Как найти разность количества запись числом

Вычесть значит отнять одно число от другого. Вычитание есть такое действие, в котором отнимают меньшее число от большего. При вычитании целых чисел большее число уменьшается на столько единиц, сколько их содержится в меньшем.

Вычесть одно число из другого значит убавить одно число другим, поэтому вычитание есть действие обратное сложению.

Вычитание

Что такое разность чисел в математике: определение, правила нахождения

В вычитании два данных числа называются уменьшаемым и вычитаемым, а искомое — разностью.

Уменьшаемым называют большее число, от которого отнимают другое. Оно уменьшается от вычитания.

Вычитаемым называют меньшее число, которое отнимают от большего.

Разностью называют вывод, полученный от вычитания. Разность определяет, чем одно число больше другого или показывает разницу между двумя числами.

Знак вычитания. Действие вычитания обозначается знаком — (минус).

Вычитание однозначных чисел

Чтобы обозначить, что из 9 нужно вычесть 6, пишут эти числа рядом, отделяя их знаком — (минус):

  • 9 — 6.

Разность между этими числами будет 3, и ход вычисления выражают словесно:

девять без шести равно трем.

Письменно:

  • 9 — 6 = 3.

Большее число 9 будет уменьшаемым, меньшее 6 вычитаемым, число 3 остатком.

Способы вычитания

Можно двумя способами вычесть одно число из другого:

  1. или можно отнять от большего числа столько единиц, сколько их содержится в меньшем. Так, из 9 вычесть 6 значит от 9 отнять 6. Число 3 будет искомый остаток;
  2. или можно к меньшему числу прибавлять по единице до тех пор, пока не получим большее число. Так, вычитая 6 из 9, мы к 6 прибавляем 3 единицы.

Число единиц, которое нужно прибавить к меньшему числу, чтобы уравнять его с большим, определяет разность.

Меньшее число с разностью должно равняться большему числу, следовательно, меньшее число и разность суть слагаемые, а большее — их сумма. На этом основано другое определение вычитания:

  • Вычитание есть такое действие, в котором по данной сумме и одному слагаемому отыскивается другое слагаемое.

В этом случае данная сумма есть уменьшаемое, данное слагаемое — вычитаемое, а искомаяразность — другое слагаемое.

Вычитание многозначных чисел

Вычитание многозначных чисел основывается на том свойстве чисел, по которому вычесть число все-равно, что вычесть все его части. Из этого свойства видно, что вычесть какое-нибудь число все-равно, что вычесть последовательно все его единицы, десятки, сотни и т. д. Чтобы обозначить, что из числа 7228 нужно вычесть 3517, пишут:

  • 7228 — 3517 и вычитают отдельно единицы из единиц, десятки из десятков и т. д.

Чтобы облегчить вычитание, подписывают меньшее число под большим так, чтобы единицы одинаковых порядков находились в одном вертикальном столбце, проводят черту, слева ставят знак вычитания — и под чертою подписывают разность.

Ход вычисления выражают словесно:

  1. Начинаем вычитание с простых единиц: 8 без 7 составляют 1; подписывают под единицами 1.
  2. Вычитаем десятки: 2 без 1 дают 1, подписываем под десятками 1.
  3. Вычитаем сотни. Пять нельзя вычесть из 2, поэтому занимаем у следующего высшего порядка (тысяч) единицу, что и обозначаем тем, что над 7 ставим точку. Единица каждого порядка содержит 10 единиц следующего меньшего порядка. Присоединяя эти 10 единиц к 2, получим 12; 12 без 5 составляют 7, подписываем под сотнями 7. Когда занимают единицу у высшего порядка, обозначают это тем, что ставят точку над порядком, у которого занимают.
  4. Вычитаем тысячи. Тысяч осталось вместо 7 только 6, ибо одна была взята. 6 без 3 составляют 3; подписываем под тысячами 3.

Ход вычисления выражают письменно:

Что такое разность чисел в математике: определение, правила нахождения

Пример. Из 17004 вычесть 6025.

Что такое разность чисел в математике: определение, правила нахождения

Из 4 нельзя вычесть 5. Занимаем единицу у десятков, следующего высшего порядка, но в этом порядке единиц нет; занимаем у сотен, — и сотен нет; занимаем у тысяч и обозначаем это точкой над цифрой 7.

Единица четвертого имеет 10 единиц третьего порядка. Взяв из них одну для десятков, оставляем их в сотнях только 9. Присоединив 10 к 4, имеем 14.

Производя вычитание, получим:

  • для единиц 14 — 5 = 9
  • для десятков 9 — 2 = 7
  • для сотен 9 — 0 = 9
  • для тысяч 6 — 6 = 0

Для десятков тысяч имеем 1, ибо эту цифру уменьшаемого переносим в разность без изменения.

Ход вычисления выразится письменно:

Что такое разность чисел в математике: определение, правила нахождения

Из предыдущих примеров выводим правила вычитания:

  1. Чтобы сделать вычитание целых чисел, нужно вычитаемое подписать под уменьшаемым так, чтобы единицы одинаковых порядков стояли в одном вертикальном столбце, провести черту, под которою и подписать разность.
  2. Вычитание нужно начинать с простых единиц, то есть с первого столбца, и затем, переходя к следующим столбцам от правой руки к левой, вычитают десятки из десятков, сотни из сотен и т. д.
  3. Если цифра вычитаемого меньше цифры уменьшаемого, разность подписывают в том же столбце; если цифры равны, разность будет нуль.
  4. Если же цифра вычитаемого больше соответствующей цифры уменьшаемого, занимают единицу у следующего порядка уменьшаемого, отмечая это точкой, поставленной над цифрой, у которой занимают, прикладывают 10 к цифре уменьшаемого и производят вычитание. Цифру же с точкой считают на единицу меньше.
  5. Если при вычитании цифра уменьшаемого, у которого занимают, будет 0, за которым в уменьшаемом следуют тоже нули, то занимают у первой значащей цифры, ставя над нею и всеми промежуточными нулями точки. Цифру с точкой считают на единицу меньше, а нули с точкой считают за 9.
  6. Вычитание продолжают до тех пор, пока не получат полной разности.
  7. Лишние цифры уменьшаемого переносят в разность.

Зависимость между данными и искомыми вычитания

Из примера 9 — 6 = 3 видно, что

  1. Уменьшаемое равно вычитаемому, сложенному с разностью: 9 = 6 + 3.
  2. Вычитаемое равно уменьшаемому без разности: 6 = 9 — 3.
  3. Разность равна уменьшаемому без вычитаемого: 3 = 9 — 6.

Арифметическое дополнение. Разность между числом и ближайшей большей единицей называется арифметическим дополнением. Так, арифметическими дополнениями чисел 7, 79, 983 будут числа:

  • 10 — 7 = 3
  • 100 — 79 = 21
  • 1000 — 983 = 17

Арифметическим дополнением иногда пользуются для облегчения арифметических вычислений.

Источник: https://maths-public.ru/arithmetic/subtraction

Вычитание чисел

Вычитание – это арифметическое действие обратное сложению, посредством которого из одного числа вычитают (отнимают) столько единиц, сколько их содержится в другом числе.

Число, из которого вычитают, называется уменьшаемым, число, которое указывает сколько единиц будет вычтено из первого числа, называется вычитаемым. Число, получаемое в результате вычитания, называется разностью (или остатком).

Рассмотрим вычитание на примере. На столе лежит 9 конфет, если съесть 5 конфет, то их останется 4. Число 9 является уменьшаемым, 5 – вычитаемым, а 4 – остатком (разностью):

Что такое разность чисел в математике: определение, правила нахождения

Для записи вычитания используется знак — (минус). Он ставится между уменьшаемым и вычитаемым, при этом уменьшаемое записывается слева от знака минус, а вычитаемое – справа. Например, запись 9 — 5 означает, что из числа 9 вычитается число 5. Справа от записи вычитания ставят знак = (равно), после которого записывают результат вычитания. Таким образом, полная запись вычитания выглядит так:

Что такое разность чисел в математике: определение, правила нахождения

Эта запись читается так: разность девяти и пяти равняется четырём или девять минус пять равно четыре.

Чтобы в результате вычитания получить натуральное число или 0, уменьшаемое должно быть больше вычитаемого или равно ему.

