Как найти разность кругов эйлера

Диаграммы Эйлера-Венна

Содержание:

  • Что такое диаграммы Эйлера-Венна

    • Принцип построения
  • Дополнение множества
  • Объединение множеств
  • Пересечение множеств
  • Симметричная разность множеств
  • Разность множеств
  • Использование диаграмм Эйлера-Венна для доказательства логических равенств
  • Примеры задач с решением

Что такое диаграммы Эйлера-Венна

Определение

Диаграмма Эйлера-Венна — геометрическая схема, которая используется для моделирования множеств и для схематичного изображения и отношений между ними.Диаграмма позволяет наглядно отразить различные утверждения о множествах. При использовании этого метода универсальное множество изображается в виде прямоугольника, подмножества изображают кругами. Диаграммы нашли свое применение в математике, логике, менеджменте и других прикладных направлениях.

Для отражения отношений между множествами математики Джон Венн и Леонард Эйлер использовали для способа. Если Венн использовал для обозначения множеств замкнутые фигуры, то Эйлер использовал круги.

Диаграммы Эйлера-Венна являются важным частным случаем кругов Эйлера. Диаграммы изображают все 2^n комбинаций n свойств, что является конечной булевой алгеброй. В случае n = 3 диаграмма Эйлера-Венна обычно состоит из трёх кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приближенно равным длине стороны треугольника. 

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Принцип построения

Построение диаграммы Эйлера-Венна — это изображение большого прямоугольника, который представляет универсальное множество U. Внутри прямоугольника изображаются замкнутые фигуры, обозначающие множества. Если множеств не более 3, то изображаются круги, и эллипсы, если множеств 4. Фигуры пересекаются в наиболее общем случае, требуемом задачей, что обозначается соответствующим образом. 

Предположим, что на диаграмме изображен круг, представляющий множество А. Область в середине круга множества А отражает истинность выражения А, в то время как область вне круга обозначает ложь. Логическая операция будет отображаться на диаграмме при помощи штриховки тех областей, в которых ее значения истинны. В соответствии с алгеброй логики, конъюнкция множеств А и B будет истинна только тогда, когда истинны оба множества. Тогда на диаграмме будет отмечена область пересечения множеств.

С помощью диаграмм Эйлера-Венна можно доказать все законы алгебры, представляя их графически. Это возможно через выполнение следующего алгоритма:

  1. В первую очередь необходимо начертить диаграмму, заштриховав все множества, находящиеся в левой части равенства.
  2. Следующим шагом будет начертание другой диаграммы и штриховка всех множеств, которые находятся в правой части равенства.
  3. В случае, когда на диаграммах заштрихована одна и та же область, торжество истинно.

Дополнение множества

Дополнением к множеству A является множество (overline A), которое состоит из элементов, не входящих в А. 

(overline A;=;left{x;vert;x;notin;Aright})

При этом не все элементы, не являющиеся элементами А, могут быть включены в (overline A.) Принято считать, что все множества, которые участвуют в решении задачи, являются подмножествами некоторого общего универсального множества U. Учитывая это, дополнение overline A определяется следующим образом:

(overline A;=;U;backslash;A)

Таким образом выглядит дополнение (overline A) графически:

Диаграмма

 

Объединение множеств

Объединением множеств A и B называют множество (A;cup;B), которое состоит из элементов, принадлежащих хотя бы одному из множеств. 

Объединение записывается следующим образом:

(A;cup;B;=;left{x;vert;x;in;A;или;x;in:Bright})

Таким образом объединение множеств выглядит графически:

Объединение множеств

 

Пересечение множеств

Пересечением множеств A и B является множество (A;cap;B), которое состоит из элементов, входящих в оба множества.

Пересечение множеств записывается следующим образом:

(A;cap;B;=;left{x;vert;x;in;A;и;x;in;Bright})

Таким образом пересечение множеств выглядит графически:

Пересечение множеств

 

Симметричная разность множеств

Симметричная разность A B — это такое множество, куда входят все те элементы первого множества, которые не входят во второе множество, а, также те элементы второго множества, которые не входят в первое множество

Разность множеств записывается следующим образом:

(Abigtriangleup B=(Abackslash B)cup(Bbackslash A))

Таким образом разность выглядит графически:

Симметричная разность

 

Разность множеств

Разностью A B является множество элементов A, не входящих в B.

Разность множеств записывается следующим образом:

(A;backslash;B;=;left{x;vert;x;in;A;и;x;notin;Bright})

Таким образом разность выглядит графически:

Разность множеств

 

Использование диаграмм Эйлера-Венна для доказательства логических равенств

Рассмотрим, как диаграммы Эйлера-Венна применяются для доказательства логических равенств.

Предположим, что перед нами конъюнкция множеств (A;wedge;B)

Использование диаграмм 1

 

В первую очередь обратим внимание на левую часть равенства. Построим диаграмму для множеств А и B. Графически отметим дизъюнкцию, заштриховав оба круга цветом.

Использование диаграмм 2

 

Теперь отобразим инверсию, заштриховав область за пределами множеств.

