac{7}{11}-2 frac{1}{22}=(6-2)+left(frac{7^{2}}{11}-frac{1}{22}right)=$$
$$=4+frac{7 cdot 2-1 cdot 1}{22}=4+frac{14-1}{22}=4+frac{13}{22}=4 frac{13}{22}$$

Ответ. $6 frac{7}{11}-2 frac{1}{22}=4 frac{13}{22}$

В случае, когда дробь вычитаемого больше, чем дробь уменьшаемого, поступают следующим образом: берут одну единицу
(целое) из целого числа уменьшаемого, записывают его как неправильную дробь, числитель и знаменатель которой равны между
собой и равны знаменателю дробной части, и прибавляют к дробной части, далее отнимают две смешанные дроби, как описано выше.

Пример

Задание. Выполнить вычитание $5 frac{4}{9}-1 frac{11}{12}$

Решение. Дробь $frac{4}{9}$ меньше (
сравнение дробей ), чем дробь $frac{11}{12}$ (так как $4 cdot 12 = 36 < 9 cdot 11 = 99$ ), тогда

$$5 frac{4}{9}-1 frac{11}{12}=5+frac{4}{9}-1 frac{11}{12}=4+1+frac{4}{9}-1 frac{11}{12}=$$
$$=4+frac{9}{9}+frac{4}{9}-1 frac{11}{12}=4 frac{9+4}{9}-1 frac{11}{12}=4 frac{13}{9}-1 frac{11}{12}=$$
$$=(4-1)+left(frac{13^{4}}{9}-frac{11^{3}}{12}right)=3+frac{13 cdot 4-11 cdot 3}{36}=$$
$$=3+frac{52-33}{36}=3+frac{19}{36}=3 frac{19}{36}$$

Ответ. $5 frac{4}{9}-1 frac{11}{12}=3 frac{19}{36}$

Аналогичным образом поступают, когда надо вычесть из целого числа дробное.

Пример

Задание. Найти разность
$4-3 frac{3}{5}$

Решение. Выполним вычитание дробей по описанному выше правилу

$$4-3 frac{3}{5}=3+1-3 frac{3}{5}=3+frac{5}{5}-3 frac{3}{5}=3 frac{5}{5}-3 frac{3}{5}=$$
$$=(3-3)+left(frac{5}{5}-frac{3}{5}right)=0+frac{5-3}{5}=frac{2}{5}$$

Ответ. $4-3 frac{3}{5}=frac{2}{5}$

Замечание. Производить операции со
смешанными числами можно и иначе: записать смешанное число в виде
неправильной дроби и уже работать далее как с
обыкновенными дробями.

Читать следующую тему: умножение дробей.

Добавить комментарий