Рассмотрим, как, используя натуральный ряд, можно выполнить вычитание и найти разность двух натуральных чисел. Например, нам необходимо вычислить разность чисел 9 и 6, отметим в натуральном ряду число 9 и отсчитаем от него влево 6 чисел. Получим число 3:

Что такое разность чисел в математике: определение, правила нахождения

9 — 6 = 3

Вычитание также можно использовать для сравнения двух чисел. Желая сравнить между собой два числа, мы задаёмся вопросом, на сколько единиц одно число больше или меньше другого.

Чтобы узнать это, надо из большего числа вычесть меньшее. Например, чтобы узнать, на сколько 10 меньше 25 (или на сколько 25 больше 10), надо из 25 вычесть 10.

Тогда найдём, что 10 меньше 25 (или 25 больше 10) на 15 единиц.

Проверка вычитания

Рассмотрим выражение

15 — 7 = 8

где 15 – это уменьшаемое, 7 – это вычитаемое, а 8 – разность. Чтобы узнать правильно ли было выполнено вычитание, можно:

  1. вычитаемое сложить с разностью, если получится уменьшаемое, то вычитание было выполнено верно:7 + 8 = 15
  2. от уменьшаемого отнять разность, если получится вычитаемое, то вычитание было выполнено верно:15 — 8 = 7

Источник: https://naobumium.info/arifmetika/vychitanie.php

Что такое разность чисел в математике?

Что такое разность чисел в математике: определение, правила нахождения

Для многих точные науки, вроде математики, воспринимаются как нечто более простое, чем сферы, требующие рассуждений, предполагающие большую вариативность. Однако все предметы имеют свои сложности, в том числе и технические.

Вычитание

Для того, чтобы понять, чем является разность, необходимо разобраться в ряде математической терминологии. В первую очередь, нужно выяснить, чем является вычитание.

По-другому это понятие называют убавлением, и по такому названию понять смысл процесса несколько проще. По своей сути вычитание является одной из математических операций.

Что же это за операции? Как правило, под ними понимают определенные арифметические или логические действия. Встает логичный вопрос – в чем же суть арифметических действий?

Понятие арифметики появилось достаточно давно. Оно зародилось в древнегреческом языке, где переводилось как «число». Сегодня это раздел математики, который изучает числа, их отношения друг к другу, а также свойства.

Итак, вычитание – это операции с числами, относящиеся к бинарным. Суть бинарных операций в том, что в них используются два аргумента (параметра), и получается один результат.

Стоит рассмотреть, как найти разность какого-то числа. В первую очередь, необходимы два аргумента, то есть два числа. Затем необходимо уменьшить значение первого числа на значение второго.

Когда данная операция выражается письменно, используется знак «минус». Это выглядит так: а – б = с, где а является первым числовым значением, б – вторым, а с – разностью чисел.

Как правило, у учеников возникает гораздо больше проблем именно с вычитанием, нежели со сложением. Отчасти это связано со свойствами данных математических операций.

Всем известно, что от перемены мест слагаемых значение суммы не меняется. В вычитании же всё гораздо сложней. Если поменять числа местами, получится совершенно другой результат.

Схожим свойством в прибавлении и убавлении является то, что нулевой элемент не меняет исходное число.

В вычитании всё относительно просто, если первое число больше второго, однако в школе будут рассматриваться и противоположные примеры. В этом случае возникает понятие отрицательного числа.

Например, если нужно вычесть из 5 число 2, то всё несложно. 5-2=3, таким образом разность числа составит 3. Однако, что делать, если необходимо посчитать, сколько будет два минус пять?

В выражении 2-5 разность уйдет в минус, то есть в отрицательное значение. Из двойки легко можно вычесть двойку, получив таким образом ноль, однако от пятерки остается ещё три. Таким образом, результатом данного выражения будет отрицательное число три. То есть, 2-5=-3.

Источник: https://topkin.ru/voprosy/nauka-voprosy/chto-takoe-raznost-chisel-v-matematike/

Что такое разность чисел: уменьшаемое, вычитаемое, разность — правило

Статья познакомит читателя с понятиями «разность чисел», «вычитаемое» и «уменьшаемое».

В арифметике существует всего четыре основных действия, которые мы называем сложением, умножением, вычитанием и делением.

Такие действия являются основой всей математики – они позволяют нам осуществлять все вычисления: как простые, так и самые сложные.

Самыми простыми действиями считаются сложение и вычитание, которые противоположны друг другу. Правда, слово «сложение» мы также используем и в обычной жизни.

Мы можем встретить фразу «сложить усилия, например, когда нам нужно сделать какую-нибудь работу всем вместе. Но вот с термином «вычитание» дело обстоит немного сложнее, и в разговоре оно встречается реже.

Мы редко услышим такие выражения, как «уменьшаемое», «вычитаемое», «разность». Но в сегодняшней статье мы подробно поговорим о них с точки зрения математики.

Что значит число уменьшаемое, число вычитаемое и разность чисел?

Что значит число уменьшаемое, число вычитаемое и разность чисел? Как известно, многие научные термины и выражения взяты из других языков, чаще греческого и латинского. Но те слова, которые будут рассмотрены ниже, имеют русское происхождение, потому нам будет проще их разобрать.

Например, что можно сказать о разности чисел? Если мы обратим внимание на корень слова «разность», то нам представится, например, его однокоренное слово «разница».

А если речь идет о математике, то тут и думать нечего – слово «разность» означает разницу между какими-то цифрами, а точнее, двумя числами.

Разница нам показывает, насколько одна величина больше другой или, наоборот, вторая меньше первой. Строго в математике это выглядит как результат вычитания.

Сразу же приведем пример. Допустим, буфетчица несет на подносе восемь пирожков. Пять из них она раздала посетителям. Сколько пирожков останется у буфетчицы на подносе? Если из 8 вычесть 5, то получится — 3. Теперь запишем это математически:

То есть разница между восемью и пятью – это три. Теперь нам понятно, что такое термин «разница».

Внимание: Если два числа равны друг другу, то разницы между ними не существует, она равна нулю (8 – 8 = 0).

Теперь нам следует выяснить, что такое вычитаемое и уменьшаемое. Снова представим значение слов по их смыслу. Чем может являться число уменьшаемое? Уменьшаемое – это то число, которое уменьшается при вычитании. От этого числа отнимают другое число. А что такое вычитаемое? Вычитаемым как раз и является том числом, которые мы отнимаем от уменьшаемого.

Вернемся к примеру с буфетчицей. Мы помним, как от восьми отнимали пять, и у нас получилось три. Мы выяснили, что тройка является разницей между двумя этими числами. Теперь нам уже не сложно понять, что 8 – это число уменьшаемое, а 5 – это число вычитаемое.

Как найти уменьшаемое и вычитаемое число?

Как в математике найти разницу чисел мы уже разобрались. Это довольно просто. Но сможем ли мы найти уменьшаемое и вычитаемое число, если одно число неизвестно? Конечно можем, так как нам будут известны два других числа. Например, как мы можем найти уменьшаемое число? Если мы знаем значение разницы и вычитаемого, то сумма этих двух чисел равняется уменьшаемому:

  • Y – 10 = 18, где Y – число уменьшаемое
  • Значит, Y = 18 + 10
  • 18 + 10 = 28
  • Y = 28

Вычитаемое находится так же просто. Если мы знаем разницу и уменьшаемое, значит вычитаемое мы получим, отняв от уменьшаемого числа разность:

  • 28 – B = 10, где B – число вычитаемое
  • Значит, B = 28 – 10
  • 28 – 10 = 18
  • B = 18

Источник: https://heaclub.ru/chto-takoe-raznost-chisel-umenshaemoe-vychitaemoe-raznost-pravilo

Что такое разность чисел в математике и как найти разность чисел

В этой статье мы рассмотрим, что такое разность чисел в математике, и как человеку, интересующемуся этой наукой, найти разность чисел.

Что такое разность чисел в математике

Вычитание является одной из 4 арифметических операций. Для его обозначения служит математический знак «−» (минус). Вычитание противоположно по смыслу операции сложения.

Операция вычитания в общем случае записывается следующим образом:

A − B = C

Число Математическое название

A Уменьшаемое
B Вычитаемое
C Разность чисел

Пример: 6 − 2 =4

Здесь разностью чисел будет являться число 4. Следовательно, разность между любыми числами A и B это такое число C, которое при прибавлении к B даст в сумме A (4 при прибавлении к 2 дает 6 — значит, 4 это разность 6 и 2).