Использование диаграмм 3

 

Обратим внимание на правую часть равенства. В первую очередь отобразим инверсию A штриховкой область за пределами круга множества A цветом.

Использование диаграмм 4

 

Проведем аналогичную операцию с множеством B.

Использование диаграмм 5

 

Теперь штриховкой черным цветом всех областей пересечения отобразим конъюнкцию инверсий множеств А и B.

Использование диаграмм 6

 

При сравнении области для отображения правой и левой частей, становится очевидно, что они равны. Справедливость логического равенства доказана с помощью диаграммы Эйлера-Венна.

Примеры задач с решением

Задача

Группа туристов из 100 человек пробыла в городе N три дня. За это время в ресторане питались 28 туристов, фастфуде — 42, кофейне — 30. И в ресторане, и в фастфуде побывало 10 человек; в ресторане и кофейне — 8; в фастфуде и кофейне — 5. Все во всех трех местах побывали три человека. Сколько туристов питалось в других местах и не посетило ни одного из перечисленных?

Решение

В условии задачи три множества — Р, Ф и К. Туристы, которые пытались в ресторане, фастфуде и кофейне, соответственно. Универсальное множество U — это множество всех туристов группы. Запишем условие задачи, где n(X) — количество элементов множества X.

(n(U);=;100\n(Р);=;28,;n(Ф);=;42,;n(К);=;30\n;(Р;cap;Ф);=;10,;n(Р;cap;К);=;8,;n;(Ф;cap;К);=;5\n;(Р;cap;Ф;cap;К);=;3)

Необходимо найти (n(Р;cup;Ф;cup;К);=;n;(U;backslash;(Р;cap;Ф;cap:К)))

В решении задачи поможет представление данных графически с помощью диаграммы Эйлера-Венна. Составляя ее, важно помнить, что если в (Р;cap;Ф;cap:К) три элемента, а в множестве (Р;cap;Ф) — 10 элементов, то в диаграмме в месте пересечений множеств Р и Ф мы проставляем 7 элементов, так как 3 элемента уже учтено.

Задача 1

 

Теперь, когда на диаграмме все элементы учтены по одному разу, можно вычислить количество туристов, которые побывали хотя бы одном из заведений.

(n(Р;cup;Ф;cup;К);=;13;+;7;+;30;+5;+;3;+;2:+;20;=;80)

Тогда, количество туристов, которые не побывали ни в ресторане, ни в фастфуде, ни в кофейне можно вычислить следующим образом:

(n(U;backslash;(Р;cup;Ф;cup;К));=;100;-;80;=;20)

Ответ: 20 туристов не побывали ни в одном из указанных заведений.

Задача

На олимпиаде по математике школьникам предложили решить три задачи: одну по алгебре, одну по геометрии, одну по тригонометрии. В олимпиаде участвовало 1000 школьников. Результаты олимпиады были следующие: задачу по алгебре решили 800 участников, по геометрии — 700, по тригонометрии — 600. 600 школьников решили задачи по алгебре и геометрии, 500 — по алгебре и тригонометрии, 400 — по геометрии и тригонометрии. 300 человек решили задачи по алгебре, геометрии и тригонометрии. Сколько школьников не решило ни одной задачи?

Решение

Начнем с определения множеств и введения обозначений. В данном случае, их три:

  • множество задач по алгебре («А»);
  • множество задач по геометрии («Г»);
  • множество задач по тригонометрии («Т»).

Используя диаграмму Эйлера-Венна графически изобразим информацию, данную в условии задачи.

Задача 2

 

Теперь используя диаграмму, обозначим область, которую необходимо найти:

Задача 3

 

Определим количество школьников для всех возможных областей.

Обозначим искомую область А = 0, Г = 0, Т = 0 как «х».

Найдем остальные области:

  1. Область А = 0, Г = 0, Т = 1: школьников нет.
  2. Область А = 0, Г = 1, Т = 0: школьников нет.
  3. Область А = 0, Г = 1, Т = 1: 100 школьников.
  4. Область А = 1, Г = 0, Т = 0: школьников нет.
  5. Область А = 1, Г = 0, Т = 1: 200 школьников.
  6. Область А = 1, Г = 1, Т = 0: 300 школьников.
  7. Область А = 1, Г = 1, Т = 1: 300 школьников.

Теперь внесем значения всех областей в диаграмму:

Задача 4

 

Определим x:

(x;=;U;-;(A;cup;Г;cup;Т);)

При U — универсум

U = 1000

((A;cup;Г;cup;Т);=; 0 + 0 + 0 + 300 + 300 + 200 + 100 = 900)

x = 1000 – 900 = 100

Ответ: 100 школьников не решило ни одной задачи.

Лекция 4.  Вычитание
множеств, дополнение подмножества.

   
    Определение. Разностью множеств
А и В называется множество, содержащее те и только те элементы, которые
принадлежат множеству А и не принадлежат множеству В.

       
Разность множеств А и В обозначают А В. Таким образом, по определению
разности А В = { х х 

А и х 
В}.