Как найти разность чисел

Уже из самого определения следует, как вычислить разность между двумя числами. При небольших числах можно делать это в уме. Детей в начальной школе учат следующим образом. Представьте, что у Вас есть 5 яблок, и 3 из них забрали. Сколько у Вас осталось? Правильно — 2 яблока. Постепенно Вы доведете вычисления до автоматизма и будете сразу выдавать ответ.

Однако для чисел выше 50 такое наглядное представление перестает работать. Большое количество предметов тяжело представить в уме, поэтому здесь на помощь приходит другой способ:

Вычисление разности в столбик

Школьники изучают этот способ в рамках курса математики, обычно во втором или третьем классе. Взрослые люди, пользующиеся калькулятором, зачастую забывают, как считать в столбик. Однако калькулятор не всегда бывает под рукой. Освежите в памяти школьные знания, посмотрев это видео.

Вычисление разности в столбик – видео

Этот способ применим и тогда, когда Вам нужно вычесть большее число из меньшего. В реальной жизни такое обычно не требуется, но может пригодиться при решении математических задач.

Допустим, в примере «A − B = C» B больше, чем A. Тогда C будет отрицательным. Чтобы вычислить разность, «разверните» пример: посчитайте значение B − A.

Когда Вы закончите считать эту разность, у вас получится число C, только с противоположным знаком: оно будет больше нуля. Чтобы завершить вычисления, припишите к нему спереди знак минус.

Источник: https://www.chto-kak-skolko.ru/index.php/nauki/matematika/chto-takoe-raznost-chisel-v-matematike-i-kak-najti-raznost-chisel

Содержание материала

  1. Свойства разности натуральных чисел
  2. Правила вычитания суммы из числа и числа из суммы
  3. Как меняется разность при изменении вычитаемого или уменьшаемого
  4. Видео
  5. Как найти разность чисел
  6. Математические действия с разностью чисел
  7. Вычитание целых отрицательных чисел в примерах
  8. Примеры нахождения

Свойства разности натуральных чисел

Свойства разности натуральных чисел состоят из:

  • Правила вычитания суммы из числа и числа из суммы;
  • Зависимость разности от изменения уменьшаемого или вычитаемого.
  • Правило вычитания разности из числа;

Рассмотрим каждый пункт подробнее.

Правила вычитания суммы из числа и числа из суммы

Как вычесть сумму из числа

Чтобы найти разность числа и суммы чисел нужно из данного числа вычесть последовательно каждое слагаемое суммы.То есть, сначала мы находим разность между данным числом и первым слагаемым, потом от этой полученной разности отнимаем второе слагаемое, третье, и так далее до последнего слагаемого суммы.

Действительно, так как сумма – это объединение всех слагаемых, то очевидно, что, отнимая последовательно каждое слагаемое, каждое ее составляющее число, мы в конце концов отнимем всю сумму.

Рассмотрим это на примере из урока сложение чисел.

325+(12+64+5) = 325+81 = 406

Я запишу это в виде разности:

406-(12+64+5) = 325

и покажу, что результат будет равен первому слагаемому:

40612 = 394;394-64 = 330;330-5 = 325.

Как видите, все верно.

Как вычесть число из суммы

Чтобы найти разность суммы чисел и некоторого числа, нужно отнять это число от какого-нибудь подходящего слагаемого этой суммы.То есть, мы сначала находим разность одного из слагаемых и данного числа, а потом складываем получившийся результат последовательно с остальными слагаемыми.

Действительно, вы знаете, что, если уменьшить одно из слагаемых на какое-то число, то и сумма уменьшится на это же самое число. Следовательно, если нам нужно сумму чисел уменьшить на какое-то число, то для этого достаточно уменьшить на это число одно из слагаемых суммы.

Для рассмотрения я возьму тот же пример, только сумму расчленю на слагаемые, а слагаемое в скобках заменю суммой:

325+81 = (191+65+150)

Превращаю выражение в разность:

(191+65+150)-81 = 325

и покажу, что результат также будет равен первому слагаемому:

191-81 = 110;110+65 = 175;175+150 = 325или150-81 = 69;69+191 = 260;260+65 = 325.

Я недаром написал в правиле, что нужно отнимать от подходящего слагаемого суммы, потому что, если оно будет меньше вычитаемого, то оно нам не подходит. Так, в нашем примере 65<81.

Отсюда следует, что это правило применимо не к любой сумме натуральных чисел, а только к той, в которой хотя бы одно из слагаемых больше, чем вычитаемое.

Как меняется разность при изменении вычитаемого или уменьшаемого

Изменение разности при изменении вычитаемого и уменьшаемого является следствием описанных в уроке изменений суммы чисел с изменением ее слагаемых.

Если уменьшаемое увеличить на некоторое количество единиц, то и разность увеличится на такое же количество единиц.

Если уменьшаемое уменьшить на некоторое количество единиц, то и разность уменьшится на такое же количество единиц.

Если вычитаемое увеличить на некоторое количество единиц, то разность уменьшится на такое же количество единиц.

Если вычитаемое уменьшить на некоторое количество единиц, то разность увеличится на такое же количество единиц.

Если сразу оба числа, и уменьшаемое, и вычитаемое, увеличить или уменьшить на одно и то же количество единиц, то разность не изменится.

Если нужно вычесть из числа разность других чисел, можно воспользоваться одним из двух способов:1. Прибавить к данному числу вычитаемое, и из получившейся суммы вычесть уменьшаемое;2. Вычесть из данного числа уменьшаемое, а потом результат этого действия сложить с вычитаемым.

Это свойство выводится из предыдущих, рассмотренных нами.

Рассмотрим на примере 22-(173).

Для начала вычислим обычным способом: сперва узнаем разность в скобках (это будет 17-3=14), а потом вычтем 14 из 22. Получится 22-14=8.

22-(173) = 8

Теперь вернемся к исходному примеру и отнимем от 22 не разность 17-3, то есть, не 17 без 3 единиц, а все число 17.

2217 = 5

Но мы ведь отняли больше, чем нужно было, поэтому нам нужно вернуть лишне взятые 3 единицы обратно, а именно, прибавить их к полученному результату.

5+3 = 8

Попробуем решить другим путем: увеличим и уменьшаемое (данное число), и вычитаемое (разность в скобках) на одно и то же число 3. Получим:

22+3-(17+3-3)

Так как 22+3=25, а 3-3=0, то в итоге получается:

25-17+0 = 8

Как видите, оба способа показали верный результат.

Видео

Как найти разность чисел

В общем виде вычитание можно записать так: a - b =

В общем виде вычитание можно записать так: a — b = r.Обратимся к тем же конфетам, с которыми мы разбирали сумму чисел. Чтобы помочь ребенку найти разность чисел , возьмите пять конфет. Пусть ребенок посчитает и убедится, что их пять. Затем заберите себе три конфеты. Ребенок скажет, что их осталось две. А сколько тогда забрали? Три.

А что касается разрядных слагаемых, то здесь мы делаем то же самое, что и с суммой, только теперь не прибавляем, а вычитаем. Возьмем число 6845 и вычтем из него 4231. Для этого мы вычитаем один разряд из другого разряда, производя вычитание с конца: 5-1 = 4, 4-3 = 1, 8-2 = 6, 6-4 = 2. В ответе получим 2614.

Для многих точные науки, вроде математики, воспринимаются как нечто более простое, чем сферы, требующие рассуждений, предполагающие большую вариативность. Однако все предметы имеют свои сложности, в том числе и технические.

Математические действия с разностью чисел

Чтобы узнать разность чисел, нужно совершить такое арифметическое действие как вычитание, в результате которого по одному данному слагаемому и данной сумме можно найти другое слагаемое.

Вычитание принято обозначать знаком «–» (минус).

Примечание

Обычно вычитание натуральных чисел возможно только в том случае, если уменьшаемое больше вычитаемого. Однако если уменьшаемое меньше вычитаемого, то значение разности получается отрицательным.

Следует привести некоторые особенности действий с нулем:

  1. Прибавление к числу нуля не изменяет этого числа.

    Пример

    20+0=20

  2. Если первое слагаемое равно второму, то их разность равна нулю.

    Пример

    150-150=0.

Необходимо также обозначить свойства вычитания:

  1. x-(y+z)=x-y-z: 26-(14+4)=26-4-14=22-14=8.
  2. (x+y)-z=(x-z)+y=x+(y-z): (37+28)-5=(37-5)+28=60.
  3. x+(y-z)=x+y-z: 51+(34-7)=51+32=19.
  4. x-(y-z)=x-y+z: 66-(34-7)=(66-34)+7=39.
  5. если x-y=z, то x=y+z: х-7=6, х=7+6, х=13.
  6. если x-y=z, то y=x-z: 46-у=16, у=46-16, у=30.
  7. если x-y=z, то (x+n)-y=z+n и (x-n)-y=z-n: 19-11=8, (19+6)-11=8+6, (19-1)+11=8-1.
  8. если x-y=z, то x-(y+n)=z-n и x-(y-n)=z+n: 46-11=35, 46-(11+4)=35+4, 46-(11-9)=35-9.
  9. если x-y=z, то (x+n)+(y-n)=z: 100-50=50, (100+10)+(50-10)=50.
  10. если x-y=z, то (x+n)-(y+n)=z и (x-n)-(y-n)=z: 300-150=150, (300+25)-(150+25)=150, (300-25)-(150-25)=150.

Определение

Однозначное число — это число, состоящее из одной цифры.

Определение

Многозначное число — включающее две и более цифры.

Чтобы найти разницу между однозначными числами, стоит вычесть из первого слагаемого второе. В этом поможет таблица вычитания, которую заучивают наизусть.

Чтобы посчитать результат вычитания многозначных чисел, можно воспользоваться счетом «в столбик». Этот способ подразумевает, что вычитаемое записывают под уменьшаемым в соответствии с десятками, сотнями, тысячами и так далее. После этого, начиная с конца, то есть с десятков, производят вычисление.

Пример

653-132

Сначала находим разность единиц, то есть от 3 отнимаем 2. Получаем 1.

Затем вычисляем десятки, то есть от 5 отнимаем 3. Результат равен 2.

И, наконец, считаем сотни, то есть от 6 отнимаем 1 и получаем 5.

Ответ: 521.

Если одно и то же число вычитается из другого множество раз, то можно умножить данное значение на столько раз, сколько представлено в примере, и таким образом получить одно вычитаемое число.

Пример

440-10-10-10=440-(10*3)=440-30=410.

Вычитание целых отрицательных чисел в примерах

Пример: Найдите разность чисел 6 и -8.

Решение: По правилу разности нужно заменить вычитаемое -8 на противоположное число +8 или 8 и посчитать сумму целых чисел. Получим:

Из целого числа -14 вычтите число -10. Нужно вычитаемое -10 заменить на противоположное число +10 или 10 по правилу вычитания целых чисел и потом выполнить сложение.

14-(-10)=-14+10=-4

Примеры нахождения

Пример 1. Найти разницу двух величин. Дано: 20 — уменьшаемое, 15 — вычитаемое. Решение: 20 — 15 = 5 Ответ: 5 — разница величин.

Пример 2. Найти уменьшаемое. Дано: 48 — разность, 32 — вычитаемое значение. Решение: 32 + 48 = 80 Ответ: 80.

Пример 3. Найти вычитаемое значение. Дано: 7 — разность, 17 — уменьшаемая величина. Решение: 17 — 7 = 10 Ответ: 10.

Теги

Содержание

  1. Как найти разность чисел в математике
  2. Арифметические действия с числами
  3. Разность в математике
  4. Видео: Математика 6 Делимость суммы и разности чисел
  5. Как найти разницу величин
  6. Математические действия с разностью чисел
  7. Видео: Математика 2 класс. Разность двухзначных чисел
  8. Простые примеры
  9. Более сложные примеры
  10. Математика для блондинок
  11. Разность чисел
  12. Что такое разность чисел в математике
  13. Математические действия с разностью чисел
  14. Зависимость между данными и искомыми вычитания
  15. Как найти разность чисел в математике
  16. Арифметические действия с числами
  17. Роль в математике
  18. Как найти разность величин
  19. Примеры нахождения

Как найти разность чисел в математике

Слово «разность» может употребляться во многих значениях. Это может означать и разницу чего-либо, например, мнений, взглядов, интересов. В некоторых научных, медицинских и других профессиональных сферах этим термином обозначают разные показатели, к примеру, уровня сахара в крови, атмосферного давления, погодных условий. Понятие «разность», как математический термин тоже существует.

Арифметические действия с числами

Основными арифметическими действиями в математике являются:

Каждый результат этих действий также имеет своё название:

  • сумма — результат, получившийся при сложении чисел;
  • разность — результат, получившийся при вычитании чисел;
  • произведение — результат умножения чисел;
  • частное — результат деления.

Более простым языком объясняя понятия суммы, разности, произведения и частного в математике, можно упрощённо записать их лишь как словосочетания:

  • сумма — прибавить;
  • разность — отнять;
  • произведение — умножить;
  • частное — разделить.

Разность в математике

Рассматривая определения, что же такое разность чисел в математике, можно обозначить это понятие несколькими способами:

  • Разность чисел означает, насколько одно из них больше другого.
  • Разностью в математике называется итог, получившийся при отнимании друг от друга двух и более чисел.
  • Это вычитание одного числа из другого.
  • Это цифра, составляющая остаток при минусовании двух величин.
  • Это величина, являющаяся результатом вычитания двух значений.
  • Разность показывает количественное различие между двумя цифрами.
  • Это результат одного из четырёх арифметических действий, которым является вычитание.
  • Это то, что получится, если из уменьшаемого отнять вычитаемое.

Видео: Математика 6 Делимость суммы и разности чисел

И все эти определения являются верными.

Как найти разницу величин

Возьмём за основу то обозначение разности, которое нам предлагает школьная программа:

  • Разностью называется результат вычитания одного числа из другого. Первое из этих чисел, из которого осуществляется вычитание, называется уменьшаемым, а второе, которое вычитают из первого, называется вычитаемым.

Ещё раз прибегнув к школьной программе, мы находим правило, как найти разность:

  • Чтобы найти разность, надо от уменьшаемого отнять вычитаемое.

Всё понятно. Но при этом мы получили ещё несколько математических терминов. Что они значат?

  • Уменьшаемое — это математическое число, от которого отнимают и оно уменьшается (становится меньше).
  • Вычитаемое — это математическое число, которое вычитают из уменьшаемого.

Теперь понятно, что разность состоит из двух чисел, которые для её вычисления должны быть известны. А как их найти тоже воспользуемся определениями:

  • Чтобы найти уменьшаемое, надо к вычитаемому прибавить разность.
  • Чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность.

Математические действия с разностью чисел

Опираясь на выведенные правила, можно рассмотреть наглядные примеры. Математика, интереснейшая наука. Мы здесь возьмём для решения лишь самые простые цифры. Научившись вычитать их, вы научитесь решать и более сложные значения, трёхзначные, четырёхзначные, целые, дробные, в степенях, корнях, другие.

Видео: Математика 2 класс. Разность двухзначных чисел

Простые примеры

  • Пример 1. Найти разницу двух величин.

20 — уменьшаемое значение,

Решение: 20 — 15 = 5

Ответ: 5 — разница величин.

  • Пример 2. Найти уменьшаемое.

32 — вычитаемое значение.

Решение: 32 + 48 = 80

  • Пример 3. Найти вычитаемое значение.

17 — уменьшаемая величина.

Решение: 17 — 7 = 10

Ответ: вычитаемое значение 10.

Более сложные примеры

На примерах 1—3 рассмотрены действия с простыми целыми числами. Но в математике разницу вычисляют с применением не только двух, но и нескольких чисел, а также целых, дробных, рациональных, иррациональных, др.

  • Пример 4. Найти разницу трёх значений.

Даны целые значения: 56, 12, 4.

56 — уменьшаемое значение,

12 и 4 — вычитаемые значения.

Решение можно выполнить двумя способами.

1 способ (последовательное отнимание вычитаемых значений):

1) 56 — 12 = 44 (здесь 44 — получившаяся разница двух первых величин, которая во втором действии будет уменьшаемым);

2 способ (отнимание из уменьшаемого суммы двух вычитаемых, которые в таком случае называются слагаемыми):

1) 12 + 4 = 16 (где 16 — сумма двух слагаемых, которая в следующем действии будет вычитаемым);

Ответ: 40 — разница трёх значений.