       
Например,  если  А  = { a , c , k , m , n }
 и   В = { a , b , c , d , e },   то
А В = { k , m , n }.

        Если
изобразить А и В при помощи кругов Эйлера-Венна, то разность данных множеств
является заштрихованная область (рис. 5).

   
    Определение. Пусть В является подмножеством
множества А. В этом случае разность множеств А и В называют дополнением подмножества
В до множества А и обозначают В’А. Дополнение можно изобразить
как показано на рис. 5. Если В – подмножество универсального множества U, то
дополнение подмножества В до U обозначают В’.

https://refdb.ru/images/1189/2377715/m274ec142.jpg

Например, если В – множество однозначных
натуральных чисел, то В’– множество неоднозначных натуральных чисел, если С –
множество равнобедренных треугольников, то С’ – множество треугольников, у
которых все стороны имеют разную длину.

Разность множеств и дополнение к подмножеству
обладают рядом свойств.

1)    (А В) С = (А С)
В.

2)    (АВ)
С = (А С)
(В С).

3)    (А В) ∩ С = (А ∩С)
(В ∩ С).

4)    (А
В)’ = А’ ∩ В’.

5)    (А ∩ В)’ = А’ В’.

Задания для самостоятельной работы по теме:

1.
Найдите разность множеств А и В, если

а) А = {1,2, 3,4,
5, 6}, В = {2, 4, 6, 8, 10};

б) А =
{1,2,3,4,5,6},В={1,3,5};

в) А =
{1,2,3,4,5,6},В={6,2,3,4,5,1}.

2. В
каких случаях, выполняя упражнение 1, вы находили дополнение множества В до
множества А?

3.
Из каких чисел состоит дополнение:

а) множества натуральных
чисел до множества целых;

б) множества целых чисел
до множества рациональных;

в) множества рациональных
чисел до множества действительных.

Вновь
возьмём множества Х
=
{0, 1, 3, 5} и
Y
= {1, 2, 3, 4} и наряду с ними рассмотрим
множество {0, 1, 2, 3, 4, 5}. Это множество
содержит все элементы множества Х
и
все элементы множества Y
и
не содержит никаких других элементов.

Множество,
состоящее из всех элементов, принадлежащих
или множеству
А
или
множеству

В,
называется
объединением
множеств
А
и
В,
обозначается
А U
В. А U
В = { х


А или
х

В }

Итак,
{0,
1, 3, 5}
{1, 2, 3, 4} = {0, 1, 2, 3, 4, 5}.

Если
изобразить множества А
и
В при
помощи кругов Эйлера, то объединение
данных множеств изобразится заштрихованной
областью.

А U
В

Если множества не
имеют общих элементов, то их объединение
выглядит так:

А U
В

Если
одно из множеств является подмножеством
другого, то их объединение будет выглядеть
так:

А U
В

Часто
приходится рассматривать объединение
и пересечение трёх и более множеств.
Объединение множеств А,
В и
С
есть множество, каждый элемент которого
принадлежит хотя бы одному из множеств
А, В или
С; пересечение
множеств А,
В и
С есть
множество всех элементов, принадлежащих
и множеству А,
и множеству В,
и множеству С.

А U
В U С
А
∩ В ∩ С

Например, объединение
множеств остроугольных, тупоугольных
и прямоугольных треугольников есть
множество всех треугольников.

Еще
операции над множествами можно показать
с помощью детского анекдота: Однажды
лев, царь зверей, собрал зверей на поляне
и повелел им разделиться на умных и
красивых. После того, как пыль улеглась,
лев увидел на поляне две большие группы
зверей и мартышку, прыгающую между ними.
На вопрос: почему она прыгает туда, сюда,
мартышка ответила: «Что мне, разорваться,
что ли?». Так вот, мартышка из анекдота
– это пример пересечения умных
зверей и красивых.
А объединением умных и красивых зверей
является все множество зверей.

Объединение и
пересечение множеств обладают многими
свойствами, аналогичными свойствам
суммы и произведения чисел:

п/п

Свойство
операций над множествами

Свойство
арифметических операций

Название
свойства

1

a + b =
b + a

Коммутативность

2

3

(а+b)+c
= a+(b+c)

Ассоциативность

4

5

Дистрибутивность

Однако эта аналогия
не всегда имеет место. Например, для
множеств справедливы равенства:

6.
(А U
С)

U
С) = (A

B)
U
С.

7.
А U
А = А.

8.
А
А
= А.

Соответствующие
равенства для чисел верны не всегда.

Заметим, что, если
в выражении есть знаки пересечения и
объединения множеств, и нет скобок, то
сначала выполняют пересечение, так как
считают, что пересечение более «сильная»
операция, чем объединение.

1.3.3 Вычитание множеств

Если заданы два
множества, то можно не только найти их
пересечение и объединение, но и вычесть
из одного множества другое. Результат
вычитания называют разностью и определяют
следующим образом.