  • Пример 5. Найти разницу рациональных дробных чисел.

Даны дроби с одинаковыми знаменателями, где

4/5 — уменьшаемая дробь,

Чтобы выполнить решение, нужно повторить действия с дробями. То есть, надо знать как отнимать дроби с одинаковым знаменателем. Как обращаться с дробями, имеющими разные знаменатели. Их надо уметь привести к общему знаменателю.

Решение: 4/5 — 3/5 = (4 — 3)/5 = 1/5

  • Пример 6. Утроить разницу чисел.

А как выполнить такой пример, когда требуется удвоить или утроить разницу?

Вновь прибегнем к правилам:

  • Удвоенное число — это величина, умноженная на два.
  • Утроенное число — это величина, умноженная на три.
  • Удвоенная разность — это разница величин, умноженная на два.
  • Утроенная разность — это разница величин, умноженная на три.

7 — уменьшаемая величина,

5 — вычитаемая величина.

2) 2 * 3 = 6. Ответ: 6 — разница чисел 7 и 5.

  • Пример 7. Найти разницу величин 7 и 18.

7 — уменьшаемая величина;

Вроде всё понятно. Стоп! Вычитаемое больше уменьшаемого?

И опять есть применяемое для конкретного случая правило:

  • Если вычитаемое больше уменьшаемого, разница окажется отрицательной.

Ответ: — 11. Это отрицательное значение и есть разница двух величин, при условии, что вычитаемая величина больше уменьшаемой.

Математика для блондинок

Во Всемирной паутине можно найти массу тематических сайтов, которые ответят на любой вопрос. Точно так же в любых математических расчётах вам помогут онлайн-калькуляторы на любой вкус. Все расчёты, производимые на них, прекрасное подспорье для торопливых, нелюбознательных, ленивых. Математика для блондинок — один из таких ресурсов. Причём прибегаем к нему мы все, независимо от цвета волос, пола и возраста.

В школе подобные действия с математическими величинами нас учили вычислять в столбик, а позднее — на калькуляторе. Калькулятор — это также удобное подспорье. Но, для развития мышления, интеллекта, кругозора и других жизненных качеств, советуем производить арифметические действия на бумаге или даже в уме. Красота человеческого тела — это великое достижение современного фитнес-плана. Но мозг — это тоже мышца, которая требует иногда её качать. А значит, не откладывая, начинайте думать.

И пусть в начале пути вычисления сводятся к примитивным примерам, всё у вас впереди. А освоить придётся немало. Мы видим, что действий с разными величинами в математике множество. Поэтому кроме разницы необходимо изучить, как вычислить и остальные результаты арифметических действий:

  • сумму — сложением слагаемых;
  • произведение — умножением множителей;
  • частное — делением делимого на делитель.

Источник

Разность чисел

Что такое разность чисел в математике

Разность чисел в математике — это результат вычитания одного числа из другого.

Формула РЧ выглядит так:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Здесь a — уменьшаемое, b — вычитаемое, c — разность.

Математические действия с разностью чисел

Чтобы узнать разность чисел, нужно совершить такое арифметическое действие как вычитание, в результате которого по одному данному слагаемому и данной сумме можно найти другое слагаемое.

Вычитание принято обозначать знаком «–» (минус).

Обычно вычитание натуральных чисел возможно только в том случае, если уменьшаемое больше вычитаемого. Однако если уменьшаемое меньше вычитаемого, то значение разности получается отрицательным.

Следует привести некоторые особенности действий с нулем:

    Прибавление к числу нуля не изменяет этого числа.

Необходимо также обозначить свойства вычитания:

  1. x-(y+z)=x-y-z: 26-(14+4)=26-4-14=22-14=8.
  2. (x+y)-z=(x-z)+y=x+(y-z): (37+28)-5=(37-5)+28=60.
  3. x+(y-z)=x+y-z: 51+(34-7)=51+32=19.
  4. x-(y-z)=x-y+z: 66-(34-7)=(66-34)+7=39.
  5. если x-y=z, то x=y+z: х-7=6, х=7+6, х=13.
  6. если x-y=z, то y=x-z: 46-у=16, у=46-16, у=30.
  7. если x-y=z, то (x+n)-y=z+n и (x-n)-y=z-n: 19-11=8, (19+6)-11=8+6, (19-1)+11=8-1.
  8. если x-y=z, то x-(y+n)=z-n и x-(y-n)=z+n: 46-11=35, 46-(11+4)=35+4, 46-(11-9)=35-9.
  9. если x-y=z, то (x+n)+(y-n)=z: 100-50=50, (100+10)+(50-10)=50.
  10. если x-y=z, то (x+n)-(y+n)=z и (x-n)-(y-n)=z: 300-150=150, (300+25)-(150+25)=150, (300-25)-(150-25)=150.

Однозначное число — это число, состоящее из одной цифры.

Многозначное число — включающее две и более цифры.

Чтобы найти разницу между однозначными числами, стоит вычесть из первого слагаемого второе. В этом поможет таблица вычитания, которую заучивают наизусть.

Чтобы посчитать результат вычитания многозначных чисел, можно воспользоваться счетом «в столбик». Этот способ подразумевает, что вычитаемое записывают под уменьшаемым в соответствии с десятками, сотнями, тысячами и так далее. После этого, начиная с конца, то есть с десятков, производят вычисление.

Сначала находим разность единиц, то есть от 3 отнимаем 2. Получаем 1.

Затем вычисляем десятки, то есть от 5 отнимаем 3. Результат равен 2.

И, наконец, считаем сотни, то есть от 6 отнимаем 1 и получаем 5.

Если одно и то же число вычитается из другого множество раз, то можно умножить данное значение на столько раз, сколько представлено в примере, и таким образом получить одно вычитаемое число.

Зависимость между данными и искомыми вычитания

Данные вычитания представляют уменьшаемое и вычитаемое. Искомое вычитания — это разность. Зависимость между ДВ и ИВ состоит в том, что второе чаще всего меньше первого.

Однако бывают случаи, когда ИВ может оказаться больше, чем ДВ. Это происходит, когда от первого слагаемого вычитают отрицательное число. Тогда, согласно правилам арифметики, два минуса дают общий знак плюс.

Источник

Как найти разность чисел в математике

Содержание:

Само слово «разность» мы часто употребляем в нашей повседневной речи, объясняя им различие чего либо. Например, говоря о различии разных мнений и взглядов можно сказать о «разности» в них. Часто этот термин употребляется в науках, им обозначают разные количественные показатели, скажем разность электрических потенциалов, атмосферного давления или количества сахара в крови человека. Но прежде всего «разность» – это математический термин и об этой его ипостаси мы поговорим в нашей статье.

Арифметические действия с числами

Все основные арифметические действия с числами делятся на четыре большие группы:

Результат каждого из этих действий в свою очередь имеет свое уникальное название:

  • сумма – результат от сложения чисел или говоря простым языком – сума, когда мы прибавляем,
  • разность – результат от вычитания чисел или – когда мы отнимаем,
  • произведение – результат от умножения чисел,
  • частное – результат от деления чисел.

Роль в математике

Исходя из выше написанного, несложно дать определение того, что такое разность чисел, причем это понятие можно обозначить сразу несколькими способами:

  • Разность между числами показывает нам, насколько одно число является больше другого.
  • Разностью также называют итог, который получился при отнимании друг от друга двух или больше чисел.
  • Разность двух чисел – вычитание одного числа от другого.
  • Разность – цифра, составляющая остаток при минусовании двух величин.
  • Она показывает количественное различие между цифрами.

Все эти определение разности являются правильными.

Как найти разность величин

Разность – это результат вычитания одного числа из другого. Первое из этих чисел, с которого делается вычитание, называют уменьшаемым, а второе число называется вычитаемым, его как раз вычитают из первого числа. Итак, чтобы найти значение разности чисел нужно просто от уменьшаемого отнять вычитаемое.

Тут все предельно просто, но при этом у нас появилось еще два дополнительных термина, которые также надо знать:

  • Уменьшаемое – математическое число, от которого отнимают, в результате оно уменьшается.
  • Вычитаемое – это то математическое число, которое вычитают от уменьшаемого.