Разностью
множеств
А и
В называется
множество, содержащее все элементы,
которые принадлежат множеству
А
и не
принадлежат множеству
В,
обозначается
А
В. А
В = {х


А и х
В
}.

Х
Y
= {0, 1, 3, 5} {1, 2, 3, 4} = {0, 5}
.
Если мы найдем разность множеств Y
и Х, то результат будет выглядеть так:
Y
X
= {2; 4}
. Таким
образом, разность множеств не обладает
переместительным (коммутативным)
свойством.

Если
изобразить множестваА
и
В при
помощи кругов Эйлера, то разность данных
множеств изобразится заштрихованной
областью.

А
В

Если множества не
имеют общих элементов, то их разность
будет изображаться так:


В

А

А
В

Если одно из
множеств является подмножеством другого,
то их разность будет изображаться так:

А

В

В

Пересечение
– более «сильная» операция, чем вычитание.
Поэтому порядок выполнения действий в
выражении А
В
С
такой: сначала
находят пересечение множеств В
и С,
а затем полученное множество вычитают
из множества А.
Что касается
объединения и вычитания множеств, то
их считают равноправными. Например, в
выражении А В U С надо сначала выполнить
вычитание (из А вычесть В), а затем
полученное множество объединить с
множеством С.

Вычитание множеств
обладает рядом свойств:

  1. (А В) С = (А С)
    В.

  2. (А U В) С = (А С) U
    (В С).

  3. (А В) ∩ С = (А ∩ С)
    (В ∩С).

  4. А (В U С) = (А В) ∩
    (А С).

  5. А (В ∩ С) = (А В)
    U (А С).

Соседние файлы в папке теория 1 курс

  • #
  • #
  • #
  • #
  • #
  • #

Пересечение, объединение и разность множеств

  1. Пересечение множеств
  2. Объединение множеств
  3. Универсум и отрицание
  4. Свойства операций пересечения и объединения
  5. Разность множеств
  6. Формулы включений и исключений
  7. Примеры

Пересечение множеств

Пересечением множеств A и B называют множество, содержащее те и только те элементы, которые входят одновременно как в множество A, так и в множество B:

$$ A cap B = {x|x in Bbb A и x in Bbb B } $$

Пересечение множеств

Если множества не пересекаются, то $A cap B = varnothing $ – пустое множество в пересечении. Если $B subseteq A$ – подмножество, то $A cap B = B$ – пересечением будет меньшее множество из двух.

Например:

Если A = {1;3;5;9}, Β = {3;7;11}, то $A cap B$ = {3;5}.

Если A = {f|f-прямоугольник}, B = {f|f-ромб}, то $A cap B$ = {f|f-квадрат}.

Если A = ${n|n⋮3, n in Bbb N }$ – натуральные числа, кратные 3, B = ${n|n⋮5, n in Bbb N }$ – натуральные числа, кратные 5, то $A cap B = {n|n⋮15, n in Bbb N}$ – натуральные числа, кратные 15.

Если A = {a│a-слон}, B = {a|a-птица}, то $A cap B = varnothing$.

Объединение множеств

Объединением – множеств A и B называют множество, содержащее те и только те элементы, которые входят хотя бы в одно из множеств, A или B:

$$ A cup B = { x|x in Bbb A или x in Bbb B } $$

Объединение множеств

Если $B subseteq A$ – подмножество, то $A cap B = A$ – объединением будет большее множество из двух.

Например:

Если A = {1;3;5;9}, Β = {3;7;11}, то $A cup B$ = {1;3;5;7;9;11}.

Если $A = {x|x^2-4 = 0, x in Bbb R}, B = {x|x+3 = 2, x in Bbb R }, то A cup$ B = {-2;-1;2}

Если $A = {n│n in Bbb Z }$- все целые числа, $B = {x|x = frac{a}{b}, a in Bbb Z, b in Bbb N }$ – все дроби, то $A cup B = {x│x in Bbb Q}$ – множество рациональных чисел. Заметим, что в данном случае $A subset B$.

Универсум и отрицание

Универсум (универсальное множество) – множество, включающее в себя все множества, рассматриваемые в данной задаче.

В литературе универсум обозначают U.

На диаграммах Эйлера универсум изображают как множество точек прямоугольника, в котором лежат остальные множества:

Универсум и отрицание

Примеры универсумов:

При рассмотрении целочисленных задач, универсум – это множество целых чисел.

При построении двумерных графиков, универсум – это множество всех точек координатной плоскости.

При решении вероятностных задач, универсум – это множество всех возможных исходов цепочек событий.

Отрицание (абсолютное дополнение) множества A – множество всех элементов универсума, не принадлежащих A:

$$ bar{A} = {x|x notin A } $$

Читается «не A».

У отрицания есть любопытное свойство: $bar{bar{Α}} = Α $(два раза «нет» – это «да»).

Отрицание (абсолютное дополнение) множества A

Например:

Если U = {1;2;3;4;5;6;7}, A = {3;4;5}, то $bar{A} = {1;2;6;7}$

Если U = ${x|x in Bbb R}$ – все действительные числа, A = ${x|x gt 0, x in Bbb R }$ – все положительные действительные числа, то $ bar{A} = {x|x le 0, x in Bbb R}$.