Итого, для того, чтобы найти разность необходимо знать значение уменьшаемого и вычитаемого, они должны быть известны.

Порой необходимо решить задачу обратную, при известной разности найти уменьшаемое или вычитаемое число. Сделать это тоже просто:

  • Чтобы найти уменьшаемое, надо к вычитаемому прибавить разность.
  • Чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность.

Примеры нахождения

Пример 1. Найти разницу двух величин.
Дано: 20 — уменьшаемое, 15 — вычитаемое.
Решение: 20 — 15 = 5
Ответ: 5 — разница величин.

Пример 2. Найти уменьшаемое.
Дано: 48 — разность, 32 — вычитаемое значение.
Решение: 32 + 48 = 80
Ответ: 80.

Пример 3. Найти вычитаемое значение.
Дано: 7 — разность, 17 — уменьшаемая величина.
Решение: 17 — 7 = 10
Ответ: 10.

И немного более сложных примеров, ведь в математике зачастую высчитывают разность с использованием не только двух, но и гораздо большего количества компонентов, в которых могут быть к тому же не только лишь целые числа, но и дробные, рациональные, иррациональные числа.

Пример 4. Найти разницу трех значений.
Даны целые значения: 56, 12, 4.
56 — уменьшаемое значение, 12 и 4 — вычитаемые значения.
Решение можно выполнить двумя способами.
1 способ (последовательное отнимание вычитаемых значений):
1) 56 — 12 = 44 (здесь 44 — получившаяся разница двух первых величин, которая во втором действии будет уменьшаемым);
2) 44 — 4 = 40.
2 способ (отнимание из уменьшаемого суммы двух вычитаемых, которые в таком случае называются слагаемыми);
1) 12 + 4 = 16 (где 16 — сумма двух слагаемых, которая в следующем действии будет вычитаемым);
2) 56 — 16 = 40.
Ответ: 40 — разница трех значений.

Пример 5. Найти разницу величин 7 и 18.
Дано: 7 — уменьшаемое значение, 18 — вычитаемое.
Вроде все просто, но ведь вычитаемое у нас больше уменьшаемого, как быть в таком случае? В таком случае действует следующее правило: если вычитаемое больше уменьшаемого, то разность окажется отрицательной или другими словами, она будет числом со знаком минус.
Решение: 7 — 18 = —11
Ответ: —11 — отрицательное число со знаком минус.

Источник

Содержание:

  • Определение разности чисел

Определение разности чисел

Разность $r$ чисел $a$ и $b$ – это результат вычитания числа $b$ из числа $a$ .

Пример

Задание. Найти разность чисел:

1) $17-5$   ;  2) $13-27$   ;  3) $2,34-1,24$  

Ответ.

$17-5=12$

$13-27=-14$

$2,34-1,24=1,1$

В случае если вычитаются большие числа или
десятичные дроби, то используют способ вычитания в столбик.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Найти разность чисел:

1) $5637-172$   ;  2) $43,56-23,94$  

Решение. Найдем разность этих чисел, используя метод вычитания в столбик. В первом примере запишем числа
друг под другом так, чтобы единицы были под единицами, десятки под десятками и т.д. Вычитание будем производить справа налево,
вычитая из верхнего числа меньшее. В случае, если верхнее число меньше нижнего занимаем десяток у верхнего числа стоящего
левее данного, при этом число стоящее левее уменьшится на единицу, а данное число увеличится на 10.

Для нахождения второй разности запишем заданные десятичные дроби в столбик так, чтобы запятая верхнего числа совпадала
с запятой нижнего. После чего вычтем их в столбик как числа в первом примере.

Ответ.

$5637-172=5465$

$43,56-23,94=19,62$

Разность рациональных дробей находится по правилу

Пример

Задание. Найти разность рациональных дробей:

1) $frac{5}{13}-frac{2}{11}$   ;  2) $1 frac{1}{7}-frac{2}{5}$  

Решение. По правилу вычитания рациональных дробей имеем

$$frac{5}{13}-frac{2}{11}=frac{5 cdot 11-2 cdot 13}{13 cdot 11}=frac{55-26}{143}=frac{29}{143}$$

Во втором примере, перед тем как производить вычитание дробей запишем первую дробь в виде
неправильной. Для этого целую
часть умножим на знаменатель и прибавим к числителю:

$$1 frac{1}{7}-frac{2}{5}=frac{8}{7}-frac{2}{5}=frac{8 cdot 5-2 cdot 7}{7 cdot 5}=frac{40-14}{35}=frac{26}{35}$$

Ответ.

$$frac{5}{13}-frac{2}{11}=frac{29}{143}$$

$$1 frac{1}{7}-frac{2}{5}=frac{26}{35}$$

Читать дальше: что такое целое число.

Разностью принято называть результат, полученный путем вычитания меньшего числа из большего. В данном случае, первое число из которого вычитается другое, получает название уменьшаемое (ведь именно его мы уменьшаем в процессе). Второе же, вычитаемое из первого числа, так и называется вычитаемым. В сумме с разностью вычитаемое составляет собой уменьшаемое, а разница между уменьшаемым и разностью становится вычитаемым. В случаях, когда вычитаемое превышает собой уменьшаемое, разность чисел становится отрицательной.

Существует несколько формул разности:

  1. формула разности a-b = с
  2. формула разности квадратов a 2 – b 2 = (a – b)*(a + b)
  3. формула разности кубов a 3 – b 3 = (a – b)*(a 2 + ab + b 2)
  4. формула разности потенциалов U=Aq
  5. формула квадрата разности (a – b) 2 = a 2 – 2ab + b 2
  6. формула куба разности (a – b) 3 = a 3 – 3a2b + 3ab 2 – b 3

Что такое разность и как ее найти

Вычислить разность можно с помощью обычного, привычного нам калькулятора. Для этого, следует нажать кнопку “С”, ввести числа уменьшаемого, после чего нажать кнопку “-” и вводить вычитаемое. Результат получаем с помощью нажатия кнопки «=». Существуют и менее распространенные модели калькуляторов с обратной, так называемой польской записью. Здесь, для вычисления разности, вместо кнопки “-” следует нажать кнопку с изображением стрелки вверх (благодаря этому, число переходит в стек или карту памяти действия). После этого, вводим вычитаемое и нажимаем кнопку «-», получая готовый ответ.

Существует также и некий суммирующий прибор, в возможности которого входит исключительно сложение чисел. Есть возможность найти разность и с помощью его. Для этого, необходимо мысленно уменьшить вычитаемое на 1. После этого, переводим цифры числа в разряд дополнительных, где 0 равен 9, 1 равен 8 и т.д. Старшие разряды, оставшиеся свободными, заполняем девятками. Сложенные составляющие разности такого рода заставляет счетчик прибора переполниться и индицировать разность.

Что такое разность потенциалов

Понятие разности потенциалов используется физиками. Получить разность потенциалов можно, подключив вольтметр к двум точкам цепи, где напряжение первой условно равно U1, а второй – U2. В таком случае вольтметр покажет результат в виде напряжения U1-U2, что и называется разностью потенциалов. Любой гальванический элемент вырабатывает напряжение, которое определяет разность электрохимических потенциалов, составляющих электроды элемента веществ.

До того, как были изобретены стабилизаторы напряжения, осуществить калибровку вольтметров позволяли элементы Вестона. Подобранные в них реагирующие составляющие обеспечивали высокий уровень стабильности разности потенциалов. Также существует понятие разности давлений, использующееся в гидравлическом и пневматическом оружии. Такая разность представляет собой аналог разности электротехнических потенциалов.

Как научить ребенка вычитанию и сложению

Еще до начала школы ребенку желательно освоить элементарные математические действия, получить понятие о том, что такое разность или сумма. Для того, чтобы малышу было проще считать, используйте в процессе обучения любые подручные средства. Не бойтесь визуализировать задачу. К примеру, малышу будет куда проще решить, сколько яблок у него останется, если он поделится половиной с другом на реальных предметах, а не на безликом листе бумаги.

Очень нравятся детям и задачи связанные с угадыванием. К примеру. стандартный пример «2+2=4» можно заменить на «2+х=4». Такое упражнение заставит ребенка мыслить не по шаблону и разовьет логику.