Свойства операций пересечения и объединения

$A cap B = B cap A$

$ A cup B = B cup A $

$(A cap B) cap C = A cap (B cap C)$

$ (A cup B) cup C = A cup ( B cup C) $

$(A cup B) cap C = (A cap C) cup (B cap C)$

$ (A cap B) cup C = (A cup C) cap (B cup C) $

$A cap A = A$

$ A cup A = 0 $

Взаимодействие с отрицанием, пустым множеством и универсумом

$A cap bar{A} = varnothing $

$A cap U = A$

$A cap varnothing = varnothing$

$A cup bar{A} = U $

$A cup U = U$

$A cup varnothing = A$

$ overline{(A cap B)} = bar{A} cup bar{B} $

$ overline{(A cup B)} = bar{A} cap bar{B} $

$ (A cup B) cap A = A $

$ (A cap B) cup A = A $

Разность множеств

Разностью двух множеств A и B называют множество, в которое входят все элементы из множества A, не принадлежащие множеству B:

$$ AB = {x|x in Bbb A , x notin B} $$

Читается «A без B».

На диаграммах Эйлера разности для пересекающихся множеств выглядят так:

Разность множеств 1

Разность множеств 2

Получается, что отрицание – частный случай разности: $ bar{A} = {x|x in Bbb U, x notin A } $= UA

«Не A» – это «универсум без A».

Формулы включений и исключений

Рассмотрим два конечных пересекающихся множества A и B.

Пусть число элементов во множествах равно n(A)и n(B) соответственно. А число элементов в пересечении $n(A cap B)$.

Вопрос: сколько всего элементов в обоих множествах, т.е. чему равно $n(A cup B)$?

Формулы включений и исключений 1

Сумма n(A)и n(B) даст нам больше, чем общее количество, потому что мы два раза посчитаем то, что попадает в пересечение. Значит, если отнять одно пересечение, получится как раз то, что ищем:

$$n(A cup B) = n(A)+ n(B)-n(A cap B)$$

Выведем аналогичную формулу для трёх пересекающихся конечных множеств.

Формулы включений и исключений 2

Сумма n(A)+ n(B)+n(C) учтёт каждое из парных пересечений по два раза. Поэтому, аналогично задаче с двумя множествами, нужно отнять всё, что попадает в парные пересечения, т.е. отнять сумму $(n(A cap B)+n(A cap C)+n(B cap C) )$. Но после этого получится, что мы лишний раз отняли $n(A cap B cap C)$; значит, его нужно «вернуть».

Получаем:

$$ n(A cup B cup C) = n(A)+ n(B)+n(C)- $$

$$ -(n(A cap B)+n(A cap C)+n(B cap C) )+n(A cap B cap C) $$

Примеры

Пример 1. Найдите пересечение данных множеств:

а) A = {0;5;8;10},

B = {3;6;8;9}

$A cap B$ = {8}

$б) A = {x|x lt 3, x in Bbb R}, $

$ B = {x|x gt 1, x in Bbb R} $

$A cap B = {x|1 lt x lt 3, x in Bbb R}$ – отрезок

$в) A = {x|x lt 3, x in Bbb R}, $

$ B = {x|x gt 1, x in Bbb N} $

$A cap B = {x|1 lt x lt 3, x in Bbb N } или A cap B = {2}$ – одна точка

г) A = {f|f-правильный многоугольник},

B = {f|f-четырехугольник}

$A cap B = {f|f-квадрат}$

Пример 2. Найдите объединение данных множеств:

а) A = {0;5;8;10}, B = {3;6;8;9}

$A cup B$ = {0;3;5;6;8;9;10}

б) A = {1;2}, B = {1;2;3;4}

$A subset B$ – строгое подмножество

$A cup B $ = B = {1;2;3;4}

$в) A = {x|x lt 1, x in Bbb R}, B = {x|x gt 1,x in Bbb R} $

$A cup B = {x|x neq 1, x in Bbb R }$

$г) A = {n│n⋮3, n in Bbb Z}, B = {n|n⋮9,n in Bbb N} $

$B subset A$ – строгое подмножество

$ A cup B = A = {n│n⋮3, n in Bbb Z} $

Пример 3. Найдите отрицание данного множества на данном универсуме:

а) U = {1;2;3;4;5}, A = {2;3}

$ bar{A} = {1;4;5}$

б) U = ${x│x in Bbb Q }$, A = ${ frac{4}{5}, frac{7}{8} }$

$ bar{A} = {x|x neq frac{4}{5}, x neq frac{7}{8}, x in Bbb Q} $

$в) U = {x│x in Bbb R}, A = {x|x ge 2, x in Bbb R} $

$bar{A} = {x|x lt 2, x in Bbb R}$

г) U = { 0;1}, A = { 0}

$ bar{A} = {1}$

Пример 4. Найдите обе разности данных множеств:

а) A = {0;1;2;3;4}, B = {2;4}

AB = {0;1;3}, $BA = {∅}$

б) A = {0;1;3}, B = {2;4;6}

AB = {0;1;3}, BA = {2;4;6}

$в) A = {x|x gt 1, x in Bbb R}, $

$ B = {x|x lt 3, x in Bbb R} $

AB $ = {x|x ge 3, x in Bbb R}$

BA $ = {x|x le 1,x in Bbb R} $

$ г*) A = {(x,y)|x gt 0, x in Bbb R, y in Bbb R} $

$ B = {(x,y)|x le 5, x in Bbb R, y in Bbb R} $

AB $ = {(x,y)|x gt 5, x in Bbb R, y in Bbb R} $

BA $ = {(x,y)|x le 0, x in Bbb R, y in Bbb R} $

Пример 5. Из 100 студентов умеют программировать на Python 28 человек, на Java 30 человек, на C# 42 человека, на Python и Java 8 человек, на Python и C# 10 человек, на Java и C# 5 человек. Все три языка знают 3 студента. А сколько студентов не умеют программировать на этих языках?

Пример 5.

n(U) = 100

n(A) = 28, n(B) = 30, n(C) = 42

$ n(A cap B) = 8, n(B cap C) = 5, n(A cap C) = 10 $

$n(A cap B cap C) = 3$

Всего программистов:

$ n(A cup B cup C) = n(A)+n(B)+n(C)- $

$ (n(A cap B)+n(B cap C)+n(A cap C) )+n(A cap B cap C) $

$n(A cup B cup C) = 28+30+42-(8+5+10)+3 = 100-23+3 = 80$

Число не умеющих программировать:

$n(U)-n(A cup B cup C) = 100-80 = 20$

Ответ: 20 человек

Симметрическая разность множеств

Симметрическую разность можно описать двумя способами:

Например, если А=<1,2,3,4>, B=<3,4,5,6>, то А Δ В = (А В) ∪ (В А) = <1,2>∪ <5,6>=

Онлайн калькулятор позволяет найти симметрическую разность множеств A и B (А Δ B).

Также доступны следующие операции над множествами: объединение, пересечение, разность.

Онлайн калькуляторы

Calculatorium.ru — это бесплатные онлайн калькуляторы для самых разнообразных целей: математические калькуляторы, калькуляторы даты и времени, здоровья, финансов. Инструменты для работы с текстом. Конвертеры. Удобное решение различных задач — в учебе, работе, быту.

Актуальная информация

Помимо онлайн калькуляторов, сайт также предоставляет актуальную информацию по курсам валют и криптовалют, заторах на дорогах, праздниках и значимых событиях, случившихся в этот день. Информация из официальных источников, постоянное обновление.

1.1.4 Операции над множествами

В результате операций над множествами из одних множеств могут получаться другие множества. Основные из этих операций – объединение, пересечение и дополнение множеств. Кроме того, часто применяются операции разности и симметрической разности множеств.

Объединение множеств. Пусть заданы множества A и В. Объединение этих множеств – множество, состоящее из всех тех и только тех элементов, которые принадлежат или множеству A, или множеству B (т.е. хотя бы одному из них). Объединение двух множеств обозначают как .

Аналогично определяется объединение нескольких множеств. Пусть даны множества . Их объединение — множество, состоящее из всех тех и только тех элементов, которые принадлежат хотя бы одному из этих множеств. Операция объединения в этом случае обозначается как, или.

Пересечение множеств. Пусть заданы множества A и В. Пересечение этих множеств – множество, состоящее из всех тех и только тех элементов, которые принадлежат и множеству A, и множеству B (т.е. обоим множествам сразу). Пересечение двух множеств обозначают как .

Аналогично определяется пересечение нескольких множеств. Пусть даны множества . Их пересечение — множество, состоящее из всех тех и только тех элементов, которые принадлежат всем этим множествам сразу. Операция пересечения в этом случае обозначается как, или.

Дополнение множества. Пусть задано множество A. Дополнение этого множества – множество, состоящее из всех тех и только тех элементов, которые не принадлежат множеству A. Дополнение множества обозначают как .

Разность множеств. Пусть заданы множества A и В. Разность этих множеств – множество, состоящее из всех тех и только тех элементов, которые принадлежат множеству A, но не принадлежат множеству B. Разность множеств обозначают как S = A B.

Симметрическая разность множеств. Пусть заданы множества A и В. Симметрическая разность этих множеств – множество, состоящее из всех тех и только тех элементов, которые принадлежат или множеству A, или множеству B, но не им обоим сразу. Симметрическую разность множеств обозначают как S = AB.

Следует обратить внимание, что операции пересечения и объединения выполняются с несколькими множествами (двумя или более), а операция дополнения – с одним множеством. Операции разности и симметрической разности выполняются с двумя множествами.

Операции разности и симметрической разности можно выразить через операции пересечения, объединения и дополнения:

, (1.1)

. (1.2)

Эти равенства можно доказать на основе определений операций над множествами.