В начальной школе ребенок впервые знакомится с математикой, и его первыми примерами являются такие простые действия, как складывание или вычитание. Но иногда ребенку сложно объяснить даже такие, казалось бы, несложные и привычные взрослым примеры. Как же научиться находить сумму и разность чисел?

Что такое сумма, и как ее найти

Сумма – это результат складывания двух чисел (слагаемых), между которыми стоит знак +. Чтобы получить сумму, нужно к одному слагаемому прибавить второе слагаемое. В общем виде пример можно показать так: a + b = s, где а – первое слагаемое, b – второе слагаемое, а s – результат сложения этих двух слагаемых. При этом нужно знать, что от перестановки слагаемых сумма не меняется, – это одно из самых первых правил в математике, которое проходят в начальной школе.

Чтобы наглядно показать ребенку, как сложить числа, возьмите конфеты или любые другие вещи. Покажите ребенку две конфеты, а затем прибавьте к этим конфетам еще две. Пусть ребенок посчитает и скажет, что теперь конфет оказалось четыре. Объясните ему, что он только что сложил эти числа, то есть прибавил к одному числу другое число и в конечном итоге получил сумму.

Немного сложнее объяснить сложение разрядных слагаемых , эта тема может быть непонятна ребенку. Итак, существует множество разрядов: единицы, десятки, тысячи. Возьмите, к примеру, число 2564. Если разложить его на разряды, то получится: 2564 = 2000 + 500 + 60 + 4. Чтобы прибавить к этому числу, например, число 305, воспользуйтесь сложением в столбик. При таком сложении нужно прибавлять одни разряды к другим, начиная с конца: единицы к единицам, десятки к десяткам, тысячи к тысячам. То есть, для начала складываем 4 и 5, затем 6 и 0, после 5 и 3, и в конце 2 и 0. В конечном итоге получаем число 2869.

Как найти разность чисел

Разность – результат вычитания одного числа из другого. В отличие от суммы, здесь мы не можем воспользоваться правилом “от перестановки слагаемых разность не меняется”, так как в вычитании всегда есть уменьшаемое и вычитаемое. Чтобы найти вычитаемое и разность , для начала нужно разобраться с этими понятиями. Уменьшаемое – это то, из чего мы “вычитаем”, то есть убираем, а вычитаемое – количество того, что мы у этого уменьшаемого вернем.

В общем виде вычитание можно записать так: a – b = r.
Обратимся к тем же конфетам, с которыми мы разбирали сумму чисел. Чтобы помочь ребенку найти разность чисел , возьмите пять конфет. Пусть ребенок посчитает и убедится, что их пять. Затем заберите себе три конфеты. Ребенок скажет, что их осталось две. А сколько тогда забрали? Три.

А что касается разрядных слагаемых, то здесь мы делаем то же самое, что и с суммой, только теперь не прибавляем, а вычитаем. Возьмем число 6845 и вычтем из него 4231. Для этого мы вычитаем один разряд из другого разряда, производя вычитание с конца: 5-1 = 4, 4-3 = 1, 8-2 = 6, 6-4 = 2. В ответе получим 2614.

Для многих точные науки, вроде математики, воспринимаются как нечто более простое, чем сферы, требующие рассуждений, предполагающие большую вариативность. Однако все предметы имеют свои сложности, в том числе и технические.

Вычитание

Для того, чтобы понять, чем является разность, необходимо разобраться в ряде математической терминологии. В первую очередь, нужно выяснить, чем является вычитание.

По-другому это понятие называют убавлением, и по такому названию понять смысл процесса несколько проще. По своей сути вычитание является одной из математических операций. Что же это за операции? Как правило, под ними понимают определенные арифметические или логические действия. Встает логичный вопрос – в чем же суть арифметических действий?

Понятие арифметики появилось достаточно давно. Оно зародилось в древнегреческом языке, где переводилось как «число». Сегодня это раздел математики, который изучает числа, их отношения друг к другу, а также свойства.

Итак, вычитание – это операции с числами, относящиеся к бинарным
. Суть бинарных операций в том, что в них используются два аргумента (параметра), и получается один результат.

Стоит рассмотреть, как найти разность какого-то числа. В первую очередь, необходимы два аргумента, то есть два числа. Затем необходимо уменьшить значение первого числа на значение второго. Когда данная операция выражается письменно, используется знак «минус». Это выглядит так: а – б = с, где а является первым числовым значением, б – вторым, а с – разностью чисел.

Свойства и особенности

Как правило, у учеников возникает гораздо больше проблем именно с вычитанием, нежели со сложением. Отчасти это связано со свойствами данных математических операций. Всем известно, что от перемены мест слагаемых значение суммы не меняется. В вычитании же всё гораздо сложней. Если поменять числа местами, получится совершенно другой результат. Схожим свойством в прибавлении и убавлении является то, что нулевой элемент не меняет исходное число.

В вычитании всё относительно просто, если первое число больше второго, однако в школе будут рассматриваться и противоположные примеры. В этом случае возникает понятие отрицательного числа.

Например, если нужно вычесть из 5 число 2, то всё несложно. 5-2=3, таким образом разность числа составит 3. Однако, что делать, если необходимо посчитать, сколько будет два минус пять?

В выражении 2-5 разность уйдет в минус, то есть в отрицательное значение. Из двойки легко можно вычесть двойку, получив таким образом ноль, однако от пятерки остается ещё три. Таким образом, результатом данного выражения будет отрицательное число три. То есть, 2-5=-3.

Особенности вычитания отрицательных чисел

Также бывают ситуации, когда второе число, по сути, меньше первого, однако является отрицательным. Например, рассмотрим выражение 7-(-4). Проще всего разобраться с этой операцией путем превращения комбинации –(- в обычный плюс. Знаки даже внешне напоминают его. В связи с этим, результатом выражения, то есть разницей чисел, будет 11.

Если оба числа являются отрицательными, то вычитание будет происходить следующим образом.

6-(-7): минус у первого числа сохранится, а комбинация из двух последующих минусов превратится в плюс. Таким образом, необходимо понять, сколько будет -6+7. Разницу найти нетрудно – она равняется единице.

Если же необходимо вычесть положительное число из отрицательного, то выражение можно представить как простое сложение, а затем подписать к результату минус. Например, -3-4 (4 – положительное число), в результате даст -7.

Слово «разность» может употребляться во многих значениях. Это может означать и разницу чего-либо, например, мнений, взглядов, интересов. В некоторых научных, медицинских и других профессиональных сферах этим термином обозначают разные показатели, к примеру, уровня сахара в крови, атмосферного давления, погодных условий. Понятие «разность», как математический термин тоже существует.

Вконтакте

Арифметические действия с числами

Основными арифметическими действиями в математике являются:

  • сложение;
  • вычитание;
  • умножение;
  • деление.

Каждый результат этих действий также имеет своё название:

  • сумма – результат, получившийся при сложении чисел;
  • разность – результат, получившийся при вычитании чисел;
  • произведение – результат умножения чисел;
  • частное – результат деления.

Более простым языком объясняя понятия суммы, разности, произведения и частного в математике, можно упрощённо записать их лишь как словосочетания:

  • сумма – прибавить;
  • разность – отнять;
  • произведение – умножить;
  • частное – разделить.

Рассматривая определения
, что же такое разность чисел в математике, можно обозначить это понятие несколькими способами:

И все эти определения являются верными
.

Как найти разницу величин

Возьмём за основу то обозначение разности, которое нам предлагает школьная программа:

  • Разностью называется результат вычитания одного числа из другого. Первое из этих чисел, из которого осуществляется вычитание, называется уменьшаемым, а второе, которое вычитают из первого, называется вычитаемым.

Ещё раз прибегнув к школьной программе, мы находим правило, как найти разность:

  • Чтобы найти разность, надо от уменьшаемого отнять вычитаемое.

Всё понятно. Но при этом мы получили ещё несколько математических терминов. Что они значат?

  • Уменьшаемое – это математическое число, от которого отнимают и оно уменьшается (становится меньше).
  • Вычитаемое – это математическое число, которое вычитают из уменьшаемого.

Теперь понятно, что разность состоит из двух чисел, которые для её вычисления должны быть известны. А как их найти тоже воспользуемся определениями:

  • Чтобы найти уменьшаемое, надо к вычитаемому прибавить разность.
  • Чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность
    .