Пример 1.1 – Даны множества: A = <2, 7, 9, 12>, B = <3, 6, 7, 12, 15>. Выполнить над этими множествами операции, рассмотренные выше.

Чтобы найти дополнения множеств A и B, необходимо уточнить, что в данной задаче имеется в виду под универсальным множеством. Пусть под ним имеется в виду все множество целых чисел (обозначим его как Z). Тогда дополнение множества A можно записать как = <a | aZ, aA>. Аналогично записывается дополнение множества B: = <b | bZ, bB>.

1Числа во множествах записаны по возрастанию только для удобства. На самом деле, порядок элементов во множествах безразличен. Поэтому, например, пересечение множествAиBможно записать и как <7, 12>, и как <12, 7>.

2Следует обратить внимание, что в операциях пересечения, объединения, а также симметрической разности порядок множеств, с которыми выполняется операция, безразличен:,,AB=BA. Говорят, что эти операции обладают свойством коммутативности. В то же времяABBA.

Пример 1.2 – Даны множества: A = <a | 5  a < 20>, B = <b | b  17>, C = <c | 10 < c  12>. Приведем некоторые примеры операций над этими множествами:

X = C A = 

X = = <x | x < 5 или x  20>

X = = <x | x  17>.

Диаграммы Эйлера-Венна

Диаграмма Эйлера-Венна — геометрическая схема, которая используется для моделирования множеств и для схематичного изображения и отношений между ними.Диаграмма позволяет наглядно отразить различные утверждения о множествах. При использовании этого метода универсальное множество изображается в виде прямоугольника, подмножества изображают кругами. Диаграммы нашли свое применение в математике, логике, менеджменте и других прикладных направлениях.

Для отражения отношений между множествами математики Джон Венн и Леонард Эйлер использовали для способа. Если Венн использовал для обозначения множеств замкнутые фигуры, то Эйлер использовал круги.

Диаграммы Эйлера-Венна являются важным частным случаем кругов Эйлера. Диаграммы изображают все 2^n комбинаций n свойств, что является конечной булевой алгеброй. В случае n = 3 диаграмма Эйлера-Венна обычно состоит из трёх кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приближенно равным длине стороны треугольника.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Принцип построения

Построение диаграммы Эйлера-Венна — это изображение большого прямоугольника, который представляет универсальное множество U. Внутри прямоугольника изображаются замкнутые фигуры, обозначающие множества. Если множеств не более 3, то изображаются круги, и эллипсы, если множеств 4. Фигуры пересекаются в наиболее общем случае, требуемом задачей, что обозначается соответствующим образом.

Предположим, что на диаграмме изображен круг, представляющий множество А. Область в середине круга множества А отражает истинность выражения А, в то время как область вне круга обозначает ложь. Логическая операция будет отображаться на диаграмме при помощи штриховки тех областей, в которых ее значения истинны. В соответствии с алгеброй логики, конъюнкция множеств А и B будет истинна только тогда, когда истинны оба множества. Тогда на диаграмме будет отмечена область пересечения множеств.

С помощью диаграмм Эйлера-Венна можно доказать все законы алгебры, представляя их графически. Это возможно через выполнение следующего алгоритма:

  1. В первую очередь необходимо начертить диаграмму, заштриховав все множества, находящиеся в левой части равенства.
  2. Следующим шагом будет начертание другой диаграммы и штриховка всех множеств, которые находятся в правой части равенства.
  3. В случае, когда на диаграммах заштрихована одна и та же область, торжество истинно.

Дополнение множества

Дополнением к множеству A является множество (overline A) , которое состоит из элементов, не входящих в А.

При этом не все элементы, не являющиеся элементами А, могут быть включены в (overline A.) Принято считать, что все множества, которые участвуют в решении задачи, являются подмножествами некоторого общего универсального множества U. Учитывая это, дополнение overline A определяется следующим образом:

Таким образом выглядит дополнение (overline A) графически:

Диаграмма

Объединение множеств

Объединением множеств A и B называют множество (A;cup;B) , которое состоит из элементов, принадлежащих хотя бы одному из множеств.

Объединение записывается следующим образом:

Таким образом объединение множеств выглядит графически:

Объединение множеств

Пересечение множеств

Пересечением множеств A и B является множество (A;cap;B) , которое состоит из элементов, входящих в оба множества.

Пересечение множеств записывается следующим образом:

Таким образом пересечение множеств выглядит графически:

Пересечение множеств

Симметричная разность множеств

Симметричная разность A B — это такое множество, куда входят все те элементы первого множества, которые не входят во второе множество, а, также те элементы второго множества, которые не входят в первое множество

Разность множеств записывается следующим образом:

(Abigtriangleup B=(Abackslash B)cup(Bbackslash A))

Таким образом разность выглядит графически:

Симметричная разность

Разность множеств

Разностью A B является множество элементов A, не входящих в B.

Разность множеств записывается следующим образом:

Таким образом разность выглядит графически:

Разность множеств

Использование диаграмм Эйлера-Венна для доказательства логических равенств

Рассмотрим, как диаграммы Эйлера-Венна применяются для доказательства логических равенств.