Математические действия с разностью чисел

Опираясь на выведенные правила, можно рассмотреть наглядные примеры. Математика, интереснейшая наука. Мы здесь возьмём для решения лишь самые простые цифры. Научившись вычитать их, вы научитесь решать и более сложные значения, трёхзначные, четырёхзначные, целые, дробные, в степенях, корнях, другие.

Простые примеры

  • Пример 1. Найти разницу двух величин.

20 – уменьшаемое значение,

15 – вычитаемое.

Решение: 20 – 15 = 5

Ответ: 5 – разница величин.

  • Пример 2. Найти уменьшаемое.

48 – разность,

32 – вычитаемое значение.

Решение: 32 + 48 = 80

  • Пример 3. Найти вычитаемое значение.

7 – разность,

17 – уменьшаемая величина.

Решение: 17 – 7 = 10

Ответ: вычитаемое значение 10.

Более сложные примеры

На примерах 1-3 рассмотрены действия с простыми целыми числами. Но в математике разницу вычисляют с применением не только двух, но и нескольких чисел, а также целых, дробных, рациональных, иррациональных, др.

  • Пример 4. Найти разницу трёх значений.

Даны целые значения: 56, 12, 4.

56 – уменьшаемое значение,

12 и 4 – вычитаемые значения.

Решение можно выполнить двумя способами
.

1 способ (последовательное отнимание вычитаемых значений):

1) 56 – 12 = 44 (здесь 44 – получившаяся разница двух первых величин, которая во втором действии будет уменьшаемым);

2 способ (отнимание из уменьшаемого суммы двух вычитаемых, которые в таком случае называются слагаемыми):

1) 12 + 4 = 16 (где 16 – сумма двух слагаемых, которая в следующем действии будет вычитаемым);

2) 56 – 16 = 40.

Ответ: 40 – разница трёх значений.

  • Пример 5. Найти разницу рациональных дробных чисел.

Даны дроби с одинаковыми знаменателями, где

4/5 – уменьшаемая дробь,

3/5 – вычитаемая.

Чтобы выполнить решение, нужно повторить действия с дробями. То есть, надо знать как отнимать дроби с одинаковым знаменателем. Как обращаться с дробями, имеющими разные знаменатели. Их надо уметь привести к общему знаменателю.

Решение: 4/5 – 3/5 = (4 – 3)/5 = 1/5

Ответ: 1/5.

  • Пример 6. Утроить разницу чисел.

А как выполнить такой пример, когда требуется удвоить или утроить разницу?

Вновь прибегнем к правилам:

  • Удвоенное число – это величина, умноженная на два.
  • Утроенное число – это величина, умноженная на три.
  • Удвоенная разность – это разница величин, умноженная на два.
  • Утроенная разность – это разница величин, умноженная на три.

7 – уменьшаемая величина,

5 – вычитаемая величина.

2) 2 * 3 = 6. Ответ: 6 – разница чисел 7 и 5.

  • Пример 7. Найти разницу величин 7 и 18.

7 – уменьшаемая величина;

18 – вычитаемая.

Вроде всё понятно. Стоп! Вычитаемое больше уменьшаемого?

И опять есть применяемое для конкретного случая правило:

  • Если вычитаемое больше уменьшаемого, разница окажется отрицательной.

Ответ: – 11. Это отрицательное значение и есть разница двух величин, при условии, что вычитаемая величина больше уменьшаемой.

Математика для блондинок

Во Всемирной паутине можно найти массу тематических сайтов, которые ответят на любой вопрос. Точно так же в любых математических расчётах вам помогут онлайн-калькуляторы на любой вкус. Все расчёты, производимые на них, прекрасное подспорье для торопливых, нелюбознательных, ленивых. Математика для блондинок – один из таких ресурсов. Причём прибегаем к нему мы все, независимо от цвета волос, пола и возраста.

В школе подобные действия с математическими величинами нас учили вычислять в столбик, а позднее – на калькуляторе. Калькулятор – это также удобное подспорье. Но, для развития мышления, интеллекта, кругозора и других жизненных качеств, советуем производить арифметические действия на бумаге или даже в уме. Красота человеческого тела – это великое достижение современного фитнес-плана. Но мозг – это тоже мышца, которая требует иногда её качать. А значит, не откладывая, начинайте думать.

И пусть в начале пути вычисления сводятся к примитивным примерам, всё у вас впереди. А освоить придётся немало. Мы видим, что действий с разными величинами в математике множество. Поэтому кроме разницы необходимо изучить, как вычислить и остальные результаты арифметических действий:

  • сумму – сложением слагаемых;
  • произведение – умножением множителей;
  • частное – делением делимого на делитель.

Вот такая интересная арифметика.

Разность или вычитание целых чисел напрямую связана с темой сложение целых чисел. Ведь зная сумму и одно из слагаемых, можно найти второе слагаемое. Рассмотрим пример:

У нас есть 10 яблок в корзине. В первый раз в корзину добавили 2 яблока, сколько во-второй раз добавили яблок в корзину, чтобы в итоге получить 10 яблок?
Обозначим за переменную x – количество яблок, добавленных во второй раз. Если мы прибавим к переменной x два яблока, то получим 10 яблок. Математически запись будет выглядеть так:

чтобы найти переменную x нужно из корзины убрать 2 яблока или от суммы 10 отнять одно известное слагаемое 2.

То есть переменная x=8.

Определение:

Разностью двух целых чисел называется целое число, которое в сумме с вычитаемым дает уменьшаемое.

Разность целых чисел a и b обозначается как a-b.

Разность
a-
b это сумма чисел
a и противоположного числа
b.

a-
b=
a+(-
b)

где b и –b – это противоположные числа.

Пример:

5-2=5+(-2)=3

Вычитание целых положительных чисел в примерах.

Пример:

Выполните вычитание из целого числа 12 число 5.

Решение:
По правилу разности мы должны заменить вычитаемое 5 заменить на противоположное число, то есть -5 и выполнить .

Пример:

Из числа 37 выполните вычитание числа 56.

Решение:
Нужно вычитаемое число 56 заменить на противоположное число, то есть число -56 и выполнить сложение целых чисел с разными знаками.

37-56=37+(-56)=-21

Пример:

Из числа -4 нужно вычесть число 7.

Решение:
Заменяем вычитаемое число 7 на противоположное число -7 и складываем из по правилу

4-7=-4+(-7)=-11

Вычитание целых отрицательных чисел в примерах.

Пример:

Найдите разность чисел 6 и -8.

Решение:
По правилу разности нужно заменить вычитаемое -8 на противоположное число +8 или 8 и посчитать сумму целых чисел. Получим:

Из целого числа -14 вычтите число -10.
Нужно вычитаемое -10 заменить на противоположное число +10 или 10 по правилу вычитания целых чисел и потом выполнить сложение.

14-(-10)=-14+10=-4

Вычитание нуля из целых чисел.

Если вычесть нуль из целого числа, то число не измениться
.

Рассмотрим пример:

3-0=3+0=3

a-0=
a

Если вычесть нуль из нуля, то получим нуль.

Вычитание одинаковых целых чисел.

Рассмотрим задачу:

Миша получил от мамы 2 конфеты и он тут же угостил своего друга Сашу двумя конфетами. Сколько осталось конфет у Миши?

Решение:
Миша получил 2 конфеты и отдал 2 конфеты, математически можно записать так:

Ответ: у Миши осталось 0 конфет.

То есть если выполнить вычитание равных чисел в результате получим нуль.

Проверка результата вычитания.

Как проверить правильно ли вы нашли разность двух целых чисел?
Ответ прост он заключается в самом определении разности двух целых чисел. Нужно разность сложить с вычитаемым получим уменьшаемое
. Словесная формула будет выглядеть так:

Разность+Вычитаемое=Уменьшаемое

Пример:

19-5=14

19 – это у нас уменьшаемое;
5 – вычитаемое;
14 – разность.

Выполним проверку:
К разности прибавим уменьшаемое, если правильно выполнили вычитание, то получим уменьшаемое.

Еще пример:

Выполните проверку вычитания 12-23=-11

12 – уменьшаемое;
23 – вычитаемое;
-11 – разность.

Выполним проверку вычитания:
Разность+Вычитаемое=Уменьшаемое

Добавить комментарий