Предположим, что перед нами конъюнкция множеств (A;wedge;B)

Использование диаграмм 1

В первую очередь обратим внимание на левую часть равенства. Построим диаграмму для множеств А и B. Графически отметим дизъюнкцию, заштриховав оба круга цветом.

Использование диаграмм 2

Теперь отобразим инверсию, заштриховав область за пределами множеств.

Использование диаграмм 3

Обратим внимание на правую часть равенства. В первую очередь отобразим инверсию A штриховкой область за пределами круга множества A цветом.

Использование диаграмм 4

Проведем аналогичную операцию с множеством B.

Использование диаграмм 5

Теперь штриховкой черным цветом всех областей пересечения отобразим конъюнкцию инверсий множеств А и B.

Использование диаграмм 6

При сравнении области для отображения правой и левой частей, становится очевидно, что они равны. Справедливость логического равенства доказана с помощью диаграммы Эйлера-Венна.

Примеры задач с решением

Задача

Группа туристов из 100 человек пробыла в городе N три дня. За это время в ресторане питались 28 туристов, фастфуде — 42, кофейне — 30. И в ресторане, и в фастфуде побывало 10 человек; в ресторане и кофейне — 8; в фастфуде и кофейне — 5. Все во всех трех местах побывали три человека. Сколько туристов питалось в других местах и не посетило ни одного из перечисленных?

Решение

В условии задачи три множества — Р, Ф и К. Туристы, которые пытались в ресторане, фастфуде и кофейне, соответственно. Универсальное множество U — это множество всех туристов группы. Запишем условие задачи, где n(X) — количество элементов множества X.

Необходимо найти (n(Р;cup;Ф;cup;К);=;n;(U;backslash;(Р;cap;Ф;cap:К)))

В решении задачи поможет представление данных графически с помощью диаграммы Эйлера-Венна. Составляя ее, важно помнить, что если в (Р;cap;Ф;cap:К) три элемента, а в множестве (Р;cap;Ф) — 10 элементов, то в диаграмме в месте пересечений множеств Р и Ф мы проставляем 7 элементов, так как 3 элемента уже учтено.

Задача 1

Теперь, когда на диаграмме все элементы учтены по одному разу, можно вычислить количество туристов, которые побывали хотя бы одном из заведений.

Тогда, количество туристов, которые не побывали ни в ресторане, ни в фастфуде, ни в кофейне можно вычислить следующим образом:

Ответ: 20 туристов не побывали ни в одном из указанных заведений.

Задача

На олимпиаде по математике школьникам предложили решить три задачи: одну по алгебре, одну по геометрии, одну по тригонометрии. В олимпиаде участвовало 1000 школьников. Результаты олимпиады были следующие: задачу по алгебре решили 800 участников, по геометрии — 700, по тригонометрии — 600. 600 школьников решили задачи по алгебре и геометрии, 500 — по алгебре и тригонометрии, 400 — по геометрии и тригонометрии. 300 человек решили задачи по алгебре, геометрии и тригонометрии. Сколько школьников не решило ни одной задачи?

Решение

Начнем с определения множеств и введения обозначений. В данном случае, их три:

  • множество задач по алгебре («А»);
  • множество задач по геометрии («Г»);
  • множество задач по тригонометрии («Т»).

Используя диаграмму Эйлера-Венна графически изобразим информацию, данную в условии задачи.

Бинарные операции над упорядоченными множествами

В предыдущей статье я писал о бинарных операциях над неупорядоченными множествами. В этой статье мы рассмотрим алгоритмы с меньшей сложностью выполнения, для упорядоченных множеств.

I. Пересечение упорядоченных множеств

Пересечение двух упорядоченных множеств A и B — это множество только с теми элементами A и B, которые одновременно принадлежат обоим множествам, без дублей. Сложность алгоритма O(m+n), где m и n — длины входных множеств A и B соответственно.

Сделал небольшую анимацию, чтобы показать как работает алгоритм.

Пример реализации на javascript:

Обращение к функции:

II. Разность упорядоченных множеств

Разность двух упорядоченных множеств A и B — это множество с элементами A, не совпадающими с элементами B, без дублей. Сложность алгоритма O(m+n), где m и n — длины входных упорядоченных множеств A и B соответственно.

III. Объединение упорядоченных множеств

Объединение двух упорядоченных множеств A и B — это множество с элементами A и элементы множества B, без дублей. Сложность алгоритма O(m+n), где m и n — длины входных упорядоченных множеств A и B соответственно.

IV. Симметрическая разность упорядоченных множеств

Симметрическая разность двух упорядоченных множеств A и B — это такое множество, куда входят все те элементы первого упорядоченного множества, которые не входят во второе упорядоченное множество, а также те элементы второго упорядоченного множества, которые не входят в первое упорядоченное множество. Сложность алгоритма O(2(m+n)), где m и n — длины входных упорядоченных множеств A и B соответственно.

По сути это вычитание множеств, сначала A из B, затем B из A.

Добавить комментарий